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Abstract

We characterize Carleson measures for the analytic Besov spaces Bp on the
unit ball Bn in Cn in terms of a discrete tree condition on the associated Bergman
tree Tn. We also characterize the pointwise multipliers on Bp in terms of Carleson
measures. We then apply these results to characterize the interpolating sequences
in Bn for Bp and their multiplier spaces MBp , generalizing a theorem of Böe in
one dimension. The interpolating sequences for Bp and for MBp are precisely those
sequences satisfying a separation condition and a Carleson embedding condition.
These results hold for 1 < p < ∞ with the exceptions that for 2 + 1

n−1 ≤ p <
∞, the necessity of the tree condition for the Carleson embedding is left open,
and for 2 + 1

n−1 ≤ p ≤ 2n, the sufficiency of the separation condition and the
Carleson embedding for multiplier interpolation is left open; the separation and
tree conditions are however sufficient for multiplier interpolation. Novel features
of our proof of the interpolation theorem for MBp include the crucial use of the
discrete tree condition for sufficiency, and a new notion of holomorphic Besov space
on a Bergman tree, one suited to modeling spaces of holomorphic functions defined
by the size of higher order derivatives, for necessity.
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CARLESON MEASURES AND
INTERPOLATING SEQUENCES

1. Introduction

In this paper we consider the analytic Besov spaces Bp (Bn) on the unit ball
Bn in Cn, consisting of those holomorphic functions f on the ball such that∫

Bn

∣∣∣(1− |z|2)m

f (m) (z)
∣∣∣p dλn (z) <∞,

where m > n
p , dλn (z) =

(
1− |z|2

)−n−1

dz is invariant measure on the ball with

dz Lebesgue measure on Cn, and f (m) is the mth order complex derivative of
f . We characterize their Carleson measures (except for p in an exceptional range[
2 + 1

n−1 ,∞
)
), pointwise multipliers and interpolating sequences. We also char-

acterize interpolating sequences for the corresponding pointwise multiplier spaces
MBp(Bn) (except for p in the smaller exceptional range

[
2 + 1

n−1 , 2n
]
). Finally, in

order to obtain the characterization of interpolating sequences for MBp(Bn) in the
difficult range 1+ 1

n−1 ≤ p < 2, we introduce “holomorphic” Besov spaces HBp (Tn)
on the Bergman trees Tn, and develop the necessary part of the analogous theory
of Carleson measures, pointwise multipliers and interpolating sequences. The main
feature of these holomorphic Besov spaces on Bergman trees is that they provide
a martingale-like analogue of the analytic Besov space on the ball. They also en-
joy properties not found in the actual Besov spaces, such as reproducing kernels
with a positivity property for all p in the range 1 < p < ∞ (Lemma 8.11 below).
Various solutions to the problems mentioned here in one dimension can be found
in [Car], [MaSu], [Wu], [Boe] and our earlier paper [ArRoSa]. We remark that
the one-dimensional methods for characterizing multiplier interpolation generalize
for n > 1 to prove necessity at most in the ranges 1 < p < 1 + 1

n−1 and p > 2,
and sufficiency at most in the range p > 2n, resulting in a common range of only
p > 2n for all n > 1.

1.1. History. We begin with an informal discussion of the context in which
our results can be viewed. For more details on this background (at least the part
having to do with Hilbert spaces) we refer to the beautiful recent monograph of K.
Seip [Sei].

The theory of Carleson measures and interpolating sequences has its roots in
Lennart Carleson’s 1958 paper [Car], the first of his papers motivated by the corona
problem for the Banach algebra H∞ (D) of bounded holomorphic functions in the

1



2 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

unit disk D: if {fj}J
j=1 is a finite set of functions in H∞ (D) satisfying

J∑
j=1

|fj (z)| ≥ c > 0, z ∈ D,

are there are functions {gj}J
j=1 in H∞ (D) with

J∑
j=1

fj (z) gj (z) = 1, z ∈ D,

i.e., is every multiplicative linear functional on H∞ (D) in the closure of the point
evaluations, so that there is no “corona”? In [Car], Carleson observed the following
connection between the corona problem and interpolating sequences. A Blaschke
product B0 has the “baby corona” property,

For all f1 ∈ H∞ (D) satisfying inf
z∈D

{|B0 (z)|+ |f1 (z)|} > 0,(1.1)

there are g0, g1 ∈ H∞ (D) with B0g0 + f1g1 ≡ 1,

if the zero set
Z0 = {z ∈ D : B0 (z) = 0} = {zj}∞j=1

of B0 is an interpolating sequence for H∞ (D):
(1.2)

The map f → {f (zj)}∞j=1 takes H∞ (D) boundedly into and onto `∞ (Z0) .

Carleson solved this latter problem completely by showing that a sequence Z =
{zj}∞j=1 is an interpolating sequence for H∞ (D) if and only if

(1.3)
∏

j:j 6=k

∣∣∣∣ zj − zk

1− zkzj

∣∣∣∣ ≥ c > 0, k = 1, 2, 3, ...

The proof made crucial use of Blaschke products and duality. In the same paper
he showed implicitly that the characterizing condition (1.3) can be rephrased in
modern language as∣∣∣∣ zj − zk

1− zkzj

∣∣∣∣ ≥ c > 0 for j 6= k, and

∞∑
j=1

(
1− |zj |2

)
δzj

is a Carleson measure for Hp (D) ,

where a positive Borel measure µ on the disk D is now said to be a Carleson measure
for Hp (D) if the embedding Hp (D) ⊂ Lp (dµ) holds. Carleson later solved the
corona problem affirmatively in [Car2] by demonstrating the absence of a corona
in the maximal ideal space of H∞ (D).

In 1961, H. Shapiro and A. Shields [ShSh] demonstrated that the interpolation
property (1.2) is equivalent to weighted interpolation for Hardy spaces Hp (D); that
is, the map

f →
{(

1− |zj |2
) 1

p

f (zj)
}∞

j=1
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maps Hp (D) boundedly into and onto `p (Zf ) .The factor
(
1− |zj |2

) 1
p

forces the
map to be into `∞ (Zf ); the Carleson measure condition ensures that it is into
`p (Zf ).

We now recast the case p = 2 of this result in a way that will emphasize the
analogy with what comes later. The Hardy space H2 (D) is a Hilbert space with
reproducing kernel. This means that for each z ∈ D, there is kz ∈ H2 (D), the
reproducing kernel for z, which is characterized by the fact that for any f ∈ H2 (D)
we have f (z) = 〈f, kz〉. A sequence Z = {zj}∞j=1 is an interpolating sequence for
H2 (D) if one can freely assign the values of an H2 (D) function on Z, subject only
to the natural size restriction. More precisely, Hilbert space basics ensure that if
f ∈ H2 (D), then the function

zi →
f (zi)
‖kzi‖

=
(
1− |zi|2

) 1
2
f (zi)

is a bounded function on Z. The sequence Z is called an interpolating sequence for
H2 (D) if all the functions on Z which are obtained in this way are in `2 (Z), and if
furthermore, every function in `2 (Z) can be obtained in this way. For any z ∈ D,
set k̃z = kz

‖kz‖ , and note that by the Cauchy-Schwarz inequality,∣∣∣〈k̃z, k̃w

〉∣∣∣ ≤ 1, z, w ∈ D.

If Z is an interpolating sequence, then it must be possible, given any i and j, to
find f ∈ H2 (D) so that(

1− |zi|2
) 1

2
f (zi) = 0,

(
1− |zj |2

) 1
2
f (zj) = 1;

and to do this with control on the size of ‖f‖. This implies a weak separation con-
dition on the points of Z which is necessary for Z to be an interpolating sequence:
there is ε > 0 so that for all i 6= j,

∣∣∣〈k̃zi
, k̃zj

〉∣∣∣ ≤ 1 − ε. An equivalent geomet-
ric statement is that there is a uniform lower bound on the hyperbolic distances
β (zi, zj). The result of Shapiro and Shields can now be restated as saying that in-
terpolating sequences for H2 (D) are characterized by the following two conditions:

(1.4) There is ε > 0 so that
∣∣∣〈k̃zi

, k̃zj

〉∣∣∣ ≤ 1− ε for all i 6= j,

and

(1.5)
∞∑

j=1

∥∥kzj

∥∥−2
δzj is a Carleson measure for H2 (D) .

Interpolation problems, multiplier questions and Carleson measure characteri-
zations were then studied by various authors in other classical function spaces on
the disk, including certain of the spaces Bα

p (D) normed by

m−1∑
k=0

∣∣∣f (k) (0)
∣∣∣+{∫

D

∣∣∣∣(1− |z|2)m+α

f (m) (z)
∣∣∣∣p dλ (z)

} 1
p

,

where dλ (z) =
(
1− |z|2

)−2

dz is invariant measure on the disk, and for fixed α

and p, the norms are equivalent for (m+ α) p > 1. This scale of spaces includes

the Hardy space H2 (D) = B
1
2
2 (D) with α = 1

2 , the weighted Bergman spaces
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with α > 1
p , and the weighted Dirichlet-type spaces with 0 < α < 1

p . See for
example the recent book by K. Seip [Sei], which contains an in depth discussion
of the history of interpolating sequences for Hilbert spaces of functions of a single
variable. Interpolation proved more difficult for the family of analytic Besov spaces
Bp (D) = B0

p (D) on the disk, the prototypical Möbius invariant spaces, which do
not admit any infinite Blaschke products - the Dirichlet norm ‖f‖B2(D) measures
the square root of the area of the range of f counting multiplicities, and so is infinite
for every infinite Blaschke product f . These Besov spaces are also distinguished by
being the limit of those spaces Bα

p (D) with α < 0 that are too smooth (they admit
continuous extensions to the closed disk D) to contain any infinite interpolating
sequences.

In a revolutionary paper in 1994, D. Marshall and C. Sundberg [MaSu] used
Hilbert space methods (and independently C. Bishop [Bis] used different tech-
niques) to characterize interpolating sequences for the Dirichlet space B2 (D) and
its multiplier space MB2(D) (note the connection H∞ (D) = MH2(D)) by the condi-
tion

β (zi, 0) ≤ Cβ (zi, zj) for i 6= j and
∞∑

j=1

(
1 + log

1
1− |zj |2

)−1

δzj
is a B2 (D) -Carleson measure,

where β is the Bergman metric, and a positive Borel measure µ is a B2 (D)-Carleson
measure if the embedding B2 (D) ⊂ L2 (dµ) holds:∫

|f (z)|2 dµ (z) ≤ C ‖f‖2B2(D) .

In fact, these two conditions can be rewritten in exactly the same form as (1.4) and
(1.5) with only the natural changes; the k̃′smust now be normalized reproducing
kernels for the Dirichlet space and the measure must be a Dirichlet space Carleson
measure.

More recently, in 2002 in [Boe], B. Böe has extended this theorem to all 1 < p <
∞ by a long and clever construction involving Carleson measures, that was in turn
based on an earlier construction in [MaSu] (see also the analogous construction on
trees in Section 6 of [ArRoSa]), together with, in Böe’s words, a “curious lemma”
on unconditional basic sequences {fj}∞j=1 of positive functions in a Lebesgue space
Lq (dµ) (Lemma 5.11 below):∥∥∥∥∥∥

∞∑
j=1

|ajfj |

∥∥∥∥∥∥
Lq(dµ)

≈ Cq

∥∥∥∥sup
j≥1

|ajfj |
∥∥∥∥

Lq(dµ)

.

In this paper, we extend Böe’s results to the analytic Besov spaces Bp (Bn) on
the unit ball Bn in Cn for n > 1. As far as we know this represents the first solution
of its kind in dimension greater than one. We note that the corresponding questions
for the Hardy spaces on the ball remain open in higher dimensions, due in part to the
lack of Blaschke products, but also since the relevant separation condition fails to be
sparse enough to accommodate the “hands-on” type of construction used by Böe.
We do not treat the endpoint spaces B1 (Bn) and B∞ (Bn), which are respectively
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the minimal and maximal Möbius invariant spaces on the ball. Interesting work on
interpolating sequences for B∞ (D) is in [BoNi] and is reported in [Sei].

At least two difficulties arise immediately in higher dimensions. Böe makes use
of Stegenga’s 1980 characterization [Ste] of B2 (D)-Carleson measures by a capacity
condition, as well as later extensions to p > 1:

µ (T (E)) ≤ C capp (E) ,

for all compact subsets E (or equivalently finite unions of arcs) of the circle T, and
where T (E) denotes the Carleson tent associated to E, and

capp (E) = inf
{∫ π

−π

f
(
eiθ
)p
dθ : f ≥ 0 and

∫ π

−π

f
(
ei(φ−θ)

)
|θ|−

1
2 dθ ≥ χE (φ)

}
.

This characterization is not yet available in higher dimensions, and as indicated in
[Boe], seems difficult to check even in certain one-dimensional situations. Instead,
we will extend our characterization in [ArRoSa] involving the discrete Bergman
tree condition (Here and throughout p′ is the conjugate exponent to p: 1

p + 1
p′ = 1.),

(1.6)
∑

β∈T :β≥α

 ∑
γ∈T :γ≥β

µ (γ)

p′

≤ Cp′
∑

β∈T :β≥α

µ (α) <∞, α ∈ T ,

to higher dimensions where it will play a crucial role both as a substitute for a
capacity condition, and in generalizing the clever Carleson measure construction of

Böe in [Boe]. We also remark that for p > n̂ =
{

1 if n = 1
2n if n > 1 , we characterize

multiplier interpolation without recourse to any capacity or tree condition.
The second difficulty runs deeper. It is connected to the fact that the repro-

ducing kernel kw (z) = log 1
1−wz for Bp (D) has derivative w 1

1−wz where 1
1−wz has

positive real part, and that this positivity played a crucial role in part of Böe’s
argument when p < 2. In particular his “curious lemma”, which deals with positive
functions, is applied to those real parts. This property persists in dimension n only
for 1 < p < 1 + 1

n−1 , where the analogous derivative Rα
n+1+α

p′
of the reproducing

kernel kα,p
w (z) is

Rα
n+1+α

p′
kα,p

w (z) = (1− w · z)−
n+1+α

p′ , α > −1,

which has positive real part only when n+1+α
p′ ≤ 1 for some α > −1, i.e. p < 1+ 1

n−1

(see (2.13) below).
As a consequence, the aforementioned “curious lemma” of Böe only generalizes

to prove the necessity of the discrete tree condition for MBp(Bn) interpolation in
the thin range 1 < p < 1 + 1

n−1 (where reproducing kernels for Bp (Bn) have the
requisite positivity property). To combat the failure of this positivity property for
larger p, we introduce “holomorphic” Besov spaces HBp (Tn) on Bergman trees
Tn whose reproducing kernels do enjoy a suitable positivity property, and such
that the restriction map from Bp (Bn) to HBp (BnTn), as well as the restriction
map between their multiplier spaces, is bounded. This requires a great deal of
effort and is accomplished in the latter half of the paper. Another consequence
is that our one-dimensional proof of the characterization of Carleson measures by
the discrete tree condition extends to dimension n only in the thin range of p
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given by 1 < p < 1 + 1
n−1 . A TT ∗ argument lifts the proof to the larger range

1 < p < 2 + 1
n−1 , beyond which we are unable to proceed at this time.

1.2. Plan of the paper. In Section 2 we introduce a tree structure for the
unit ball Bn by choosing a set Tn of points in the ball at roughly a fixed distance
apart in the Bergman metric, and declaring a point β ∈ Tn to be a child of another
point α ∈ Tn if the Bergman ball around β lies just “beyond” the Bergman ball
around α. This simple construction suffices for dealing with Carleson measures and
sufficient conditions for interpolation in Sections 3 through 5. The construction
must be significantly refined in order to deal with the holomorphic Besov spaces on
trees in Section 8, and this is carried out in Subsection 8.5. The refinement allows
us to develop an effective discrete version of passing from spaces defined by a single
derivative to spaces of functions defined using higher derivatives.

This tree structure Tn is then used in Section 3 to characterize Carleson em-
beddings for Besov spaces Bp (Bn) on the ball,∫

Bn

|f (z)|p dµ (z) ≤ C ‖f (z)‖p
Bp(Bn) ,

in terms of a discrete condition on the Bergman tree (1.6), or in different notation,∑
β∈Tn:β≥α

I∗µ (β)p′ ≤ Cp′I∗µ (α) <∞, α ∈ Tn,

where

I∗µ (β) =
∑

γ∈Tn:γ≥β

µ (γ) .

However we are unable to obtain the necessity of this tree condition when 2 +
1

n−1 ≤ p < ∞. It turns out that the one-dimensional methods in [ArRoSa],
using a positivity property of the reproducing kernels, generalize to obtain the
characterization in the thin range 1 < p < 1+ 1

n−1 . A standard TT ∗ argument can
be used to obtain the case p = 2 since the kernel K (z, w) of TT ∗ turns out to have
appropriate “derivative” log

(
1

1−w·z

)
, whose real part is positive. We combine the

two techniques to obtain the larger range 1 < p < 2 + 1
n−1 in Theorem 3.1.

Pointwise multipliers of Bp (Bn) are characterized in Theorem 4.2 in terms of
Carleson embeddings in the short Section 4, where no use is made of the underlying
tree structure.

Interpolating sequences for both Besov spaces Bp (Bn) and their multiplier
spaces MBp(Bn) are considered in the lengthy Section 5, where for the most part,
we follow the development in Böe [Boe]. In Theorem 5.1, weighted Bp (Bn) inter-
polation is characterized by separation and Carleson embedding conditions for all
1 < p <∞:

β (zi, 0) ≤ Cβ (zi, zj) , i 6= j and
∞∑

j=1

∥∥∥kα,p
zj

∥∥∥−p

Bp′
δzj

is a Bp-Carleson measure,
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where kα,p
w (z) is a reproducing kernel for Bp. In Theorem 5.2, the separation and

tree conditions,

d (αi, o) ≤ Cd (αi, αj) , i 6= j and
∞∑

j=1

(
1 + log

1

1−
∣∣cαj

∣∣2
)1−p

δcαj
satisfies the tree condition (3.2),

are proved sufficient for MBp(Bn) interpolation, and the separation and Carleson
embedding conditions above are proved necessary, for all 1 < p < ∞. As well, in
the range p > 2n, we prove that the separation and Carleson embedding conditions
are sufficient. The necessity of the Carleson embedding condition is proved first for
p in the two ranges

(
1, 1 + 1

n−1

)
and [2,∞). The first range exploits the positivity

of a reproducing kernel on the ball, and the second range exploits the embedding
of `q spaces in connection with Khinchine’s inequality.

Necessity of the Carleson embedding condition for MBp(Bn) interpolation in the
remaining range 1 + 1

n−1 ≤ p < 2 is much more difficult, and is the subject of the
remaining Sections 6, 7, 8 and 9 of the paper. In Section 6 we begin by introducing
an alternate characterization of Besov spaces using almost invariant holomorphic
derivatives,

Daf (z) = −f ′ (z)
{(

1− |a|2
)
Pa +

(
1− |a|2

) 1
2
Qa

}
,

in order to obtain global and local oscillation inequalities for Bp (Bn) in Proposition
6.5. Global oscillation inequalities are given in Peloso [Pel], but we need local
versions,

sup
ξ∈Kα

∣∣∣∣∣f (ξ)−
m−1∑
k=0

((ξ − aα) ·′)k
f (aα)

k!

∣∣∣∣∣ ≤ C

(∫
K∗

α

∣∣Dm
cα
f (z)

∣∣p dλn (z)

) 1
p

,

as well in order to estimate Carleson measures.
In Sections 7 and 8 we define Besov spaces Bp (T ) on abstract trees T , and

holomorphic Besov spaces HBp (Tn) on Bergman trees Tn respectively. One main
point is that Besov spaces built on trees typically have reproducing kernels with
appropriate positivity properties that result from the “unidirectional arrow” of the
tree structure (the descendents of a given tree element α lie in an appropriate
nonisotropic cone with vertex at α). The positivity lets us use techniques similar to
Böe’s “curious lemma”. While the simple abstract Besov spaces Bp (T ) do indeed
have the appropriate positivity property, when n > 1 they fail to capture enough of
the holomorphic structure of the ball to permit the corresponding restriction map

f → {f (α)}α∈Tn

to be bounded from Bp (Bn) to Bp (T ), except when p is large, p > 2n. In Remark
7.13, it is shown that even linear functions on the ball fail to restrict boundedly to
abstract trees in the range p ≤ 2n.

To get a better tree model of the Bp (Bn) we need to take fuller account of the
complex structure Tn inherits as a subset of the ball Bn, including the nonisotropic
nature of the ball’s geometry. Here is the fundamental difference. Suppose that the
function {f (α)}α∈Tn

on the tree is obtained by restricting a holomorphic function
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f . For a typical α ∈ Tn the set of forward differences

Mα= {(β, f (β)− f (α))}β is a child of α

has cardinality N ≈ 2n. However, to the accuracy of the linear Taylor approxima-
tion of f at α, those numbers are determined by the n-tuple of numbers f ′ (α) and
the set of complex numbers {β − α}β is a child of α, a set which is determined by the
tree and doesn’t depend on f . Thus the set of forward differences Mα, a priori in
N -space, lives approximately in an n-dimensional subspace determined by f ′ (α).
Hence when we define the norm of f in HBp (Tn), for f a function defined only
on the tree, we will measure the size of a quantity, which we also denote by f ′ (α),
an n-tuple which will be our proxy for the derivative. We then also measure the
extent to which the N -tuple of differences are approximated by the N -tuple with
βth entry f ′ (α) (β − α). More precisely, given f on the tree, we project the family
of differences {f (β)− f (α)}β , associated to a point α and its children β, onto the
finite linear space Mα of differences generated by linear functions on the ball at the
point α. This permits the association of a “complex derivative” f ′ (α) to f at the
point α defined by

{f ′ (α) (β − α)}β = projection {f (β)− f (α)}β .

In order to pass to p with n
p large, and hence in defining Bp (Bn) using higher

order derivatives, we must extend our definition of derivative on a tree to higher
order “tree derivatives”. This requires the introduction of tensors, and other con-
structions on the Bergman tree, that mimic the development of complex geometry
on manifolds. Finally, we norm these spaces by taking `p norms of the higher
order “derivatives”, weighted nonisotropically according to radial and tangential
directions, and by taking a large norm of the “nonholomorphic” part of the differ-
ences, that is, of the residue after f is approximated by an “mth order tree Taylor
theorem”. More precisely, we use the unweighted `p norm of the projections of
{f (β)− f (α)}β onto the orthogonal complement of the linear space of differences
generated by polynomials of degree at most m on the ball at the point α.

The global and local oscillation inequalities mentioned above are then used in
Theorem 8.14 to prove that the restriction map from the ball to the Bergman tree
is bounded from Bp (Bn) to HBp (Tn), and provided 1 < p < 2+ 1

n−1 , from MBp(Bn)

to MHBp(Tn) as well:

‖f‖HBp(Tn) ≤ C ‖f‖Bp(Bn) ,

‖f‖MHBp(Tn)
≤ C ‖f‖MBp(Bn)

.

These restrictions also require a delicate refinement of the construction of the
Bergman tree, and as we mentioned above, this is carried out in Subsection 8.5.
In Section 9 we use multiplier restriction to transfer questions of multiplier in-
terpolation from the ball to the tree in this range of p, where many obstructions
disappear, and in particular we can exploit the positivity property (Lemma 8.11)
of reproducing kernels for HBp (Tn), valid for all 1 < p <∞.

Curiously, one property proves more difficult to obtain on the Bergman tree Tn

than on the ball Bn - the property that pointwise multipliers are characterized by
Carleson embeddings. Compare the easy proof of Theorem 4.2 on the ball to the
lengthy proof of Lemma 8.17 on the tree. The main difficulties arise from the fact
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that “derivatives” on the tree are not derivations, resulting in an error term in the
corresponding Leibniz formula on the tree.

Open problems.
(1) Does the tree condition characterize Carleson measures on the ball in the

missing range 2 + 1
n−1 ≤ p <∞? The situation for the somewhat similar

Hardy-Sobolev spaces on the ball is known to be complicated. See e.g.
[Ahe] and [CaOr].

(2) Find a characterization of MBp(Bn) interpolating sequences on the ball
for the missing range 2 + 1

n−1 ≤ p ≤ 2n. We know that separation and
the tree condition are sufficient, and that separation and the Carleson
embedding are necessary.

(3) It may be that the restriction map of Bp (Bn) to the sequence space maps
onto the weighted `p space even though it is not a bounded map into. What
is a geometric characterization of the sequences for which this happens?
Such a phenomenon does not occur for the Hardy spaces.

(4) There are Hilbert space considerations that apply to both the Hardy and
Dirichlet space, which when applicable, ensure that a Hilbert space of
functions and its multiplier algebra have the same interpolating sequences.
For details see [AgMc] or [Boe]. The results here and those being gener-
alized suggest that there may be a similar result for some class of Banach
spaces of functions.

1.3. Earlier results. We now recall some of our earlier results on Carleson
measures for analytic Besov spaces Bp (D) on the unit disk D, as well as for certain
Bp (T ) spaces on trees T . By a tree we mean a connected loopless graph T with a
root o and a partial order ≤ defined by α ≤ β if α belongs to the geodesic [o, β]. See
for example [ArRoSa] for more details. We define Bp (D) and Bp (T ) respectively
by the norms

‖f‖Bp(D) =

∫
D

∣∣∣(1− |z|2) f ′ (z)∣∣∣p dz(
1− |z|2

)2


1
p

+ |f (0)| ,

for f holomorphic on D, and

‖f‖Bp(T ) =

 ∑
α∈T :α6=o

|f (α)− f (Aα)|p
 1

p

+ |f (o)| ,

for f on the tree T . Here Aα denotes the immediate predecessor of α in the tree
T . For 1 < q <∞, we also define the weighted Lebesgue space Lq

µ (T ) on the tree
by the norm

‖f‖Lq
µ(T ) =

(∑
α∈T

|f (α)|q µ (α)

) 1
q

,

for f and µ on the tree T . We say that µ is a (Bp (T ) , q)-Carleson measure on the
tree T if Bp (T ) imbeds continuously into Lq

µ (T ), i.e.

(1.7)

(∑
α∈T

If (α)q
µ (α)

)1/q

≤ C

(∑
α∈T

f (α)p

)1/p

, f ≥ 0,
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or equivalently, by duality,

(1.8)

(∑
α∈T

I∗ (gµ) (α)q′

)1/q′

≤ C

(∑
α∈T

g (α)p′
µ (α)

)1/p′

, g ≥ 0,

where
If (α) =

∑
β∈T :β≤α

f (β) ,

and
I∗ (gµ) (α) =

∑
β∈T :β≥α

g (β)µ (β) .

Of special interest is the case when µ satisfies (1.7) with p = q,

(1.9)

(∑
α∈T

If (α)p
µ (α)

)1/p

≤ C

(∑
α∈T

f (α)p

)1/p

, f ≥ 0,

If (1.9) is satisfied, we say that µ is a Bp (T )-Carleson measure on the tree T . A
necessary and sufficient condition for (1.9) given in [ArRoSa] is the discrete tree
condition

(1.10)
∑

β∈T :β≥α

I∗µ (β)p′ ≤ Cp′I∗µ (α) <∞, α ∈ T ,

which is obtained by testing (1.8) over g = χSα
, α ∈ T . We note that a simpler

necessary condition for (1.7) is

(1.11) d (α)p−1
I∗µ (α) ≤ Cp,

or equivalently

(1.12) d (α) I∗µ (α)p′−1 ≤ Cp′ ,

which one obtains by testing (1.7) over f = I∗δα = χ[0,α]. However, condition (1.11)
is not in general sufficient for (1.7) as evidenced by certain Cantor-like measures µ.

We also have the more general two-weight tree theorem from [ArRoSa], if
q ≥ p, and its extension to q < p from [Ar].

Theorem 1.1. Let w and v be nonnegative weights on a tree T . Then,(∑
α∈T

Ig (α)q
w (α)

)1/q

≤ C

(∑
α∈T

g (α)p
v (α)

)1/p

, g ≥ 0,

if and only if
(p = q) in the case p = q,∑

β≥α

I∗w (β)p′
v (β)1−p′ ≤ CI∗w (α) <∞, α ∈ T .

(p < q) in the case p < q,∑
β≥α

w(β)

 1
q
∑

β≤α

v(β)1−p′

 1
p′

≤ C, α ∈ T .
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(p > q) in the case p > q,∑
α∈T

w(α) (Wv(w)(α))
q(p−1)

p−q <∞

where

Wv(w)(α) =
∑
β≤α

v(β)1−p′w({γ : γ ≥ β})p′−1

is the Wolff potential.

We now specialize the tree T to the dyadic tree associated with the usual
decomposition of the unit disk into Carleson boxes or Bergman “kubes” Kα. See
[ArRoSa] or Section 2.2 below for details.

The main theorem in [ArRoSa] is the characterization of (Bp (D) , q)-Carleson
measures on the unit disk D, which can be rephrased as follows (see [Ar]). We will
only use the case p = q in the remainder of this paper. Given a positive measure µ
on the disk, we denote by µ̂ the associated measure on the dyadic tree T given by
µ̂ (α) =

∫
Kα

dµ for α ∈ T .

Theorem 1.2. Suppose 1 < p, q <∞ and that µ is a nonnegative measure on
the unit disk D. Then the following conditions are equivalent:

(1) µ is a (Bp (D) , q)-Carleson measure on D, i.e. there is C <∞ such that

(1.13)
(∫

D
|f (z)|q dµ (z)

) 1
q

≤ C

(∫
D

∣∣∣(1− |z|2) f ′ (z)∣∣∣p dλ (z)
) 1

p

+ |f (0)| ,

for all f ∈ Bp (D), where dλ (z) =
(
1− |z|2

)−2

dz.
(2) µ̂ is a (Bp (T ) , q) Carleson measure on the binary tree T = {α} associated

to the unit disk, i.e. (1.7) holds with µ replaced by µ̂.

Together, Theorems 1.1 and 1.2 give a geometric characterization of (Bp (D) , q)-
Carleson measures on D.

Remark 1.3. The proof of this theorem relies on the use of the inequality

Re

(
1− |z|2

1− wz

)
> 0, z, w ∈ D.

Much of our effort in extending Theorem 1.2 to higher dimensions will involve
finding a way to effectively use the analogous inequality in the unit ball Bn of
Cn. Even more effort will be expended in circumventing this inequality when it is
unavailable for characterizing interpolating sequences for multiplier spaces in higher
dimensions. This is where we pass to “holomorphic” Besov spaces on trees.

2. A tree structure for the unit ball Bn in Cn

In order to extend the above characterization of Carleson measures to higher
dimensions, we will need to define a tree Tn appropriately related to the Bergman
metric on the ball. But first we need to recall some of the basic theory of holomor-
phic functions in the unit ball Bn.
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2.1. Invariant metrics, measures and derivatives. We recall some basic
definitions and properties from W. Rudin’s book [Rud] and K. Zhu’s book [Zhu].
For a ∈ Bn let Pa denote orthogonal projection onto the one-dimensional complex
subspace Ca generated by a, i.e.

(2.1) Paz =
z · a
|a|2

a,

and let Qa = I −Pa denote orthogonal projection onto the orthogonal complement
of Ca. Define an involutive automorphism of the ball Bn by ([Rud], page 25)

ϕa (z) =
a− Paz −

(
1− |a|2

) 1
2
Qaz

1− z · a
,(2.2)

=
a− z·a

|a|2 a−
(
1− |a|2

) 1
2
(
z − z·a

|a|2 a
)

1− z · a
,

for z ∈ Bn. Then Aut (Bn), the group of automorphisms of Bn, consists of all
maps Uϕa where U is a unitary transformation and a ∈ Bn.We have ϕa (0) = a,
ϕa (a) = 0 and ϕa ◦ϕa = I. We also have the following identities ([Rud], Theorem
2.2.2),

ϕ′a (0) = −
(
1− |a|2

)
Pa −

(
1− |a|2

) 1
2
Qa,(2.3)

ϕ′a (a) = −
(
1− |a|2

)−1

Pa −
(
1− |a|2

)− 1
2
Qa,

1− ϕa (w) · ϕa (z) =
(1− a · a) (1− w · z)
(1− w · a) (1− a · z)

,

1− |ϕa (z)|2 =

(
1− |a|2

)(
1− |z|2

)
|1− a · z|2

,

and ([Rud], Theorem 2.2.6)

Jϕa (z) = |detϕ′a (z)|2 =

(
1− |a|2

|1− a · z|2

)n+1

,

where Jϕa (z) denotes the real Jacobian of ϕa at z.
An invariant measure on Bn is given by ([Rud], Theorem 2.2.6)

dλn (z) =
(
1− |z|2

)−n−1

dz.

The invariance of dλn follows from the above Jacobian formula and the last identity
in (2.3).

An invariant metric on Bn is the Bergman metric β (z, w) given by ([Zhu],
Proposition 1.21)

(2.4) β (z, w) =
1
2

log
1 + |ϕz (w)|
1− |ϕz (w)|

, z, w ∈ Bn.

By invariance, the Bergman metric balls Bβ (a, r) of radius r at the point a ∈ Bn

satisfy
Bβ (a, r) = ϕa (Bβ (0, r)) ,
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and if t > 0 is such that Bβ (0, r) = B (0, t) (note from (2.4) that Bergman metric
balls centered at the origin are Euclidean balls), then the β-balls are the ellipsoids
([Rud], page 29)

Bβ (a, r) =

{
z ∈ Bn :

|Paz − ca|2

t2ρ2
a

+
|Qaz|2

t2ρa
< 1

}
,

where

ca =

(
1− t2

)
a

1− t2 |a|2
, ρa =

1− |a|2

1− t2 |a|2
.

We have the reproducing formula of Bergman ([Rud], Theorem 3.1.3),

(2.5) f (z) =
n!
πn

∫
Bn

f (w)
(1− w · z)n+1 dw, f ∈ L1 (dλn) ∩H (Bn) ,

and the following variants ([Rud], Theorem 7.1.2)

(2.6) f (z) =
n!
πn

(
n+ s
n

)∫
Bn

(
1− |w|2

)s

(1− w · z)s+n+1 f (w) dw, Re s > −1,

valid for all f ∈ H (Bn) for which the integrand is in L1.
We now recall the invertible “radial” operators Rγ,t : H (Bn) → H (Bn) given

in [Zhu] by

Rγ,tf (z) =
∞∑

k=0

Γ (n+ 1 + γ) Γ (n+ 1 + k + γ + t)
Γ (n+ 1 + γ + t) Γ (n+ 1 + k + γ)

fk (z) ,

provided neither n + γ nor n + γ + t is a negative integer, and where f (z) =∑∞
k=0 fk (z) is the homogeneous expansion of f . If the inverse of Rγ,t is denoted

Rγ,t, then Proposition 1.14 of [Zhu] yields

Rγ,t

(
1

(1− w · z)n+1+γ

)
=

1
(1− w · z)n+1+γ+t ,(2.7)

Rγ,t

(
1

(1− w · z)n+1+γ+t

)
=

1
(1− w · z)n+1+γ ,

for all w ∈ Bn. Thus for any γ, Rγ,t is approximately differentiation of order t.
From Theorem 6.1 and Theorem 6.4 of [Zhu] we have that the derivatives Rγ,mf (z)
are “Lp norm equivalent” to

∑m−1
k=0

∣∣∇kf (0)
∣∣+∇mf (z) for m large enough.

Proposition 2.1 (Theorem 6.1 and Theorem 6.4 of [Zhu]). Suppose that 0 <
p < ∞, n + γ is not a negative integer, and f ∈ H (Bn). Then the following four
conditions are equivalent:(

1− |z|2
)m

∇mf (z) ∈ Lp (dλn) for some m >
n

p
,m ∈ N,(

1− |z|2
)m

∇mf (z) ∈ Lp (dλn) for all m >
n

p
,m ∈ N,(

1− |z|2
)m

Rγ,mf (z) ∈ Lp (dλn) for some m >
n

p
,m+ n+ γ /∈ −N,(

1− |z|2
)m

Rγ,mf (z) ∈ Lp (dλn) for all m >
n

p
,m+ n+ γ /∈ −N.
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Moreover, with σ (z) = 1− |z|2, we have for 1 < p <∞,

C−1 ‖σm1Rγ,m1f‖Lp(dλn)(2.8)

≤
m2−1∑
k=0

∣∣∇kf (0)
∣∣+ (∫

Bn

|σ (z)m2 ∇m2f (z)|p dλn (z)
) 1

p

≤ C ‖σm1Rγ,m1f‖Lp(dλn)

for all m1,m2 >
n
p , m1 + n+ γ /∈ −N, m2 ∈ N, and where the constant C depends

only on m1, m2, n, γ and p.

Definition 2.2. We define the analytic Besov spaces Bp (Bn) on the ball Bn

by taking γ = 0 and m =
[

n
p

]
+ 1 and setting

(2.9) Bp = Bp (Bn) =
{
f ∈ H (Bn) :

∥∥σmR0,mf
∥∥

Lp(dλn)
<∞

}
.

We will indulge in the usual abuse of notation by using ‖f‖Bp(Bn) to denote
any of the norms appearing in (2.8).

2.1.1. Duality and reproducing kernels. For α > −1, let 〈·, ·〉α denote the inner
product for the weighted Bergman space A2

α:

〈f, g〉α =
∫

Bn

f (z) g (z)dνα (z) , f, g ∈ A2
α,

where dνα (z) =
(
1− |z|2

)α

dz. Recall that

Kα
w (z) = Kα (z, w) = (1− w · z)−n−1−α

is the reproducing kernel for A2
α (Theorem 2.7 in [Zhu]):

f (w) = 〈f,Kα
w〉α =

∫
Bn

f (z)Kα
w (z)dνα (z) , f ∈ A2

α.

This formula continues to hold as well for f ∈ Ap
α, 1 < p <∞, since the polynomials

are dense in Ap
α.

Corollary 6.5 of [Zhu] states that Rγ, n+1+α
p is a bounded invertible operator

from Bp onto Ap
α, provided that neither n + γ nor n + γ + n+1+α

p is a negative
integer. It turns out to be convenient to take γ = α− n+1+α

p here (with this choice
we can explicitly compute certain derivatives and Bp′ norms of our reproducing
kernels - see (2.13) and (5.9) below), and thus we single out the special operators

Rα
t = Rα−t,t.

Note that the operators Rα
t and their inverses (Rα

t )−1 =Rα−t,t are self-adjoint with
respect to 〈·, ·〉α since the monomials are orthogonal with respect to 〈·, ·〉α (see
(1.21) and (1.23) in [Zhu]), and the operators act on the homogeneous expansion
of f by multiplying the homogeneous coefficients of f by certain positive constants.
The next definition is motivated by the fact that Rα

n+1+α
p

is a bounded invertible

operator from Bp onto Ap
α, and that Rα

n+1+α
p′

is a bounded invertible operator from

Bp′ onto Ap′

α , provided that neither n+ α, n+ α− n+1+α
p nor n+ α− n+1+α

p′ is a
negative integer. Note that this proviso holds in particular for α > −1.
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Definition 2.3. For α > −1 and 1 < p < ∞, we define a pairing 〈·, ·〉α,p for
Bp and Bp′ using 〈·, ·〉α as follows:

〈f, g〉α,p =
〈
Rα

n+1+α
p

f,Rα
n+1+α

p′
g

〉
α

=
∫

Bn

Rα
n+1+α

p

f (z)Rα
n+1+α

p′
g (z)dνα (z)

=
∫

Bn

(1− |z|2)
n+1+α

p Rα
n+1+α

p

f (z) (1− |z|2)
n+1+α

p′ Rα
n+1+α

p′
g (z)dλn (z) .

Clearly we have ∣∣∣〈f, g〉α,p

∣∣∣ ≤ ‖f‖Bp
‖g‖Bp′

by Hölder’s inequality. By Theorem 2.12 of [Zhu], we also have that every con-
tinuous linear functional Λ on Bp is given by Λf = 〈f, g〉α,p for a unique g ∈ Bp′

satisfying

(2.10) ‖g‖Bp′
= sup

‖f‖Bp
=1

∣∣∣〈f, g〉α,p

∣∣∣ .
Indeed, if Λ ∈ (Bp)

∗, then Λ◦
(
Rα

n+1+α
p

)−1

∈ (Ap
α)∗, and by Theorem 2.12 of [Zhu],

there is G ∈ Ap′

α with ‖G‖
Ap′

α
= ‖Λ‖ such that Λ ◦

(
Rα

n+1+α
p

)−1

F = 〈F,G〉α for

all F ∈ Ap
α. If we set g =

(
Rα

n+1+α
p′

)−1

G, then we have ‖g‖Bp′
= ‖G‖

Ap′
α

= ‖Λ‖

and with F = Rα
n+1+α

p

f , we also have

Λf = Λ ◦
(
Rα

n+1+α
p

)−1

F = 〈F,G〉α =
〈
Rα

n+1+α
p

f,Rα
n+1+α

p′
g

〉
α

= 〈f, g〉α,p

for all f ∈ Bp. Then (2.10) follows from

‖g‖Bp′
= ‖Λ‖ = sup

‖f‖Bp
=1

|Λ (f)| = sup
‖f‖Bp

=1

∣∣∣〈f, g〉α,p

∣∣∣ .
Remark 2.4. The Besov space pairing 〈·, ·〉 introduced in [Zhu] is given by

〈f, g〉 =
〈
R0,n+1f,R0,n+1g

〉
n+1

= 〈f, g〉n+1,2 ,

and so coincides with our pairing for B2 with the choice α = n + 1. However, for
p 6= 2, our pairing 〈·, ·〉α,p uses the operators Rα

t = Rα−t,t with t = n+1+α
p and

t = n+1+α
p′ , and so does not coincide with 〈·, ·〉 in [Zhu].

With Kα
w (z) the reproducing kernel for A2

α, we now claim that the kernel

(2.11) kα,p
w (z) =

(
Rα

n+1+α
p′

)−1 (
Rα

n+1+α
p

)−1

Kα
w (z)

satisfies the following reproducing formula for Bp:

(2.12) f (w) = 〈f, kα,p
w 〉α,p =

∫
Bn

Rα
n+1+α

p

f (z)Rα
n+1+α

p′
kα,p

w (z)dνα (z) , f ∈ Bp.
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Indeed, for f a polynomial, we have

f (w) = 〈f,Kα
w〉α

=
〈(
Rα

n+1+α
p

)−1

Rα
n+1+α

p

f,Kα
w

〉
α

=
〈
Rα

n+1+α
p

f,
(
Rα

n+1+α
p

)−1

Kα
w

〉
α

=

〈
Rα

n+1+α
p

f,Rα
n+1+α

p′

(
Rα

n+1+α
p′

)−1 (
Rα

n+1+α
p

)−1

Kα
w

〉
α

=

〈
f,

(
Rα

n+1+α
p′

)−1 (
Rα

n+1+α
p

)−1

Kα
w

〉
α,p

.

We now obtain the claim since the polynomials are dense in Bp and the kernels
kα,p

w are in Bp′ for each fixed w ∈ Bn. Thus we have proved the following theorem.

Theorem 2.5. Let 1 < p < ∞ and α > −1. Then the dual space of Bp can
be identified with Bp′ under the pairing 〈·, ·〉α,p, and the reproducing kernel kα,p

w for
this pairing is given by (2.11).

From (2.11) and (2.7) we have

Rα
n+1+α

p′
kα,p

w (z) =
(
Rα

n+1+α
p

)−1

Kα
w (z)(2.13)

= Rα−n+1+α
p , n+1+α

p

(
(1− w · z)−(n+1+α)

)
= (1− w · z)−

n+1+α
p′ .

Using this formula we will show in (5.9) below that the Bp′ norm of the reproducing

kernel kα,p
w is comparable to

(
1 + log 1

1−|w|2

) 1
p′ .

2.2. Carleson boxes. In order to facilitate the imposition of a tree structure,
we give a more refined construction of Carleson boxes than that given in Theorem
2.23 of [Zhu]. Let β be the Bergman metric on the unit ball Bn in Cn. The metric
balls of radius 1 will essentially play the role of an upper half of a Carleson tent, or
Carleson box. Note that the set

Sr = ∂Bβ (0, r) = {z ∈ Bn : β (0, z) = r}

is a Euclidean sphere (with different radius) centered at the origin for each r > 0.
In fact, by (1.40) in [Zhu] we have β (0, z) = tanh−1 |z|, and so

1− |z|2 = 1− tanh2 β (0, z)(2.14)

=
4

e2β(0,z) + 2 + e−2β(0,z)

≈ 4e−2β(0,z)

for β (0, z) large. We will apply the following abstract construction to the spheres
Sr for r > 0.
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Lemma 2.6. Let (X, d) be a separable metric space and λ > 0. There is a
denumerable set of points E = {xj}∞ or J

j=1 and a corresponding set of Borel subsets
Qj of X satisfying

X = ∪∞ or J
j=1 Qj ,(2.15)

Qi ∩Qj = φ, i 6= j,

B (xj , λ) ⊂ Qj ⊂ B (xj , 2λ) , j ≥ 1.

We refer to the sets Qj as unit qubes centered at xj .

Proof. Let E = {xj}∞ or J
j=1 be a maximal λ-separated subset of X so that

d (xi, xj) ≥ λ, i 6= j,

d (x,E) < λ, x ∈ X.

Let A = ∪∞ or J
j=1 B (xj , λ) and define inductively

Qj = B (xj , 2λ) \ {A ∪ (∪i<jQi)} , j ≥ 1.

It is routine to verify that these qubes Qj satisfy (2.15).

2.2.1. Construction of the Bergman tree. Now fix θ, λ > 0 (various choices of
θ and λ will be used below), which we will refer to as structural constants for the
Bergman tree. For N ∈ N, apply the lemma to the metric space (SNθ, β) to obtain
points

{
zN
j

}J

j=1
and unit qubes

{
QN

j

}J

j=1
in SNθ satisfying (2.15). For z ∈ Bn, let

Prz denote the radial projection of z onto the sphere Sr (not to be confused with
the orthogonal projection Pa defined above). We now define subsets KN

j of Bn by
K0

1 = {z ∈ Bn : β (0, z) < θ} and

KN
j =

{
z ∈ Bn : Nθ ≤ d (0, z) < (N + 1) θ, PNθz ∈ QN

j

}
, N ≥ 1, j ≥ 1.

We define corresponding points cNj ∈ KN
j by

cNj = P(N+ 1
2 )θ

(
zN
j

)
.

We will refer to the subset KN
j of Bn as a unit kube centered at cNj (while K0

1 is
centered at 0).

Define a tree structure on the collection of unit kubes

Tn =
{
KN

j

}
N≥0,j≥1

by declaring that KN+1
i is a child of KN

j , written KN+1
i ∈ C

(
KN

j

)
, if the projection

PNθ

(
zN+1
i

)
of zN+1

i onto the sphere SNθ lies in the qube QN
j . In the case N = 0,

we declare every kube K1
j to be a child of the root kube K0

1 . We will typically
write α, β, γ etc. to denote elements KN

j of the tree Tn when the correspondence
with the unit ball Bn is immaterial. We will write Kα for the kube KN

j and cα for
its center cNj when the correspondence matters. Sometimes we will further abuse
notation by using α to denote the center cα = cNj of the kube Kα = KN

j , especially
in the section on interpolating sequences below.

Finally, we define the dimension n (T ) of an arbitrary tree T .

Definition 2.7. The upper dimension n (T ) of a tree T is given by

n (T ) = lim sup
`→∞

log2 (N`)
1
` ,
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where
N` = sup

α∈T
card {β ∈ T : β > α and d (β) = d (α) + `} ,

along with a similar definition for the lower dimension n(T ) using lim inf`→∞ in
place of lim sup`→∞. If the upper and lower dimensions coincide, we denote their
common value, called the dimension of T , by n (T ).

Note that if T is a homogeneous tree with branching number N , then N =
(N`)

1
` for all ` ≥ 1. The choice of base 2 for the logarithm then yields the relation-

ship N = 2n, consistent with the familiar interpretation that the dyadic tree has
dimension 1 and the linear tree has dimension 0.

Lemma 2.8. The tree Tn, constructed above with positive parameters λ and θ,
and the unit ball Bn satisfy the following properties.

(1) The ball Bn is a pairwise disjoint union of the kubes Kα, α ∈ Tn, and
there are positive constants C1 and C2 depending on λ and θ such that

Bβ (cα, C1) ⊂ Kα ⊂ Bβ (cα, C2) , α ∈ Tn, n ≥ 1.

(2)
⋃

β≥αKβ is “comparable” to the Carleson tent Vcα
associated to the point

cα, where

Vz = {w ∈ Bn : |1− w · Pz| ≤ 1− |z|} ,

and Pz denotes radial projection of z onto the sphere ∂Bn.
(3) The invariant volume of Kα is bounded between positive constants depend-

ing on λ and θ, but independent of α ∈ Tn.
(4) The dimension n (Tn) of the tree Tn is 2θ

ln 2n.
(5) For any R > 0, the balls Bβ (cα, R) satisfy the finite overlap condition∑

α∈Tn

χBβ(cα,R) (z) ≤ CR, z ∈ Bn.

Proof. Property 1 follows easily from the construction of KN
j , and property

2 is then a consequence of the formula for the metric β.
Property 3 follows since using (2.14), Kα is comparable to a rectangle, two of

whose side lengths (those in the complex radial directions) are e−2θd(α), while the
remaining side lengths (those in the complex tangential directions) are e−θd(α).

The final two properties follow from volume counting. Indeed, given α ∈ Tn

and ` ≥ 1, let {βj}N`

j=1 be an enumeration of the descendents ` generations beyond
α:

C(`) (α) = {β ∈ Tn : β > α and d (β) = d (α) + `} = {βj}N`

j=1 .

From property 3 and (2.14) we have that 1 ≈ |Kγ |λn
≈ e2d(γ)θ(n+1) |Kγ |, and since∣∣∪N

j=1Kβj

∣∣ ≈ e−2`θ |Kα|, we obtain

e−2`θe−2d(α)θ(n+1) ≈ e−2`θ |Kα| ≈
∣∣∣∪N`

j=1Kβj

∣∣∣ = N∑̀
j=1

∣∣Kβj

∣∣
≈

N∑̀
j=1

e−2d(βj)θ(n+1) = N`e
−2(d(α)+`)θ(n+1).
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Thus there are positive constants c and C depending only on n and θ such that

c ≤ N`

e2n`θ
≤ C, α ∈ Tn, ` ≥ 1,

and it follows that n (T ) = log2 e
2nθ, completing the proof of property 4.

The finite overlap property 5 is obtained as follows. Let z ∈ Kα. If z ∈
∩N

j=1Bβ

(
cαj , R

)
, then since β is a metric,

N⋃
j=1

Bβ

(
cαj

, C1

)
⊂ Bβ (cα, R+ 2C1) .

Since the balls Bβ

(
cαj

, C1

)
are pairwise disjoint by property 1, we thus have

N ≈
N∑

j=1

∣∣Bβ

(
cαj

, C1

)∣∣
λn
≤ |Bβ (cα, R+ 2C1)|λn

≈ CR,

where CR is a positive constant depending on n and θ, but independent of α ∈ Tn,
hence also of z ∈ Bn. We will often use the notation |E|µ for the µ-measure of a
set E.

Remark 2.9. The choice θ = ln 2
2 yields dim (Tn) = n and the convenient

equivalence 1−|z|2 ≈ 2−d(α) for z ∈ Kα. In one dimension with λ ≈ 1, this identifies
Bp (T1) with the one-dimensional Besov space Bp (T ) defined above on the dyadic
tree T , and in higher dimensions with the abstract Besov spaces Bp (Tn) defined
below on Tn. However, Corollary 3.2 on monotonicity of Carleson measures requires
both θ and λ to be small (to invoke the atomic decomposition of Besov spaces),
while the more refined holomorphic Besov spaces HBp (Tn) on Tn considered in
Section 8 will require λ small and θ large. The structural inequality (8.37), used
to define the spaces HBp (Tn) and prove the restriction Theorem 8.14, requires
θ sufficiently large, while the positivity property (8.43) in Lemma 8.11 requires in
addition that λ is sufficiently small. The above construction simplifies greatly when
n = 1 since then the spheres Sr are circles, and the qubes QN

j can be taken to be
circular arcs of equal length.

2.2.2. Discretization of Carleson measures. Let Bp = Bp (Bn). Given 1 <
p, q <∞ and a positive Borel measure µ on the ball Bn, we say that µ is a (Bp, q)-
Carleson measure on Bn if there is a positive constant C such that

(2.16)
(∫

Bn

|f (z)|q dµ (z)
) 1

q

≤ C ‖f‖Bp
,

for all f ∈ Bp. We wish to show that µ is a (Bp, q)-Carleson measure if and only if
its averaged version µ̃ is a (Bp, q)-Carleson measure, where µ̃ is defined by

(2.17) dµ̃ (z) =
∑

α∈Tn

(∫
Kα

dµ

)
λn (Kα)−1

χKα
(z) dλn (z) .

It is convenient to introduce as well the discretized version µ\ of µ given by

(2.18) µ\ =
∑
α

(∫
Kα

dµ

)
δcα ,
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where cα is the center of Kα. We will need the inequality

(2.19) |f (z)− f (w)| ≤ C ‖f‖Bp
β (z, w)

1
p′ , z, w ∈ Bn,

which is proved below in (5.11), and also given as Exercise 21 on page 220 of [Zhu].
We make no restriction here on the structural constants θ and λ.

Proposition 2.10. Let 1 < p, q <∞, µ be a positive Borel measure on the ball
Bn and µ̃, µ\ be defined as in (2.17) and (2.18) respectively. Then µ is a (Bp, q)-
Carleson measure on Bn if and only if µ̃ is a (Bp, q)-Carleson measure on Bn if
and only if µ\ is a (Bp, q)-Carleson measure on Bn.

Proof. Note that Carleson measures are a priori bounded and µ (Bn) =
µ̃ (Bn) = µ\ (Bn). Fix f ∈ Bp for the moment and let {wα}α∈Tn

and {ξα}α∈Tn

be sequences with wα, ξα ∈ Kα satisfying

|f (wα)| = max
w∈Kα

|f (w)| , |f (ξα)| = min
w∈Kα

|f (w)| , α ∈ Tn.

We then have the inequalities

c |f (ξα)|p µ (Kα) ≤
∫

Kα

|f (z)|p dµ (z) ≤ C |f (wα)|p µ (Kα) ,

c |f (ξα)|p µ (Kα) ≤
∫

Kα

|f (z)|p dµ̃ (z) ≤ C |f (wα)|p µ (Kα) ,

c |f (ξα)|p µ (Kα) ≤
∫

Kα

|f (z)|p dµ\ (z) ≤ C |f (wα)|p µ (Kα) .

Now if ν1 and ν2 denote any two of the three measures µ, µ̃, µ\, then

‖f‖Lp(ν1)
≤
∣∣∣‖f‖Lp(ν1)

− ‖f‖Lp(ν2)

∣∣∣+ ‖f‖Lp(ν2)
,

and by Minkowski’s inequality and (2.19),

∣∣∣‖f‖Lp(ν1)
− ‖f‖Lp(ν2)

∣∣∣ ≤ (∑
α∈Tn

∣∣∣∣∣
(∫

Kα

|f |p dν1
) 1

p

−
(∫

Kα

|f |p dν2
) 1

p

∣∣∣∣∣
p) 1

p

≤

(∑
α∈Tn

|f (wα)− f (ξα)|p µ (Kα)

) 1
p

≤ C

(∑
α∈Tn

‖f‖p
Bp
µ (Kα)

) 1
p

≤ Cµ (Bn)
1
p ‖f‖Bp

.

Thus

‖f‖Lp(ν1)
≤ Cµ (Bn) ‖f‖Bp

+ ‖f‖Lp(ν2)

and the conclusion of Proposition 2.10 follows.
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3. Carleson measures

Given a positive measure µ on the ball, we denote by µ̂ the associated measure
on the Bergman tree Tn given by µ̂ (α) =

∫
Kα

dµ for α ∈ Tn. Let 1 < p, q <∞. In
this section we show that µ is a (Bp, q)-Carleson measure on Bn if µ̂ is a (Bp(Tn), q)-
Carleson measure, i.e. if

(3.1)

(∑
α∈Tn

If (α)q
µ̂ (α)

)1/q

≤ C

(∑
α∈Tn

f (α)p

)1/p

, f ≥ 0.

In the case p = q, that arises in section 5 below on interpolation, Theorem 1.1
shows that (3.1) is equivalent to the tree condition

(3.2)
∑
β≥α

I∗µ̂ (β)p′ ≤ CI∗µ̂ (α) <∞, α ∈ Tn.

Conversely, in the range 1 < p < 2+ 1
n−1 , 1 < q <∞, we show that µ̂ is (Bp(Tn), q)-

Carleson if µ is a (Bp (Bn) , q)-Carleson measure on Bn (necessity in the range

p ∈
[
2 + 1

n−1 ,∞
)

is left open). We have the following generalization of Theorem
1.2. We often write µ (α) for µ̂ (α) when there is no chance of confusion.

Theorem 3.1. Suppose 1 < p, q <∞ and that 0 < λ, θ <∞ are the structural
constants in the construction of Tn in Subsubsection 2.2.1. Let µ be a positive
measure on the unit ball Bn. Then with constants depending only on p, λ, θ, n,
conditions 2 and 3 below are equivalent, condition 3 is sufficient for condition 1,
and provided 1 < p < 2 + 1

n−1 , condition 3 is necessary for condition 1:

(1) µ is a (Bp (Bn) , q)-Carleson measure on Bn, i.e. (2.16) holds.
(2) µ̂ = {µ (α)}α∈Tn

is a (Bp (Tn) , q)-Carleson measure on the Bergman tree
Tn, i.e. (1.7) holds with µ (α) =

∫
Kα

dµ and T replaced by Tn.
(3) There is C <∞ such that

(i) in the case p = q,∑
β≥α

I∗µ (β)p′ ≤ CI∗µ (α) <∞, α ∈ Tn.

(ii) in the case p < q,∑
β≥α

µ(β)

 1
q
∑

β≤α

1

 1
p′

≤ C, α ∈ Tn.

(iii) in the case p > q,∑
α∈n

µ(α) (W (µ)(α))
q(p−1)

p−q ≤ C <∞

where
W (µ)(α) =

∑
β≤α

µ({γ : γ ≥ β})p′−1.

Theorem 3.1 yields the following monotonicity property for Bp (Bn)-Carleson
measures on Bn.
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Corollary 3.2. If µ is a Bp0 (Bn)-Carleson measure for some 1 < p0 < ∞,
then µ is a Bp (Bn)-Carleson measure for all 1 < p < p0. Moreover, µ satisfies the
tree condition (3.2) with

p =


p0 if p0 < 2 + 1

n−1

2 + 1
n−1 − ε, ε > 0 if 2 + 1

n−1 ≤ p0 < 4 + 2
n−1

p0
2 if p0 ≥ 4 + 2

n−1

.

Proof. For 1 < p0 < 2 + 1
n−1 , we simply use Theorem 3.1 together with the

fact that inequality (1.9) has the corresponding monotonicity property: for f ≥ 0
and 1 < p < p0,

(∑
α∈T

If (α)p
µ (α)

)1/p

=

∑
α∈T

∑
β≤α

f (β)


p

p0
p0

µ (α)


1/p

≤

∑
α∈T

∑
β≤α

f (β)
p

p0

p0

µ (α)

1/p

≤

(
Cp0

∑
α∈T

[
f (β)

p
p0

]p0

)1/p

= C
p0
p

(∑
α∈T

f (β)p

)1/p

,

if (1.9) holds for the exponent p0.
For p0 > 2, we use the atomic decomposition of Bp0 (Bn) (Theorem 6.6 in

[Zhu]), Khinchine’s inequality for the Rademacher functions rk (t), and complex
interpolation of the Besov spaces Bp0 (Bn) (Theorem 6.12 in [Zhu]). If the measure

µ is Bp0 (Bn)-Carleson, and a > n
p′0

, then with f (z) =
∑

α∈Tn
fα

(
1−|cα|2
1−cα·z

)a

and
p = q = p0 in (2.16), we have

∫
Bn

∣∣∣∣∣ ∑
α∈Tn

fα

(
1− |cα|2

1− cα · z

)a∣∣∣∣∣
p0

dµ (z) ≤ C
∑

α∈Tn

|fα|p0

for all {fα}α∈Tn
∈ `p0 by the atomic decomposition of Bp0 (Bn). Here we use the

atomic decomposition Theorem 6.6 in [Zhu], which requires that we choose both
parameters λ and θ sufficiently small in the construction of the Bergman tree Tn.
Using Khinchine’s inequality for the Rademacher functions, we obtain

∫
Bn

∑
α∈Tn

∣∣∣∣∣fα

(
1− |cα|2

1− cα · z

)a∣∣∣∣∣
2


p0
2

dµ (z)

≈
∫

Bn

∫ 1

0

∣∣∣∣∣ ∑
α∈Tn

rα (t) fα

(
1− |cα|2

1− cα · z

)a∣∣∣∣∣
p0

dtdµ (z)

≤
∫ 1

0

C
∑

α∈Tn

|ckrα (t) fα|p0 dt = C
∑

α∈Tn

|fα|p0 .
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Now we observe that for z ∈ Kβ ,

∑
α∈Tn

∣∣∣∣∣fα

(
1− |cα|2

1− cα · z

)a∣∣∣∣∣
2

≥ c
∑
α≤β

|fα|2 = cIg (β) ,

where g (α) = |fα|2. Thus we have the tree inequality∑
β∈Tn

Ig (β)
p0
2 µ (β) ≤ C

∑
β∈Tn

g (β)
p0
2 , g ≥ 0,

and hence by Theorem 3.1, µ satisfies the tree condition (3.2) with exponent p =
p0
2 > 1. As above, we conclude that µ is Bp (Bn)-Carleson for all 1 < p < p0

2 . Since
µ is also Bp0 (Bn)-Carleson, complex interpolation shows that µ is Bp (Bn)-Carleson
for all 1 < p < p0. The assertion regarding the tree condition now follows easily,
and this completes the proof of Corollary 3.2.

The tree theorem in [ArRoSa] mentioned above, together with the extension
to q < p in [Ar] (not used in the remainder of this paper), yields the equivalence
of conditions 2 and 3 in Theorem 3.1, and we will consider the necessity and suf-
ficiency of condition 3 for condition 1 separately in the next two subsections. For
convenience we prove only the case λ = 1 and θ = ln 2

2 , so that by Lemma 2.8, the
dimension of Tn is n, and

(3.3) 1− |z|2 ≈ e−2β(0,z) ≈ e−2θd(α) = 2−d(α)

for z ∈ Kα by (2.14). The proof of the general case is similar. But first we dualize
the Carleson embedding by computing its adjoint relative to the pairing 〈·, ·〉α,p

introduced above.
Let 〈f, g〉µ =

∫
Bn
f (z) g (z)dµ (z) be the usual pairing between Lq (µ) and

Lq′ (µ), and suppose that 1 < p < ∞, α > −1. We claim that for a polynomial
f ∈ Bp (Bn) and a simple function g ∈ Lq′ (µ), we have

〈f, g〉µ = 〈f,Θg〉α,p

where Θg ∈ Bp′ (Bn) is given by the formula

Rα
n+1+α

p′
Θg (w) =

∫
Bn

(
1

1− z · w

)n+1+α
p′

g (z) dµ (z) .

Indeed, by (2.12) and (2.13) we have

〈f, g〉µ =
∫

Bn

f (z) g (z)dµ (z) =
∫

Bn

〈f, kα,p
z 〉α,p g (z)dµ (z)

=
∫

Bn

{∫
Bn

Rα
n+1+α

p

f (w)Rα
n+1+α

p′
kα,p

z (w)dνα (w)
}
g (z)dµ (z)

=
∫

Bn

Rα
n+1+α

p

f (w)

{∫
Bn

(
1

1− z · w

)n+1+α
p′

g (z) dµ (z)

}
dνα (w) .

Using the density of polynomials in Besov spaces, and simple functions in Lebesgue
spaces, we can now dualize the Carleson embedding

‖f‖Lq(µ) =
(∫

Bn

|f (z)|q dµ (z)
) 1

q

≤ C ‖f‖Bp(Bn) , f ∈ Bp (Bn) ,
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as equivalent to
‖Θg‖Bp′ (Bn) ≤ C ‖g‖Lq′ (µ) .

Since we have

‖Θg‖Bp′ (Bn) =

∫
Bn

∣∣∣∣∣
∫

Bn

(
1

1− z · w

)n+1+α
p′

g (z) dµ (z)

∣∣∣∣∣
p′

dνα (w)


1
p′

=

∫
Bn

∣∣∣∣∣∣
∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ (z)

∣∣∣∣∣∣
p′

dλn (w)


1
p′

,

we can restate the dual inequality as

(3.4)
∥∥S∗µg∥∥Lp′ (λn)

≤ C ‖g‖Lq′ (µ) , g ∈ Lq′ (µ) ,

where the operator S∗µ is given by

S∗µg (w) =
∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ (z) .

Remark 3.3. The implication 1. implies 2. of Theorem 3.1 is equivalent to the
implication that boundedness of S∗µ from Lq′ (µ) to Lp′ (λn) (as in (3.4)) implies
the boundedness of T ∗µ from Lq′ (µ) to Lp′ (λn), where

T ∗µg (w) =
∫

Bn

∣∣∣∣∣ 1− |w|21− z · w

∣∣∣∣∣
n+1+α

p′

g (z) dµ (z)

has kernel equal to the modulus of the kernel of S∗µ. Roughly speaking, the Carleson
embedding implies the tree condition if and only if we can take absolute values inside
the operator S∗µ without destroying the boundedness in (3.4). This claim follows
easily from the argument in the next subsection.

3.1. Necessity in case 1 < p < 1 + 1
n−1 . Suppose that µ is a (Bp (Bn) , q)-

Carleson measure on Bn where 1 < p < 1 + 1
n−1 and 1 < q < ∞. Choose α > −1

so that n+1+α
p′ = 1. We then obtain from (3.4) that

∫
Bn

∣∣∣∣∣
∫

Bn

Re

(
1− |w|2

1− z · w

)
g (z) dµ (z)

∣∣∣∣∣
p′

dλn (w) ≤
∥∥S∗µg∥∥p′

Lp′ (λn)

≤ C

(∫
Bn

|g|q
′
dµ

)p′/q′

for all g ≥ 0. The tree inequality (3.1) now follows as in the one-dimensional case
in [ArRoSa], [Ar]. Indeed, fix α ∈ Tn and let g =

∑
α∈n

g (α)χKα
. Here g is

constant on Kα with value g (α). Then since

Re

(
1− |w|2

1− z · w

)
≥ c > 0, w ∈ Kβ , z ∈ Sβ
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for β ≥ α, and Re
(

1−|w|2
1−z·w

)
≥ 0 otherwise, we obtain

cp
′
‖I∗ĝµ‖p′

Lp′ (T n)
=
∑

α∈T n

∑
β≥α

cĝµ(β)

p′

≤ C

∫
Bn

(∫
Re

(
1− |w|2

1− z · w

)
g (z) dµ (z)

)p′

dλn (w)

≤ C

(∫
Bn

|g|q
′
dµ

)p′/q′

= C

( ∑
α∈T n

|g(α)|q
′
µ(α)

) p′
q′

= C‖g‖p′

Lq′ (T n)
,

which yields the dual of inequality (3.1).
Unfortunately, this elegant proof breaks down for p ≥ 1+ 1

n−1 , since we can no

longer choose α > −1 so that θ = n+1+α
p′ ∈ (0, 1], thus forcing Re

(
1−|w|2
1−z·w

)θ

> 0.

3.2. Sufficiency. Suppose that µ̂ satisfies the tree inequality (3.1). Since
µ̂ = ̂̃µ, we now replace µ by µ̃ in the dual inequality (3.4) and consider

S∗eµg (w) =
∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ̃ (z) , w ∈ Bn,

We will show that the positive operator T ∗eµ given by

T ∗eµg (w) =
∫

Bn

(
1− |w|2

|1− w · z|

)n+1+α
p′

g (z) dµ̃ (z) , w ∈ Bn,

is bounded from Lq′ (µ̃) to Lp′ (λn), i.e.

(3.5)
(∫

Bn

∣∣T ∗eµg (w)
∣∣p′ dλn (w)

) 1
p′

≤ C

(∫
Bn

gq′dµ̃

) 1
q′

, g ≥ 0.

With this done, it follows that µ̃ is a (Bp, q)-Carleson measure, and hence also µ
by Proposition 2.10.

From Lemma 3.4 below with σ = 0, s = n+ 1 + α, r = p′ and

f (z) = g (z)
dµ̃

dz
(z) = g (z)

∑
α∈Tn

µ (Kα)λn (Kα)−1
(
1− |z|2

)−n−1

χKα
(z) ,

we obtain with T̂ as in Lemma 3.4,

∥∥T ∗eµg∥∥Lp′ (dλn)
=
∥∥∥T̂ (gµ̃)

∥∥∥
Lp′ (dλn)

≤ Cp′

(∑
α∈Tn

I∗ĝµ̃ (α)p′

) 1
p′

,

where

I∗ĝµ̃ (α) =
∑

β∈Tn:β≥α

∫
Kβ

gdµ̃ =
∑

β∈Tn:β≥α

µ (Kβ)λn (Kβ)−1
∫

Kβ

gdλn
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and ĝ (α) =
∫

Kα
gdλn. The tree inequality (3.1) holds for µ̃ (α) = µ̃ (Kα), and this

in turn is equivalent to(∑
α∈Tn

I∗ĝµ̃ (α)p′

) 1
p′

≤ C

(∑
α∈Tn

ĝ (α)q′
µ̃ (α)

) 1
q′

,

Finally, since µ̃ is constant on Kα, we have

ĝ (α)q′
µ̃ (α) = µ (Kα)

(∫
Kα

gdλn

)q′

≤ Cµ (Kα)
∫

Kα

gq′dλn ≈
∫

Kα

gq′dµ̃,

for all α ∈ Tn, and hence(∑
α∈Tn

ĝ (α)q′
µ̃ (α)

) 1
q′

≤
(∫

Bn

gq′dµ̃

) 1
q′

.

Combining these inequalities establishes (3.5) as required.

Lemma 3.4. For 0 ≤ σ ≤ 1, 1 < r <∞, s+ σr > n and f ∈ L1 define

T̂ f (w) =
∫

Bn

(
1− |w|2

) s
r

|1− w · z|
s+σr

r

f (z) dz.

Then we have

∥∥∥T̂ f∥∥∥
Lr(dλn)

≤ Cr

(∑
α∈Tn

[
e2θσd(α)I∗f̂ (α)

]r) 1
r

,

where I∗f̂ (α) =
∑

β∈Tn:β≥α f̂ (β) and f̂ (β) =
∫

Kβ
|f (z)| dz.

Note that the discretization of f involves the measure dz, as compared to the
discretization of g above that uses dλn (z).

Proof. Let θ = ln 2
2 for notational convenience. We compute for f ≥ 0,

∥∥∥T̂ f∥∥∥r

Lr(dλn)
=
∫ ∫

Bn

(
1− |w|2

) s
r

|1− w · z|
s+σr

r

f (z) dz


r

dλn (w)

≤
∫  1(

1− |w|2
)σ

log2( 1
1−|w| )∑

m=0

2−m s+σr
r

∫
Swm

f (z) dz


r

dλn (w)

where Swm
is the union of the Carleson box at wm with its lower half, and the points

wm = Pm (w) are positive multiples of w, but with modulus satisfying 1− |wm| =
2m (1− |w|). We now fix a constant µ such that n

s+σr < µ < 1 and continue the
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string of inequalities starting with Hölder’s inequality:

∥∥∥T̂ f∥∥∥r

Lr(dλn)
≤
∫ 

log2( 1
1−|w| )∑

m=0

2−m s+σr
r (1−µ)r′


r
r′

×
log2( 1

1−|w| )∑
m=0

2−m(s+σr)µ

 1(
1− |w|2

)σ

∫
Swm

f (z) dz

r

dλn (w)

≤ Cs,r,σ,µ

∞∑
m=0

2−m(s+σr)µ

∫  1(
1− |w|2

)σ

∫
Swm

f (z) dz

r

× χ[m,∞)

(
log2

(
1

1− |w|

))
dλn (w)

≤ Cs,r,σ,µ

∞∑
m=0

2−m(s+σr)µ
∑

α∈Tn

χ[m,∞) (d (α))

×

2σd(α)
∑

β∈Tn:β≥P m(α)

f (β)

r

,

with Cs,r,σ,µ =
(∑∞

m=0 2−m s+σr
r (1−µ)r′

)r−1

, and where Pm (α) denotes the mth

predecessor of α. The final term above satisfies

∞∑
m=0

2−m(s+σr)µ
∑

α∈Tn

χ[m,∞) (d (α))

2σd(α)
∑

β∈Tn:β≥P m(α)

f (β)

r

≤
∞∑

m=0

2m(n−(s+σr)µ) sup
m≥0

2−nm
∑

α∈Tn

χ[m,∞) (d (α))

2σd(α)
∑

β∈Tn

β≥P m(α)

f (β)


r

≤ CC ′s,n,σ,µ

∑
α∈Tn

2σd(α)
∑

β∈Tn:β≥α

f (β)

r

=
∑

α∈Tn

(
2σd(α)I∗f (α)

)r

,

with C ′s,n,σ,µ =
∑∞

m=0 2m(n−(s+σr)µ) <∞ since n
s+σr < µ, and where we have used

the fact that

card {α ∈ Tn : Pm (α) = γ} ≤ C (2n)m
,

which follows from Lemma 2.8 and our choice of θ = ln 2
2 in (3.3). This completes

the proof of Lemma 3.4.
With this lemma proved, we have completed the proof that condition 3 is

sufficient for condition 1 in Theorem 3.1.

3.3. Necessity in the extended range 1 < p < 2 + 1
n−1 . Suppose that µ

is a (Bp (Bn) , q)-Carleson measure on Bn where 1 < p < 2 + 1
n−1 , 1 < q <∞. We
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have from (3.4) that

∫
Bn

∣∣∣∣∣∣
∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ (z)

∣∣∣∣∣∣
p′

dλn (w)(3.6)

=
∥∥S∗µg∥∥p′

Lp′ (λn)
≤ C

(∫
Bn

|g|q
′
dµ

)p′/q′

,

where the operator S∗µ is given by

S∗µg (w) =
∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ (z) .

The left side of (3.6) raised to the power 1
p′ is∫

Bn

∣∣∣∣∣∣
∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ (z)

∣∣∣∣∣∣
p′

dλn (w)


1
p′

(3.7)

= sup
‖F‖Lp(dλn)≤1

∣∣∣∣∣∣
∫

Bn


∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ (z)

F (w)dλn (w)

∣∣∣∣∣∣
≥ sup

f≥0

∣∣∣∣∣∣
∫

Bn


∫

Bn

(
1− |w|2

1− z · w

)n+1+α
p′

g (z) dµ (z)

 Tηf (w)
‖Tηf‖Lp(dλn)

dλn (w)

∣∣∣∣∣∣ ,
where for 0 < η < 1 we define the operator Tη by

Tηf (w) =
∫

Bn

(
1− |w|2

)n+1+α
p

{
Rα

n+1+α
p

(
1

1− z · w

)η}
f (z) dz

=
(
1− |w|2

)n+1+α
p Rα

n+1+α
p

∫
Bn

f (z)
(1− z · w)η dz.

From (2.7) we have(
1

1− z′ · w

)η

= Rη−n−1, n+1+α
p

(
1

1− z′ · w

)n+1+α
p +η

,

and so with

T̃ηf (w) =
∫

Bn

(
1− |w|2

)n+1+α
p

(1− z · w)
n+1+α

p +η
f (z) dz,

Uηf (w) =
Tηf (w)(

1− |w|2
)n+1+α

p

= Rα
n+1+α

p

∫
Bn

f (z)
(1− z · w)η dz,

Ũηf (w) =
T̃ηf (w)(

1− |w|2
)n+1+α

p

=
∫

Bn

f (z)

(1− z · w)
n+1+α

p +η
dz,
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we obtain

Uηf (w) = Rα−n+1+α
p , n+1+α

p Rη−n−1, n+1+α
p

Ũηf (w) .

We now use the fact that Rγ1,tRγ2,t is bounded on the Bergman space Aα
p provided

n+ γi, n+ γi + t /∈ −N (Corollary 6.5 of [Zhu]) to conclude that

‖Tηf‖Lp(dλn) = ‖Uηf‖Lp(dνα)(3.8)

=
∥∥∥Rα−n+1+α

p , n+1+α
p Rη−n−1, n+1+α

p
Ũηf

∥∥∥
Lp(dνα)

≤ C
∥∥∥Ũηf

∥∥∥
Lp(dνα)

= C
∥∥∥T̃ηf

∥∥∥
Lp(dλn)

.

Remark 3.5. Note that in the special case p = 2, S∗µg = T̃0 (gµ), so that the
adaptation of the argument below to η = 0 reduces to a familiar TT ∗ argument.

The final line in (3.7) is

(3.9) sup
f≥0

1
‖Tηf‖Lp(dλn)

∣∣∣∣∫
Bn

S∗µg (w)Tηf (w)dλn (w)
∣∣∣∣ .

To compute this supremum, we note that the integral in (3.9) for f ≥ 0 is

∫
Bn

S∗µg (w)Tηf (w)dλn (w)

(3.10)

=
∫
Bn

∫
Bn

∫
Bn

(
1

1− z · w

)n+1+α
p′

Rα
n+1+α

p

(
1

1− w · z′

)η

dνα (w) f (z′) dz′g (z) dµ (z)

=
∫
Bn

∫
Bn

(
1

1− z · z′

)η

f (z′) dz′g (z) dµ (z)

where we obtained the final equality using (2.13). Writing `ηz′ (z) =
(

1
1−z′·z

)η

we
have ∫

Bn

Rα
n+1+α

p′
kα,p

z (w)Rα
n+1+α

p

`ηz′ (w)dνα (w) = 〈`ηz′ , k
α,p
z 〉α,p

= `ηz′ (z) =
(

1
1− z · z′

)η

.

We can discretize the last integral in (3.10) by breaking up the integrals over

the balls into Bergman kubes Kα and using the fact that
(

1
1−z·z′

)η

is essentially

constant on products of Bergman kubes. Observe also that by our choice of θ = ln 2
2

in (3.3),

Re
(

1
1− z · z′

)η

≥ cη2ηd(α∧β), z ∈ Kα, z
′ ∈ Kβ ,
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for a positive constant cη, provided 0 < η < 1. Note that cη tends to 0 as η → 1,
so that we cannot use η = 1 even though Re 1

1−z·z′ > 0 on the ball. We obtain that∣∣∣∣∫
Bn

S∗µg (w)Tηf (w)dλn (w)
∣∣∣∣ ≥ ∣∣∣∣Re

∫
Bn

S∗µg (w)Tηf (w)dλn (w)
∣∣∣∣

≥ cη

∫
Bn

∫
Bn

Re
(

1
1− z · z′

)η

g (z) dµ (z) f (z′)dz′

≥ cη
∑

α∈Tn

∑
β∈Tn

2ηd(α∧β)gµ (α) f (β) ,

for f, g ≥ 0 on the ball Bn, and with f (β) =
∫

Kβ
f (z) dz, gµ (α) =

∫
Kα

g (z) dµ (z).
We also observe that∑

γ∈Tn

2ηd(γ)I∗gµ (γ) I∗f (γ) =
∑

γ∈Tn

2ηd(γ)
∑

α∈Tn:α≥γ

gµ (α)
∑

β∈Tn:β≥γ

f (β)

=
∑

α∈Tn

∑
β∈Tn

 ∑
γ∈Tn:α,β≥γ

2ηd(γ)

 gµ (α) f (β)

≈
∑

α∈Tn

∑
β∈Tn

2ηd(α∧β)gµ (α) f (β) ,

and so altogether we obtain

(3.11) sup
f≥0

1
‖Tηf‖Lp(dλn)

∑
γ∈Tn

2ηd(γ)I∗gµ (γ) I∗f (γ) ≤ C

(∫
Bn

|g (z)|q
′
dµ (z)

) 1
q′

,

for g ∈ Lq′ (µ). Provided g is nonnegative and essentially constant on the Bergman
boxes Kα, we can discretize the final integral above as

(3.12)
∫

Bn

|g (w)|q
′
dµ (w) ≈

∑
α∈Tn

g (α)q′
µ (α) .

Then (3.11) becomes approximately

sup
f≥0

1
‖Tηf‖Lp(dλn)

∑
γ∈Tn

2ηd(γ)I∗gµ (γ) I∗f (γ) ≤ C

(∑
α∈Tn

g (α)q′
µ (α)

) 1
q′

.

With σ = η, s = n+ 1 + α and r = p in Lemma 3.4, we obtain∥∥∥T̃ηf
∥∥∥

Lp(dλn)
≤ Cp

(∑
α∈Tn

(
2ηd(α)I∗f (α)

)p
) 1

p

,

which together with (3.8), yields the discretized inequality
(3.13)∑
γ∈Tn

I∗gµ (γ) 2ηd(γ)I∗f (γ) ≤ C

(∑
α∈Tn

g (α)q′
µ (α)

) 1
q′
(∑

α∈Tn

(
2ηd(α)I∗f (α)

)p
) 1

p

,

for f, g ≥ 0 on Tn. If we write the left side of (3.13) as∑
γ∈Tn

I∗gµ (γ) 2ηd(γ)I∗f (γ) =
∑

α∈Tn

g (α)µ (α) I2ηdI∗f (α)
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and then take the supremum over all g ≥ 0 we obtain the inequality
(3.14)(∑

α∈Tn

[
I2ηdI∗h (α)

]q
µ (α)

)1/q

≤ C

(∑
α∈Tn

[
2ηd(α)I∗h (α)

]p)1/p

, h ≥ 0 on Tn,

which is (1.7) tested over f of the form f = 2ηdI∗h, and with µ (α) =
∫

Kα
dµ and

T replaced by Tn. We will however continue instead with the bilinear form (3.13).
We may assume without loss of generality that µ has finite support on the tree
Tn. Indeed, if we simply restrict µ on the disk to a finite union F of Carleson
boxes, then this restriction µF is a Carleson measure with norm under control. If
we can show that condition (3.2), and thus also (1.7), holds for µF with a constant
independent of F , then obviously (1.7) holds for µ with the same constant.

If we are able to find f ≥ 0 such that

(3.15) 2ηd(γ)I∗f (γ) = (I∗gµ (γ))p′−1
, γ ∈ Tn,

then from (3.13) we have

∑
γ∈Tn

(I∗gµ (γ))p′ ≤ C

(∑
α∈Tn

g (α)q′
µ (α)

) 1
q′
(∑

α∈Tn

(I∗gµ (α))(p′−1)p

) 1
p

= C

(∑
α∈Tn

g (α)q′
µ (α)

) 1
q′
(∑

α∈Tn

(I∗gµ (α))p′

) 1
p

,

which yields (3.2) as required. So it remains to solve (3.15) for as large a range of p
as we can, using 0 < η < 1. To this end, we invoke the following elementary result
on a tree T .

Lemma 3.6. Given G ≥ 0 on T such that G (o) < ∞, there is h ≥ 0 on T
satisfying

(3.16) I∗h (α) = G (α) , α ∈ T ,
if and only if both

(3.17)
∑

d(α)=N

G (α) → 0 as N →∞,

and

(3.18) G (α)−
∑

j

G (αj) ≥ 0, α ∈ T ,

and where αj are the children of α.

Proof. For the necessity, (3.16) and h ≥ 0 imply

0 ≤ h (α) = I∗h (α)−
∑

j

I∗h (αj) = G (α)−
∑

j

G (αj) ,

which is (3.18), while (3.16) and
∑

α∈T h (α) = I∗h (o) = G (o) < ∞ with h ≥ 0
yield ∑

d(α)=N

G (α) =
∑

d(α)=N

I∗h (α) =
∑

β∈T :d(β)≥N

h (β) → 0 as N →∞,

which is (3.17).
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Conversely, (3.18) and (3.17) yield (3.16):

I∗h (α) =
∑

β∈T :β≥α

h (β) = lim
N→∞

∑
β≥α,d(β)<N

h (β)

= lim
N→∞

∑
β≥α,d(β)<N

G (β)−
∑

j

G (βj)


= lim

N→∞

G (α)−
∑

d(γ)=N

G (γ)


= G (α) .

By Lemma 3.6, solving (3.15) for f ≥ 0 is equivalent to the inequality

2−ηd(γ) (I∗gµ (γ))p′−1 ≥
∑

γj∈C(γ)

2−ηd(γj) (I∗gµ (γj))
p′−1

, γ ∈ Tn,

where the sum is taken over the the set C (γ) of children γj of γ. This inequality is
trivial if p ≤ 2 since then p′ − 1 ≥ 1 implies

(I∗gµ (γ))p′−1 ≥

 ∑
γj∈C(γ)

I∗gµ (γj)

p′−1

≥
∑

γj∈C(γ)

I∗gµ (γj)
p′−1

,

and d (γj) > d (γ) for γj ∈ C (γ). So we suppose that p > 2. Since d (γj) = d (γ)+1,
and j runs from 1 to the maximum branching number N of the Bergman tree Tn,
we have using Hölder’s inequality with exponents p− 1 and p−1

p−2 ,∑
γj∈C(γ)

2−ηd(γj) (I∗gµ (γj))
p′−1

≤ 2−ηd(γ)−η

 ∑
γj∈C(γ)

1


p−2
p−1

∑
j

(I∗gµ (γj))(
p′−1)(p−1)

 1
p−1

≤ 2−ηd(γ)2−η (N)
p−2
p−1

∑
j

I∗gµ (γj)

 1
p−1

≤ 2(log2 N) p−2
p−1−η

{
2−ηd(γ) (I∗gµ (γj))

p′−1
}

≤ 2−ηd(γ) (I∗gµ (γj))
p′−1

,

as required provided (log2N) p−2
p−1 − η ≤ 0 or p ≤ 2(log2 N)−η

(log2 N)−η = 2 + η
(log2 N)−η .

In order to obtain the full range 1 < p < 2 + 1
n−1 , we will take η sufficiently

close to 1, and use the device of splitting the sum
∑

α∈Tn
into “sparse” pieces∑

α∈Tn:d(α)∈`N+m for 0 ≤ m < `, where ` is chosen so large in Definition 2.7 that
(3.19)

log2 (N`)
1
` = log2

(
sup
α∈T

card {β ∈ T : β ≥ α and d (β) = d (α) + `}
) 1

`

<
p− 1
p− 2

.
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This can be done if p < 2 + 1
n−1 , or equivalently n < p−1

p−2 , since the dimension
n (Tn) of the tree Tn is n by Lemma 2.8 when θ = ln 2

2 .
With ` chosen so that (3.19) holds, we consider solving the equation

(3.20) 2ηd(γ)I∗f (γ) = (I∗gµ (γ))p′−1
, γ ∈ Tn, d (γ) ∈ `Z+,

for 0 < η < 1 and with f ≥ 0 on Tn and supported in

Ω` ≡ {γ ∈ Tn : d (γ) ∈ `Z+} .

By Lemma 3.6 applied to the tree Ω`, this is equivalent to the inequality

2−ηd(γ) (I∗gµ (γ))p′−1 ≥
∑

γj∈C`(γ)

2−ηd(γj) (I∗gµ (γj))
p′−1

, γ ∈ Ω`,

where the sum is now taken over the the set C` (γ) of grand`−1-children γj of γ, i.e.
those with γj > γ and d (γj) = `. From Hölder’s inequality with exponents p − 1
and p−1

p−2 again,∑
γj∈C`(γ)

2−ηd(γj) (I∗gµ (γj))
p′−1

≤ 2−ηd(γ)−η`

 ∑
γj∈C`(γ)

1


p−2
p−1

∑
j

(I∗gµ (γj))(
p′−1)(p−1)

 1
p−1

≤ 2−ηd(γ)2−η` (N`)
p−2
p−1

∑
j

I∗gµ (γj)

 1
p−1

≤ 2(log2 N`)
p−2
p−1−η`

{
2−ηd(γ) (I∗gµ (γ))p′−1

}
≤ 2−ηd(γ) (I∗gµ (γ))p′−1

,

since
(
log2 (N`)

1
`

)
p−2
p−1 − η < 0 for η sufficiently close to 1 by (3.19).

Thus we have solved (3.20) for f ≥ 0 on Tn, and supported in Ω`. We also have∑
β>γ:1≤d(β,γ)≤`

[
2ηd(β)I∗f (β)

]p
≤ Cp,`

[
2ηd(γ)I∗f (γ)

]p
(3.21)

= Cp,` (I∗gµ (γ))p′
, γ ∈ Ω`.(3.22)

Thus using first (3.20) and (3.13), and then (3.21), we have

∑
γ∈Ω`

(I∗gµ (γ))p′ ≤ C

(∑
α∈Tn

g (α)q′
µ (α)

) 1
q′
(∑

α∈Tn

[
2ηd(α)I∗f (α)

]p) 1
p

≤ C

(∑
α∈Tn

g (α)q′
µ (α)

) 1
q′
Cp,`

∑
γ∈Ω`

(I∗gµ (γ))p′

 1
p

.

Since
∑

α∈Tn
(I∗gµ (α))p′ ≤ C ′p,`

∑
γ∈Ω`

(I∗gµ (γ))p′ , this yields the dual of (3.1),
and hence (3.2) as required.
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Remark 3.7. If the weight 2ηd(γ) in (3.15) were replaced by 2nd(γ), then the
argument above would solve (3.15) for all 1 < p <∞. However, this would require

using `nz′ (z) =
(

1
1−z′·z

)n

above, and the real part of `nz′ (z) would no longer be

positive. We do not know if inequality (3.14) characterizes (1.7) when p ≥ 2+ 1
n−1 .

4. Pointwise multipliers

Recall that given 1 < p < ∞, a positive Borel measure µ on the ball Bn is a
Bp (Bn)-Carleson measure on Bn if there is C <∞ such that(∫

Bn

|f (z)|p dµ (z)
) 1

p

≤ C ‖f‖Bp(Bn) , f ∈ Bp (Bn) ,

where

‖f‖Bp(Bn) =
(∫

Bn

∣∣∣(1− |z|2)m

∇mf (z)
∣∣∣p dλn (z)

) 1
p

+
m−1∑
k=0

∣∣∇kf (0)
∣∣

for any m > n
p .

Definition 4.1. We say that ϕ is a (pointwise) multiplier on Bp if ϕf ∈ Bp

for all f ∈ Bp. By the closed graph theorem, this is equivalent to the existence of a
constant C <∞ such that

‖ϕf‖Bp
≤ C ‖f‖Bp

, f ∈ Bp.

Standard arguments show that if ϕ is a multiplier on Bp, then ϕ ∈ H∞ (Bn)∩
Bp. Indeed, since 1 ∈ Bp, we have ϕ = ϕ1 ∈ Bp. The adjoint M∗

ϕ of the multiplier
operator Mϕf = ϕf is also bounded on Bp, and if ez is the point evaluation
functional on Bp, then〈

f,M∗
ϕez

〉
= 〈Mϕf, ez〉 = ϕ (z) f (z) = ϕ (z) 〈f, ez〉 =

〈
f, ϕ (z)ez

〉
, f ∈ Bp,

shows that M∗
ϕez = ϕ (z)ez. Thus

|ϕ (z)| ‖ez‖B′
p

=
∥∥∥ϕ (z)ez

∥∥∥
B′

p

=
∥∥M∗

ϕez

∥∥
B′

p

≤
∥∥M∗

ϕ

∥∥ ‖ez‖B′
p

implies that |ϕ (z)| ≤
∥∥M∗

ϕ

∥∥ = ‖Mϕ‖ since ‖ez‖B′
p
<∞.

Theorem 4.2. Let ϕ ∈ H∞ (Bn) ∩ Bp and m > n
p . Then ϕ is a multiplier on

Bp (Bn) if and only if ∣∣∣(1− |z|2)m

∇mϕ (z)
∣∣∣p dλn (z)

is a Bp (Bn)-Carleson measure on Bn.

Proof. Fix 1 < p <∞ and m > n
p . Let f, ϕ ∈ Bp. Then

‖ϕf‖Bp
=

m−1∑
k=0

∣∣∇k (ϕf) (0)
∣∣+ (∫

Bn

∣∣∣(1− |z|2)m

∇m (ϕf) (z)
∣∣∣p dλn (z)

) 1
p

,

and

(4.1) ∇m (ϕf) (z) =
m∑

k=0

cm,k

(
∇m−kϕ (z)

) (
∇kf (z)

)
.
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show that(∫
Bn

∣∣∣(1− |z|2)m

∇m (ϕf) (z)
∣∣∣p dλn (z)

) 1
p

≤ C

(∫
Bn

∣∣∣(1− |z|2)m

∇mϕ (z)
∣∣∣p |f (z)|p dλn (z)

) 1
p

+ C
m−1∑
k=1

(∫
Bn

∣∣∣∣(1− |z|2)m−k

∇m−kϕ (z)
∣∣∣∣p ∣∣∣∣(1− |z|2)k

∇kf (z)
∣∣∣∣p dλn (z)

) 1
p

+ C

(∫
Bn

|ϕ (z)|p
∣∣∣(1− |z|2)m

∇mf (z)
∣∣∣p dλn (z)

) 1
p

.

Let
qk =

m

m− k
, q′k =

m

k
, 1 ≤ k ≤ m− 1,

and apply Holder’s inequality to obtain for each 1 ≤ k ≤ m− 1,(∫
Bn

∣∣∣∣(1− |z|2)m−k

∇m−kϕ (z)
∣∣∣∣p ∣∣∣∣(1− |z|2)k

∇kf (z)
∣∣∣∣p dλn (z)

) 1
p

≤
(∫

Bn

∣∣∣∣(1− |z|2)m−k

∇m−kϕ (z)
∣∣∣∣pqk

dλn (z)
) 1

pqk

×

(∫
Bn

∣∣∣∣(1− |z|2)k

∇kf (z)
∣∣∣∣pq′k

dλn (z)

) 1
pq′

k

≤ ‖ϕ‖Bpqk
(Bn) ‖f‖Bpq′

k
(Bn)

since m − k = m
qk

> n
pqk

and k = m
q′k

> n
pq′k

. Now the atomic decomposition of
Besov spaces, Theorem 6.6. in [Zhu], implies in particular that the inclusions of
the Besov spaces Bp (Bn) are determined by those of the `p spaces. Thus

Bp (Bn) ⊂ Bq (Bn) , 0 < p < q <∞,

and so we have

‖ϕ‖Bpqk
(Bn) ‖f‖Bpq′

k
(Bn) ≤ ‖ϕ‖Bp(Bn) ‖f‖Bp(Bn) , 1 ≤ k ≤ m− 1,

since qk, q′k > 1. Also,

m−1∑
k=0

∣∣∇k (ϕf) (0)
∣∣ ≤ C

m−1∑
k=0

∣∣∣∣∣∣
k∑

j=0

(
∇k−jϕ (0)

) (
∇jf (0)

)∣∣∣∣∣∣
≤ C

(
m−1∑
k=0

∣∣∇kϕ (0)
∣∣)(m−1∑

k=0

∣∣∇kf (0)
∣∣)

≤ ‖ϕ‖Bp(Bn) ‖f‖Bp(Bn) ,

and combining all of these inequalities, we obtain
(4.2)

‖ϕf‖Bp(Bn) ≤ C
{
‖f‖Lp(µ) + ‖ϕ‖Bp(Bn) ‖f‖Bp(Bn) + ‖ϕ‖H∞(Bn) ‖f‖Bp(Bn)

}
,
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where
dµ (z) =

∣∣∣(1− |z|2)m

∇mϕ (z)
∣∣∣p dλn (z) .

Similarly, if we rewrite (4.1) as

cm,0 (∇mϕ (z)) f (z) = −∇m (ϕf) (z) +
m∑

k=1

cm,k

(
∇m−kϕ (z)

) (
∇kf (z)

)
,

and multiply through by
(
1− |z|2

)m

, the above inequalities yield
(4.3)

‖f‖Lp(µ) ≤ C
{
‖ϕf‖Bp(Bn) + ‖ϕ‖Bp(Bn) ‖f‖Bp(Bn) + ‖ϕ‖H∞(Bn) ‖f‖Bp(Bn)

}
.

For ϕ ∈ H∞ (Bn) ∩ Bp (Bn), inequalities (4.2) and (4.3) show that ϕ is a
multiplier on Bp if and only if µ is a Bp (Bn)-Carleson measure on Bn.

5. Interpolating sequences

Let {zj}∞j=1 be a sequence of points in the unit ball Bn, and 1 < p <∞. In the
present section we will prove that weighted `p interpolation for Besov spaces Bp (Bn)
holds on the sequence {zj}∞j=1 if and only if the following separation condition and
Carleson embedding hold;

β (zi, 0) ≤ Cβ (zi, zj) and(5.1)
∞∑

j=1

(
1 + log

1
1− |zj |2

)1−p

δzj is a Bp (Bn) -Carleson measure.

We may assume without loss of generality that the points zj occur as the centers
cαj

for a corresponding sequence {αj}∞j=1 in the Bergman tree Tn (this requires
only a much weaker notion of separation, β (zi, zj) ≥ c > 0), and we take λ = 1
and θ = ln 2

2 in the construction. Note that (3.3) yields

d (αi, o) ≈ β (cαi , 0)

≈ log
1

1− |cαi
|2
,

where d denotes distance in the Bergman tree Tn. Furthermore, the separation
condition β (zi, 0) ≤ Cβ (zi, zj) on the ball implies the tree separation condition
d (αi, o) ≤ Cd (αi, αj), but not conversely. We then show that the analogue of
condition (5.1) on the Bergman tree Tn,

β (zi, 0) ≤ Cβ (zi, zj) and(5.2)
∞∑

j=1

(1 + d (αj , o))
1−p

δαj
is a Bp (Tn) -Carleson measure,

is sufficient for `∞ interpolation of the multiplier spaces MBp(Bn) on {zj}∞j=1 for
all 1 < p < ∞, and necessary provided 1 < p < 2 + 1

n−1 . However, we leave the

difficult subrange
[
1 + 1

n−1 , 2
)

to Section 8 where additional properties of a refined
Bergman tree Tn are required, and a more delicate argument is then needed to show
that we may assume the points zj occur as the centers cαj

of certain kubes Kαj
in

the refined Bergman tree (see the final paragraph of subsection 8.5).
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We are however able to show that (5.1) is sufficient for `∞ interpolation of
the multiplier spaces MBp(Bn) for p > 2n, and that (5.1) is necessary for `∞ in-
terpolation of the multiplier spaces MBp(Bn) for all 1 < p < ∞. Since a measure
µ is a Bp (Tn)-Carleson measure if and only if it satisfies the tree condition (3.2),
we see that one obstacle to obtaining a characterization of `∞ interpolation of the
multiplier spaces MBp(Bn) in the exceptional range

[
2 + 1

n−1 , 2n
]

is our failure to

find a proof for Theorem 3.1 when p ≥ 2 + 1
n−1 . For the remainder of this section,

we consider mostly Besov spaces Bp (Bn) on the unit ball, and for convenience in
notation, we will suppress the dependence on the ball by writing simply Bp for
Bp (Bn).

For α > −1 and 1 < p < ∞, recall from Theorem 2.5 that (Bp)
∗ and Bp′ are

identified under the pairing

〈f, g〉α,p =
〈
Rα

n+1+α
p

f,Rα
n+1+α

p′
g

〉
α

=
∫

Bn

Rα
n+1+α

p

f (z)Rα
n+1+α

p′
g (z)dνα (z)

=
∫
Bn

(
1− |z|2

)n+1+α
p Rα

n+1+α
p

f (z)
(
1− |z|2

)n+1+α
p′ Rα

n+1+α
p′

g (z)dλn (z) ,

for f ∈ Bp, g ∈ Bp′ , and that the reproducing kernel for Bp relative to this pairing
is given by

kα,p
w (z) =

(
Rα

n+1+α
p′

)−1 (
Rα

n+1+α
p

)−1

Kα
w (z)

=
(
Rα

n+1+α
p′

)−1

(1− w · z)−
n+1+α

p′ ,

where the last formula above follows from (2.13).
We now state our analogue of Böe’s interpolation theorem in two separate

statements.

Theorem 5.1. Let 1 < p <∞, α > −1 and kα,p
w (z) be the reproducing kernel

for Bp relative to the pairing 〈·, ·〉α,p given in Theorem 2.5 above. Let {zj}∞j=1 be a
sequence in the unit ball Bn. Then the following conditions are equivalent.

(1) {zj}∞j=1 interpolates Bp:

(5.3) The map f →

 f (zj)∥∥kα,p
zj

∥∥
Bp′


∞

j=1

takes Bp boundedly into and onto `p.

(2) The following norm equivalence holds:

(5.4)

∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

≈

 ∞∑
j=1

|aj |p
′

 1
p′

.

(3) The following separation condition and Carleson embedding hold:

β (zi, 0) ≤ Cβ (zi, zj) , i 6= j and(5.5)
∞∑

j=1

∥∥∥kα,p
zj

∥∥∥−p

Bp′
δzj

is a Bp-Carleson measure.



38 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

Theorem 5.2. Let 1 < p <∞, α > −1 and kα,p
w (z) be the reproducing kernel

for Bp relative to the pairing 〈·, ·〉α,p given in Theorem 2.5 above. Let {zj}∞j=1 be

a sequence in the unit ball Bn. If p ∈
(
1, 2 + 1

n−1

)
, then each of conditions (5.6)

and (5.8) below is equivalent to the three conditions in Theorem 5.1. In general,
for 1 < p < ∞, (5.8) implies (5.6) implies (5.7). For p > 2n (5.5) implies (5.6).
If p ∈

(
1, 1 + 1

n−1

)
∪ [2,∞), we also have that (5.7) implies (5.5):

(1) {zj}∞j=1 interpolates MBp
:

(5.6) The map f → {f (zj)}∞j=1 takes MBp boundedly into and onto `∞.

(2)
{
kα,p

zj

}n

j=1
is an unconditional basic sequence in Bp′ :

(5.7)

∥∥∥∥∥∥
∞∑

j=1

bjk
α,p
zj

∥∥∥∥∥∥
Bp′

≤ C

∥∥∥∥∥∥
∞∑

j=1

ajk
α,p
zj

∥∥∥∥∥∥
Bp′

, whenever |bj | ≤ |aj | .

(3) {zj}∞j=1 =
{
cαj

}∞
j=1

where {αj}∞j=1 is a sequence in a Bergman tree Tn

satisfying

β (zi, 0) ≤ Cβ (zi, zj) , i 6= j and(5.8)
∞∑

j=1

(1 + d (αj , o))
1−p

δαj
satisfies the tree condition (3.2).

Note in particular that for p ∈
(
1, 2 + 1

n−1

)
∪ (2n,∞), multiplier interpolation

(5.6) is characterized by the separation condition and Carleson embedding in (5.5).
The parameter α > −1 appearing in condition (5.5) is not essential, as evi-

denced by the following calculation.

Lemma 5.3. For α > −1 and 1 < p <∞, we have

(5.9) ‖kα,p
w ‖Bp′

≈

(
1 + log

1
1− |w|2

) 1
p′

≈ (1 + β (0, w))
1
p′ .

Proof. Using (2.13) and m = n+1+α
p′ > n

p′ , we compute that

‖kα,p
w ‖Bp′

=

(∫
Bn

∣∣∣∣(1− |z|2)n+1+α
p′ Rα

n+1+α
p′

kα,p
w (z)

∣∣∣∣p
′

dλn (z)

) 1
p′

=

∫
Bn

∣∣∣∣∣ 1− |z|2

1− w · z

∣∣∣∣∣
n+1+α

dλn (z)

 1
p′

=

∫
Bn

(
1− |z|2

)α

|1− w · z|n+1+α dz


1
p′

≈

(
1 + log

1
1− |w|2

) 1
p′
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by Theorem 1.12 of [Zhu].

Thus we can restate condition (5.5) in the equivalent form,

β (zi, 0) ≤ Cβ (zi, zj) and(5.10)
∞∑

j=1

(
1 + log

1
1− |zj |2

)1−p

δzj
is a Bp-Carleson measure.

We saw in Corollary 3.2 that if a fixed measure µ on the ball is a Carleson
measure (that is it gives a Carleson embedding) for a fixed value of p, then it
also gives a Carleson embedding for all r < p, thus propagating downward. In
contrast, if a sequence {zj}∞j=1 satisfies (5.5) for a particular value of p, then it also
satisfies the condition for all r > p, thus propagating upward. This fact lets us
draw conclusions about the interpolation properties of {zj}∞j=1

Lemma 5.4. (1) Suppose 1 < p < r < ∞. If {zj}∞j=1 is an interpolating
sequence for Bp, i.e. if (5.3) holds, then {zj}∞j=1 is also an interpolating
sequence for Br.

(2) Suppose 1 < p < r <∞ and r ∈
(
1, 2 + 1

n−1

)
∪ (2n,∞). If {zj}∞j=1 is an

interpolating sequence for MBp
, i.e. if (5.8) holds, then {zj}∞j=1 is also

an interpolating sequence for MBr
.

Proof. By the two previous theorems and the lemma, it will suffice to prove
that if a sequence {zj}∞j=1 satisfies (5.10) for a particular value of p, then it also
satisfies the condition for all r > p. Suppose now we are given a sequence {zj}∞j=1.
We write the Carleson embedding in the following form,

∞∑
j=1

∣∣∣∣∣∣ f
(
cαj

)
1 + log 1

1−|cαj |
2

∣∣∣∣∣∣
p0 (

1 + log
1

1−
∣∣cαj

∣∣2
)
≤ C ‖f‖p0

Bp0
,

or
‖Tf‖Lp0 (µ) ≤ C ‖f‖Bp0

,

where

Tf (z) =

(
1 + log

1
1− |z|2

)−1

f (z) ,

µ =
∞∑

j=1

(
1 + log

1

1−
∣∣cαj

∣∣2
)
δcαj

.

Since T is bounded from the Bloch space B∞ to L∞ (µ)(Corollary 3.7 in [Zhu]),
we have by interpolation (Theorem 6.12 in [Zhu]) that T is bounded from Bp to
Lp (µ), which is equivalent to the Carleson embedding for exponent p in (5.1), for
all p0 ≤ p < ∞. We remark that in the proof of Theorem 6.12 in [Zhu], Theorem
3.4 substitutes for Theorem 6.7 when p1 = ∞ in the conclusion

Bp = [Bp0 , Bp1 ]θ ,
1
p

=
1− θ

p0
+

θ

p1
.

Remark 5.5. It is not apparent to us how to reach the conclusion of the
corollary without passing through the equivalence of interpolation with condition
(5.5).



40 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

Remark 5.6. For n = 1 it is interesting to contrast the result in the corollary
with the situation in the Hardy and Bergman spaces. For the Hardy spaces a
sequence is an interpolating sequence for Hp for some p if and only if it is an
interpolating sequence for Hr for every r, 0 < r ≤ ∞. For the Bergman space,
we know from the work of Seip [Sei2] and Schuster and Varolin [ScVa], that if
a sequence is an interpolating sequence for the Bergman space Ap, then it is an
interpolating sequence for Ar for 0 < r < p. One should be cautious in interpreting
this comparison; in contrast with the Besov scale, the Hardy and Bergman scales
are defined using a measure that does not vary with p, thus producing scales of
spaces that get smaller as p gets larger.

Remark 5.7. Our proofs show that the interpolations in (5.6) and (5.3) can
be taken to be linear, i.e. there are bounded linear maps R : `∞ → MBp and
S : `p → Bp that yield right inverses to the restriction maps in (5.6) and (5.3)
respectively. In dimension n = 1 Böe has shown [Boe] the stronger result that there
are functions fk ∈ MBp

such that ‖fk‖MBp
≤ C, fk (zj) = δj

k and
∑

k |fk (z)| ≤ C

for all z ∈ D (compare Theorem 2.1 in chapter 7 of [Gar]). It seems likely that this
extends to 1 < p < 2 + 1

n−1 for n > 1, but we will not pursue this here.

Remark 5.8. For p ∈
[
2 + 1

n−1 ,∞
)
we do not know if (5.5) is sufficient for

(5.8). Note that (5.2) and (5.8) are equivalent by Theorem 3.1.

For later use we note the following.

Lemma 5.9. For f ∈ Bp and z, w ∈ Bn,

(5.11) |f (z)− f (w)| ≤ C ‖f‖Bp
β (z, w)

1
p′ .

Proof. To see (5.11), we first observe that by (5.9),

‖kα,p
w − kα,p

0 ‖Bp′
(5.12)

=

(∫
Bn

∣∣∣∣(1− |z|2)n+1+α
p′ Rα

n+1+α
p′

(kα,p
w − kα,p

0 ) (z)
∣∣∣∣p
′

dλn (z)

) 1
p′

=

∫
Bn

(
1− |z|2

)α
∣∣∣∣∣ 1

(1− w · z)
n+1+α

p′
− 1

∣∣∣∣∣
p′

dz


1
p′

≤ C |w|

∫
Bn

(
1− |z|2

)α

|1− w · z|n+1+α dz


1
p′

≤ Cβ (0, w)
1
p′ .

By the invariance of Bp and the Bergman metric β, we then get

|f (z)− f (w)| = |f ◦ ϕw (ϕw (z))− f ◦ ϕw (0)|

=
∣∣∣∣〈f ◦ ϕw, k

α,p
ϕw(z) − kα,p

0

〉
α,p

∣∣∣∣
≤ ‖f ◦ ϕw‖Bp

∥∥∥kα,p
ϕw(z) − kα,p

0

∥∥∥
Bp′
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≤ C ‖f ◦ ϕw‖Bp
β (0, ϕw (z))

1
p′

= C ‖f‖Bp
β (z, w)

1
p′ .

Proof. (of Theorems 5.1 and 5.2) We will see that the one-dimensional argu-
ments used in Theorem 1.1 of Böe’s paper [Boe] to prove that (5.6) implies (5.7),
and that (5.3) implies (5.4) implies (5.5) extend to higher dimensions with any
choice of pairing and corresponding reproducing kernel in Theorem 2.5. However,
the one-dimensional proof of the implication (5.7) implies (5.4) does not extend in
the range 1 + 1

n−1 ≤ p < 2. The proof of that implication is where Böe uses what
he calls his “curious” Lemma 3.1. For this he needs to know that his reproducing
kernel kw (z) = log 1

1−wz satisfies

Re
1
w
k′w (z) = Re

1
1− wz

> 0,

where he uses the pairing 〈f, g〉 =
∫
f ′g′ to define the kernel kw (z) (and assumes

his functions f satisfy f (0) = 0). With the choice p = n+1+α
n+α , it follows from

(2.13) that the reproducing kernel kα,p
w (z) given in Theorem 2.5 has the analogous

property,

ReRα
n+1+α

p′
kα,p

w (z) = ReRα
1 k

α,p
w (z) = Re

1
1− w · z

> 0.

This does indeed lead to a proof that (5.7) implies (5.4), but only for the restricted
range 1 < p < 1+ 1

n−1 , since we must have α > −1. It is the failure of this argument
for the remaining values of p, as well as our failure to obtain the necessity of the
tree condition (3.2) for the Carleson embedding (2.16) when p ≥ 2 + 1

n−1 , that
forces us to proceed via a different logical route.

The proof of the theorems will take much of the rest of the paper and various
of the arguments will only be valid for certain ranges of p. We will prove Theorems
5.1 and 5.2 by demonstrating the following implications:

(1) In Section 5.1, Multiplier space necessity, we prove that (5.6) implies (5.7),
that (5.3) and (5.4) are equivalent, that (5.3) implies (5.5), and that if
p ∈

(
1, 1 + 1

n−1

)
∪ [2,∞), then (5.7) implies (5.5).

(2) In Section 5.2, Multiplier space sufficiency, we prove that (5.8) implies

(5.6), and we prove that if p ∈ (n̂,∞), n̂ =
{

1 if n = 1
2n if n > 1 , then

(5.5) implies (5.6).
(3) In Section 5.3, Besov space interpolation, we prove that (5.10), which is

equivalent to (5.5), implies (5.3).
(4) In Section 9, Completing the multiplier loop, we show that if p is in(

1, 2 + 1
n−1

)
, then (5.6) implies (5.8) (this implication already follows for

p in
(
1, 1 + 1

n−1

)
or
[
2, 2 + 1

n−1

)
from the previous ones and Theorem

3.1).
The implications (5.3) implies (5.4) implies (5.5) implies (5.3) do not use our

characterization of Carleson measures in Theorem 3.1, relying instead on only the
embedding definition of Carleson measure (we do however use the simple condition
(1.11) in conjunction with our general tree theorem from [ArRoSa]). The implica-
tion (5.8) implies (5.6) however, relies heavily on the use of the tree condition (3.2)
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to extend Böe’s arguments to higher dimensions, and thus Theorem 3.1 plays a
crucial role in the proof of this result. The remaining implications use only the em-
bedding definition of Carleson measure together with one-dimensional techniques,
except for the final implication (5.6) implies (5.8). For the range p ∈

[
1 + 1

n−1 , 2
)
,

this is the most difficult implication, requiring a passage to multiplier interpolation
on holomorphic Besov spaces on Bergman trees, and occupies the content of Sec-
tions 6, 7 and 8. We refer to the implications “(5.8) implies (5.6)”, “(5.5) implies
(5.6)” and “(5.5) implies (5.3)” as sufficiency implications, and the remaining ones
as necessity implications.

5.1. Multiplier space necessity. We begin with the straightforward neces-
sity implications; (5.6) implies (5.7), (5.3) implies (5.4), and (5.4) implies (5.5).
For the most part, we follow Böe [Boe], who in turn generalized the Hilbert
space arguments in Marshall and Sundberg [MaSu]. First, we have that condi-
tion (5.7) follows from (5.6) since if we choose ϕ ∈MBp so that bj = ϕ (zj)aj , then

M∗
ϕ

(
kα,p

zj

)
= ϕ (zj)kα,p

zj
and so

∥∥∥∥∥∥
∞∑

j=1

bjk
α,p
zj

∥∥∥∥∥∥
Bp′

=

∥∥∥∥∥∥M∗
ϕ

 ∞∑
j=1

ajk
α,p
zj

∥∥∥∥∥∥
Bp′

≤ ‖Mϕ‖

∥∥∥∥∥∥
∞∑

j=1

ajk
α,p
zj

∥∥∥∥∥∥
Bp′

≤ C sup
j
|ϕ (zj)|

∥∥∥∥∥∥
∞∑

j=1

ajk
α,p
zj

∥∥∥∥∥∥
Bp′

.

Next we prove the equivalence of (5.3) and (5.4), the arguments being short

and essentially reversible. First, if the map Tf =

{
f(zj)

‖kα,p
zj ‖B

p′

}∞
j=1

in (5.3) maps

Bp into `p, then we have∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

= sup
‖f‖Bp

=1

∣∣∣∣∣∣
〈
f,

∞∑
j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

〉
α,p

∣∣∣∣∣∣
= sup

‖f‖Bp
=1

∣∣∣∣∣∣
∞∑

j=1

f (zj)∥∥kα,p
zj

∥∥
Bp′

aj

∣∣∣∣∣∣
≤ sup

‖f‖Bp
=1

 ∞∑
j=1

∣∣∣∣∣∣ f (zj)∥∥kα,p
zj

∥∥
Bp′

∣∣∣∣∣∣
p

1
p ∥∥∥{aj}∞j=1

∥∥∥
`p′

≤ C
∥∥∥{aj}∞j=1

∥∥∥
`p′
.
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If the map T is also onto, then its adjoint T ∗, given by

T ∗
(
{aj}∞j=1

)
=

∞∑
j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

,

satisfies ∥∥∥T ∗ ({aj}∞j=1

)∥∥∥
Bp′

≥ c
∥∥∥{aj}∞j=1

∥∥∥
`p′
,

which is the opposite inequality in (5.4), and completes the proof that (5.3) implies
(5.4). Conversely, if the inequality . in (5.4) holds, then ∞∑

j=1

∣∣∣∣∣∣ f (zj)∥∥kα,p
zj

∥∥
Bp′

∣∣∣∣∣∣
p

1
p

= sup
‖{aj}∞j=1‖`p′=1

∣∣∣∣∣∣
∞∑

j=1

f (zj)∥∥kα,p
zj

∥∥
Bp′

aj

∣∣∣∣∣∣(5.13)

= sup
‖{aj}∞j=1‖`p′=1

∣∣∣∣∣∣
∞∑

j=1

〈
f,

ajk
α,p
zj∥∥kα,p

zj

∥∥
Bp′

〉
α,p

∣∣∣∣∣∣
≤ sup
‖{aj}∞j=1‖`p′=1

‖f‖Bp

∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

(5.14)

≤ C ‖f‖Bp
,(5.15)

and thus the map T in (5.3) is into. If the reverse inequality & in (5.4) also holds,
then ∥∥∥T ∗ ({aj}∞j=1

)∥∥∥
Bp′

=

∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

≥ c
∥∥∥{aj}∞j=1

∥∥∥
`p′
,

which shows that T is also onto.

Remark 5.10. We have shown in particular that the inequality . in (5.4)
implies that the map T in (5.3) is into. This will be used below.

The implication (5.4) implies (5.5) will now follow if we show that (5.3) implies
(5.5). The Carleson embedding in (5.5) is a restatement that the map T in (5.3)
is into. Indeed, the left side of (5.13) is ‖f‖

Lp

 P∞
j=1‖kα,p

zj ‖
−p

B
p′

δzj

!, and thus shows

that the Carleson embedding in (5.5) holds. To obtain the separation condition,
fix i and use that T is onto to obtain f ∈ Bp satisfying f (zi) = 1 and f (zj) = 0
for i 6= j. It now follows from the open mapping theorem and the Hölder estimate
(5.11) that

‖f‖Bp
≤ C ‖Tf‖`p = C

|f (zi)|
‖kα,p

zi ‖Bp′

= C
|f (zi)− f (zj)|
‖kα,p

zi ‖Bp′

≤ C ‖f‖Bp

β (zi, zj)
1
p′

β (zi, 0)
1
p′
,

for all i 6= j.
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5.1.1. The necessity of separation and Carleson. Now we turn to proving the
more difficult necessity implication (5.7) implies (5.5). First we dispose of the easy
part - namely that the separation condition in (5.5) follows from (5.7). Indeed, by
(5.9), (5.7) and (5.11) we have

(1 + β (0, zi))
1
p′ ≈

∥∥kα,p
zi

∥∥
Bp′

≤ C
∥∥∥kα,p

zi
− kα,p

zj

∥∥∥
Bp′

= C sup
‖f‖Bp

=1

∣∣∣∣〈f, kα,p
zi

− kα,p
zj

〉
α,p

∣∣∣∣
= C sup

‖f‖Bp
=1

|f (zi)− f (zj)|

≤ Cβ (zi, zj)
1
p′ .

It remains to prove that the Carleson embedding follows from (5.7). For this,
we show that (5.7) implies (5.4) for both 1 < p < 1 + 1

n−1 and p = 2, and also that
(5.7) implies the inequality . of (5.4) for p > 2. The note above then yields that
the map T in (5.3) is into, which we showed above is a restatement of the Carleson
embedding.

5.1.2. The case 1 < p < 1 + 1
n−1 . Here we prove the implication (5.7) implies

(5.4) for the special case 1 < p < 1 + 1
n−1 . Given 1 < p < 1 + 1

n−1 , we make the
choice −1 < α <∞ to satisfy

(5.16) p =
n+ 1 + α

n+ α
,

which accounts for our restriction 1 < p < 1 + 1
n−1 . Note that p′ = n + 1 + α, so

that
n+ 1 + α

p
= n+ α,

n+ 1 + α

p′
= 1.

Thus in this case we have Rα
n+1+α

p

= Rα
n+α and Rα

n+1+α
p′

= Rα
1 where α is as in

(5.16), so that

〈f, g〉α,p =
〈
Rα

n+αf,Rα
1 g
〉

A2
α

=
∫

Bn

(
1− |z|2

)n+α

Rα
n+αf (z)

(
1− |z|2

)
Rα

1 g (z)dλn (z) .

Let {zj}∞j=1 be a sequence in the ball Bn. We will need the following two results.

Lemma 5.11 (Lemma 3.1 in [Boe]). If {fj}∞j=1 is an unconditional basic se-
quence of positive functions in Lq (dµ), 1 < q <∞, then∥∥∥∥∥∥

∞∑
j=1

|ajfj |

∥∥∥∥∥∥
Lq(dµ)

≈ Cq

∥∥∥∥sup
j≥1

|ajfj |
∥∥∥∥

Lq(dµ)

≈ Cq

 ∞∑
j=1

|aj |q ‖fj‖q
Lq(dµ)

 1
q

.
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Proof. For convenience we sketch Böe’s proof, which we will need to adapt
in Subsection 9.1 anyway. Since the fn are positive and unconditional in Lq (dµ),
we have, letting {rj (t)}∞j=1 denote the Rademacher functions,∥∥∥∥∥∥

∞∑
j=1

|ajfj |

∥∥∥∥∥∥
Lq(dµ)

≤

∥∥∥∥∥∥
∞∑

j=1

|aj | fj

∥∥∥∥∥∥
Lq(dµ)

≤ C

∥∥∥∥∥∥
∞∑

j=1

rj (t) ajfj

∥∥∥∥∥∥
Lq(dµ)

for all t ∈ [0, 1] (since |aj | = |rj (t) aj |). Now average the qth power of this inequality
over t ∈ [0, 1], and use Khinchine’s inequality to obtain∥∥∥∥∥∥

∞∑
j=1

|ajfj |

∥∥∥∥∥∥
q

Lq(dµ)

≤ Cq

∫ 1

0

∥∥∥∥∥∥
∞∑

j=1

rj (t) ajfj

∥∥∥∥∥∥
q

Lq(dµ)

dt

= Cq

∫ ∫ 1

0

∣∣∣∣∣∣
∞∑

j=1

rj (t) ajfj

∣∣∣∣∣∣
q

dtdµ

≤ Cq
q

∫ ∥∥∥{ajfj}∞j=1

∥∥∥q

`2
dµ.

Since
∥∥∥{ajfj}∞j=1

∥∥∥
`2
≤
∥∥∥{ajfj}∞j=1

∥∥∥ 1
2

`1

∥∥∥{ajfj}∞j=1

∥∥∥ 1
2

`∞
, by the Cauchy-Schwartz in-

equality we have,∥∥∥∥∥∥
∞∑

j=1

|ajfj |

∥∥∥∥∥∥
q

Lq(dµ)

≤ Cq
q

(∫ ∥∥∥{ajfj}∞j=1

∥∥∥q

`1
dµ

) q
2
(∫ ∥∥∥{ajfj}∞j=1

∥∥∥q

`∞
dµ

) q
2

,

which yields the inequality∥∥∥∥∥∥
∞∑

j=1

|ajfj |

∥∥∥∥∥∥
Lq(dµ)

≤ Cq

∥∥∥∥sup
j≥1

|ajfj |
∥∥∥∥

Lq(dµ)

.

Thus the expressions ∥∥∥∥∥∥∥
 ∞∑

j=1

|ajfj |r
 1

r

∥∥∥∥∥∥∥
Lq(dµ)

are all comparable for 1 < r <∞, and the choice r = q yields the final equivalence
in the lemma.

Lemma 5.12. For −1 < α <∞, 1 < q <∞ and F ∈ H (Bn) with ImF (0) = 0,

(5.17)
(∫

Bn

|F (z)|q dνα (z)
) 1

q

≈
(∫

Bn

|ReF (z)|q dνα (z)
) 1

q

.

Proof. The Korànyi-Vagi theorem (Theorem 6.3.1 in [Rud]) shows the equiv-
alence of the left and right hand sides in (5.17) when the measure dνα (z) on the
ball Bn is replaced by surface measure dσ (z) on the sphere ∂Bn (and F is say a
polynomial). Note that dσ corresponds to limα→−1 dνα. This immediately yields
(5.17) by an integration in polar coordinates.
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Now suppose that (5.7) holds. Since p′ = n+ 1 + α, we have from (2.13) that

(5.18) Rα
1 k

α,p
w (z) =

1
1− w · z

.

We now compute that∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

=

∥∥∥∥∥∥
(
1− |z|2

)
Rα

1

 ∞∑
j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Lp′ (dλn)

=

∥∥∥∥∥∥
(
1− |z|2

) ∞∑
j=1

aj

Rα
1 k

α,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Lp′ (dλn)

=

∥∥∥∥∥∥
∞∑

j=1

aj

∥∥∥kα,p
zj

∥∥∥−1

Bp′

1
1− zj · z

∥∥∥∥∥∥
Lp′ (dνα)

since p′ = n+ 1 + α. Now by the lemmas above, and using p′ = n+ 1 + α and

fj =
∥∥∥kα,p

zj

∥∥∥−1

Bp′
Re

1
1− zj · z

> 0,

we continue with∥∥∥∥∥∥
∞∑

j=1

aj

∥∥∥kα,p
zj

∥∥∥−1

Bp′

1
1− zj · z

∥∥∥∥∥∥
Lp′ (dνα)

≈

∥∥∥∥∥∥
∞∑

j=1

aj

∥∥∥kα,p
zj

∥∥∥−1

Bp′
Re

1
1− zj · z

∥∥∥∥∥∥
Lp′ (dνα)

≈

 ∞∑
j=1

|aj |p
′
‖fj‖p′

Lp′ (dνα)

 1
p′

≈

 ∞∑
j=1

|aj |p
′

 1
p′

,

since

‖fj‖Lp′ (dνα) =
∥∥∥kα,p

zj

∥∥∥−1

Bp′

∥∥∥∥Re
1

1− zj · z

∥∥∥∥
Lp′ (dνα)

≈
∥∥∥kα,p

zj

∥∥∥−1

Bp′

∥∥∥∥ 1
1− zj · z

∥∥∥∥
Lp′ (dνα)

=
∥∥∥kα,p

zj

∥∥∥−1

Bp′

∥∥∥(1− |z|2)R1k
α,p
zj

∥∥∥
Lp′ (dλn)

=
∥∥∥kα,p

zj

∥∥∥−1

Bp′

∥∥∥kα,p
zj

∥∥∥
Bp′

= 1

upon using the second lemma above once more. This completes the proof of con-
dition (5.4) in the case 1 < p < 1 + 1

n−1 .
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5.1.3. The case p ≥ 2. Here we show that (5.7) implies the inequality . in
(5.4) for p > 2, and also that (5.7) implies (5.4) for p = 2. First we claim that the
unconditional basis condition (5.7) and Khinchine’s inequality yield the inequality∥∥∥∥∥∥

∞∑
j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

≤ C

 ∞∑
j=1

|aj |p
′

 1
p′

for p ≥ 2, and with equality in the case p = 2. To see this, we compute using first
(5.7) and then Khinchine, that for any m > n

p′ , we have∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
p′

Bp′

≈
∫ 1

0

∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

rj (t)

∥∥∥∥∥∥
p′

Bp′

dt

=
∫ 1

0

∫
Bn

∣∣∣∣∣∣
∞∑

j=1

aj

(
1− |z|2

)m

Rα
mk

α,p
zj

(z)∥∥kα,p
zj

∥∥
Bp′

rj (t)

∣∣∣∣∣∣
p′

dλn (z) dt

≈
∫
Bn

 ∞∑
j=1

∣∣∣∣∣∣aj

(
1− |z|2

)m

Rα
mk

α,p
zj

(z)∥∥kα,p
zj

∥∥
Bp′

∣∣∣∣∣∣
2

p′
2

dλn (z) .

Since p′

2 ≤ 1, we continue with∥∥∥∥∥∥
∞∑

j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
p′

Bp′

≤ C

∫
Bn

∞∑
j=1

∣∣∣∣∣∣aj

(
1− |z|2

)m

Rα
mk

α,p
zj

(z)∥∥kα,p
zj

∥∥
Bp′

∣∣∣∣∣∣
p′

dλn (z)

=
∞∑

j=1

|aj |p
′∥∥kα,p

zj

∥∥p′

Bp′

∫
Bn

∣∣∣(1− |z|2)m

Rα
mk

α,p
zj

(z)
∣∣∣p′ dλn (z)

=
∞∑

j=1

|aj |p
′
,

which is the inequality . in (5.4). In the case p = 2 we have equality, and so then
(5.4).

5.2. Multiplier space sufficiency. Here we prove that (5.8) implies (5.6) for
1 < p < ∞, and also that (5.5) implies (5.6) for p > 2n, beginning with the proof
that the multiplier interpolation property (5.6) follows from (5.8). We generalize
the main ideas in Böe’s one-dimensional proof to the unit ball Bn.

For z ∈ Bn and β < 1, define the region V β
z by

V β
z =

{
w ∈ Bn : |1− w · Pz| ≤ (1− |z|)β

}
,

where Pz denotes the radial projection of z onto the sphere ∂Bn. The intersection
of V β

z with the complex line Cz through z and the origin is{
w ∈ Bn ∩ Cz : |w − Pz| ≤ (1− |z|)β

}
,



48 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

and the intersection of V β
z with the sphere ∂Bn is an “ellipse” with radius (1− |z|)β

in the radial tangential direction, and radius (1− |z|)
β
2 in the complex tangential

directions. Using arguments in Marshall and Sundberg [MaSu], the separation
condition in (5.5) implies the following geometric separation conditions.

Lemma 5.13. Suppose the separation condition in (5.5) holds. Then there are
constants 0 < β < 1 < βη < η such that if V β

zi
∩ V β

zj
6= φ and |zj | ≥ |zi|, then

zi /∈ V β
zj

and

(5.19) (1− |zj |) ≤ (1− |zi|)η
.

Proof. Fix zi, zj with |zj | ≥ |zi|, suppose w ∈ V β
zi
∩ V β

zj
and set ω = |zj |w so

that
1− |ω|2 = 1− |zj |2 |w|2 ≥ 1− |zj |2 .

Then the separation condition β (zi, zj) ≥ cβ (zj , 0) (the dual use of β as a positive
real number less than one, and as the Bergman metric, should not cause confusion)
yields

cβ (0, ω) ≤ cβ (0, zj) ≤ β (zi, zj) ≤ β (zi, ω) + β (ω, zj) ,
and so

cβ (0, ω) ≤ 2β (zk, ω) ,
where k is either i or j. Now the identity

ρ (z, w) ≡ |ϕz (w)| = tanhβ (z, w) ,

yields for this k,

1− ρ (ω, zk)2 = 1− tanh2 β (ω, zk)

≤ 1− tanh2 (cβ (ω, 0))

=
4

e2cβ(ω,0) + 2 + e−2cβ(ω,0)

≤ 4
e2cβ(ω,0)

= 4
(1− |ω|)c

(1 + |ω|)c

≤ 4 (1− |ω|)c ≤
(
1− |ω|2

)λ

,

for some 0 < λ < c provided zi is large enough, which we may assume by discarding
finitely many of the points zi.

Then the final identity in (2.3) gives(
1− |ω|2

)(
1− |zk|2

)
|1− ω · zk|2

= 1− ρ (ω, zk)2 ≤
(
1− |ω|2

)λ

.

Now we use that

1− ω · zk = 1− |zk|+ |zk| (1− w · Pzk + w − ω · Pzk)

implies

|1− ω · zk| ≤ (1− |zk|) +
(
1− |zk|2

)β

+ (1− |zj |)

≤ 3
(
1− |zk|2

)β

,
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to obtain (
1− |ω|2

)(
1− |zk|2

)
≤ |1− ω · zk|2

(
1− |ω|2

)λ

≤ C
(
1− |zk|2

)2β (
1− |ω|2

)λ

.

Hence with 1 < η < 2β−1
1−λ and |zi| sufficiently large, we have

1− |zj |2 ≤ 1− |ω|2 ≤ C
(
1− |zk|2

) 2β−1
1−λ

≤
(
1− |zk|2

)η

≤
(
1− |zi|2

)η

,

which is (5.19). In particular, if zi ∈ V β
zj

, then

1− |zi| ≤ |1− zi · Pzj | ≤
(
1− |zj |2

)β

≤
(
1− |zi|2

)βη

≤ C (1− |zi|)βη

yields a contradiction for |zi| sufficiently large if βη > 1. This completes the proof
of Lemma 5.13.

We now fix constants β and η as in Lemma 5.13, and write Vz = V β
z .

Lemma 5.18 below is the key construction in the sufficiency proof and is moti-
vated by the formula (1.35) in [Zhu]

Rs−n,n

(
1

(1− w · z)1+s

)
=

1
(1− w · z)n+1+s ,

valid for s not a negative integer. The point is that if we define

(5.20) Γsg (z) ≡
∫

Bn

g (w)
(
1− |w|2

)s

(1− w · z)1+s dw

for a given (not necessarily holomorphic) function g, then with ϕ (z) = Γsg (z),

(5.21) Rs−n,nϕ (z) = Rs−n,nΓsg (z) =
∫

Bn

g (w)
(
1− |w|2

)s

(1− w · z)n+1+s dw,

and by the reproducing formula (2.6), valid for Re s > −1, we also have that

Rs−n,nϕ (z) = cn,s

∫
Bn

Rs−n,nϕ (w)
(
1− |w|2

)s

(1− w · z)n+1+s dw.

Thus Rs−n,nϕ (w) behaves morally like g (w), and this provides flexibility in choos-
ing g so that ϕ has desirable algebraic multiplier properties on the one hand, while
controlling the multiplier norm of ϕ on the other hand. Indeed, by Theorem 4.2,
the multiplier norm is equivalent to the Carleson norm of∣∣∣(1− |z|2)n

∇nϕ (z)
∣∣∣p dλn (z) ,

which can in turn be dominated by the “tree condition” norm of∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

by the lemma in the next subsubsection
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5.2.1. Transformation of Carleson measures. It is here that we first use the
tree condition (3.2) in a significant way.

Definition 5.14. We say that a measure µ on Bn satisfies the tree condition
(3.2) if its discretization µ̃ satisfies (3.2).

Lemma 5.15 (analogue of Lemma 2.4 in [Boe]). Suppose that g satisfies the
following reverse Hölder condition on Bergman kubes,

(5.22)
(∫

Kα

|g (z)|p dλn (z)
) 1

p

≤ C0

∫
Kα

|g (z)| dλn (z) , α ∈ Tn,

and that the measure

dµ (z) =
∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

satisfies the tree condition (3.2) with norm C1. Then for s sufficiently large, both∣∣∣(1− |z|2)n

Rs−n,nΓsg (z)
∣∣∣p dλn (z)

and ∣∣∣(1− |z|2)n

∇nΓsg (z)
∣∣∣p dλn (z)

satisfy the tree condition (3.2) with norms at most C (C0 + C1).

Note that it then follows by Theorems 1.1 and 1.2 that both measures in the
conclusion of the lemma are Bp-Carleson measures by Theorem 3.1. Following Böe
[Boe] one can prove the following alternate version of Lemma 5.15, where the tree
condition is replaced by the Bp-Carleson measure condition, for the range p > 2n
with s > n− 1

p′ . This version will be instrumental in proving the implication (5.5)
implies (5.6) below.

Lemma 5.16 (another analogue of Lemma 2.4 in [Boe]). Suppose that

(5.23) sup
ζ∈Bn

∣∣∣(1− |ζ|2)n

g (ζ)
∣∣∣ ≤ C0,

and that the measure

dµ (z) =
∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

is a Carleson measure for Bp with norm C1. Then for p > 2n and s > n− 1
p′ , both∣∣∣(1− |z|2)n

Rs−n,nΓsg (z)
∣∣∣p dλn (z)

and ∣∣∣(1− |z|2)n

∇nΓsg (z)
∣∣∣p dλn (z)

are also Carleson measures for Bp, and with norms at most C (C0 + C1).

We first prove the simpler Lemma 5.16 using the characterization of Bp given
by Theorem 6.28 of [Zhu], which states that

(5.24) ‖f‖p
Bp
≈
∫

Bn

∫
Bn

|f (z)− f (w)|p

|1− w · z|2(n+1+t)
dνt (z) dνt (w) ,

provided t > −1 and p >
{

1, n = 1
2n n > 1 . In order to obtain the full range 1 < p <

∞ when n > 1, we instead need to use the the tree condition (3.2) in Theorem 3.1
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to obtain Lemma 5.15, which is proved immediately following the proof of Lemma
5.16.

Proof. (of Lemma 5.16) We begin with the case Rs−n,nΓsg. Define Tsg (z) =
Rs−n,nΓsg (z). Then by (5.21) and Theorem 2.10 in [Zhu], we have that Ts, and
in fact T̂s, is bounded on Lp (dνα), α > −1, if and only if 0 < α + 1 < p (s+ 1),
where

T̂sg (z) = cn,s

∫
Bn

g (w)
(
1− |w|2

)s

|1− w · z|n+1+s dw.

Thus with α = np− (n+ 1), we obtain that

‖Ts (hg)‖Lp(dνα) ≤ C ‖hg‖Lp(dνα)

≤ CC1 ‖h‖Bp

for all h ∈ Bp provided that 0 < np− n < p (s+ 1), i.e. p > 1 and

s >
n

p′
− 1.

The conclusion of the lemma is equivalent to the inequality

‖hTsg‖Lp(dνα) ≤ CC1 ‖h‖Bp
, h ∈ Bp,

and thus in particular, it suffices to show that

(5.25) ‖Ts (hg)− hTsg‖Lp(dνα) ≤ CC0 ‖h‖Bp
, h ∈ Bp.

We have

Ts (hg) (z)− h (z)Tsg (z) = cn,s

∫
Bn

(h (w)− h (z))
g (w)

(
1− |w|2

)s

(1− w · z)n+1+s dw,

and so by the sup norm estimate (5.23) on g and Hölder’s inequality,

|Ts (hg) (z)− h (z)Tsg (z)|

is dominated by

CC0

(∫
Bn

|h (w)− h (z)|p

|1− w · z|2(n+1)
dw

) 1
p

∫
Bn

(
1− |w|2

)(s−n)p′

|1− w · z|[(1−
2
p )(n+1)+s]p′

dw


1
p′

≤ CC0

(
1− |z|2

)−n+ n+1
p

(∫
Bn

|h (w)− h (z)|p

|1− w · z|2(n+1)
dw

) 1
p

,

by Theorem 1.12 of [Zhu] provided (s− n) p′ > −1, i.e.

s > n− 1
p′
.



52 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

Now we compute that

‖Ts (hg)− hTsg‖p
Lp(dνα)

≤ CpCp
0

∫
Bn

(
1− |z|2

)−pn+(n+1)
∫

Bn

|h (w)− h (z)|p

|1− w · z|2(n+1)
dwdνα (z)

= CpCp
0

∫
Bn

∫
Bn

|h (w)− h (z)|p

|1− w · z|2(n+1)
dwdz

≤ CpCp
0 ‖h‖

p
Bp

by the case t = 0 of (5.24) if p > 2n, which yields (5.25) as required. The case
where we consider ∇nΓs in place of Ts = Rs−n,nΓs is handled just as above using
the pointwise estimate

(5.26) |∇nΓsg (z)| ≤ Cs,n

∫
Bn

|g (w)|
(
1− |w|2

)s

|1− w · z|n+1+s dw = C ′s,nT̂s |g| (z) .

Proof. (of Lemma 5.15) By the pointwise inequality (5.26) for ∇nΓsg and the
formula (5.21) for Tsg, it is enough to show that∣∣∣(1− |z|2)n

T̂sg (z)
∣∣∣p dλn (z)

satisfies the tree condition (3.2), where

T̂sf (z) = cs,n

∫
Bn

f (w)
(
1− |w|2

)s

|1− w · z|n+1+s dw.

We now discretize our hypothesis and conclusion. To this end, we first define

dµ (z) =
∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

and

dµs (z) =
∣∣∣(1− |z|2)n

gs (z)
∣∣∣p dλn (z)

where
gs (z) = T̂s |g| (z) .

The discretization is then given by

g (α) =
∫

Kα

|g (z)| dλn (z) ,(5.27)

µ (α) =
(
1− |cα|2

)np

g (α)p
,

gs (α) =
∫

Kα

gs (z) dλn (z) ,

µs (α) =
(
1− |cα|2

)np

gs (α)p
,

where 1 − |cα|2 ≈ 2−d(α) if d (α) denotes tree distance from the root o to α. Here
we are again choosing θ = ln 2

2 in (3.3) for convenience in notation. More generally,
we let [α, β] denote the geodesic (unique path of minimal length) joining α and β,
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and d (α, β) = # [α, β]− 1 denote the tree distance between α and β. Note that by
(5.22), we have

µ (α) =
(
1− |cα|2

)np

g (α)p ≈
∫

Kα

dµ (z) ,

and so the hypothesis that dµ (z) satisfies the tree condition is equivalent to the
assertion that {µ (α)}α∈Tn

satisfies the tree condition,∑
β∈Tn:β≥α

I∗µ (β)p′ ≤ Cp′I∗µ (α) , α ∈ Tn,

which written out in full is, for α ∈ Tn,

(5.28)
∑

β∈Tn:β≥α

 ∑
γ∈Tn:γ≥β

µ (γ)

p′

≤ Cp′
∑

β∈Tn:β≥α

µ (β) .

We also have

gs (α) =
∫

Kα

(
T̂s |g| (z)

)
dλn (z)

=
∫

Kα

cs,n

∫
Bn

|g (w)|
(
1− |w|2

)s

|1− w · z|n+1+s dw

 dλn (z)

= cs,n

∑
β∈Tn

∫
Kα

∫
Kβ

|g (w)|
(
1− |w|2

)n+1+s

|1− w · z|n+1+s dλn (w) dλn (z)

≈
∑

β∈Tn

g (β)

∣∣∣∣∣ 1− |cβ |2

1− cβ · cα

∣∣∣∣∣
n+1+s

.

Again using θ = ln 2
2 we see that the factor

∣∣∣ 1−|cβ |2
1−cβ ·cα

∣∣∣ looks essentially like
2−d(β)

2−d(α∧β) , and we now plan to replace the former with the latter in our analysis.
Let Un be the unitary group with Haar measure dU . For each U ∈ Un select
α (z) , β (w) ∈ Tn so that z ∈ UKα(z) and w ∈ UKβ(w). If we apply a unitary trans-
formation U to the Bergman grid of kubes {Kα}α∈Tn

to obtain the grid {UKα}α∈Tn
,

then we have the inequality

(5.29)

∣∣∣∣∣ 1− |w|21− w · z

∣∣∣∣∣ ≤ C

∫
Un

2−d(β(w))

2−d(α(z)∧β(w))
dU.

Inequality (5.29) is analogous to similar inequalities in Euclidean space used to
control an operator by translations of its dyadic version. Thus we may replace the
kernel

∣∣∣ 1−|cβ |2
1−cβ ·cα

∣∣∣ by 2−d(β)

2−d(α∧β) = 2−d(β,α∧β), provided we obtain operator estimates
that are independent of rotating the Bergman grid by a unitary transformation
(our estimates below clearly have this property). If we now choose s really large,
then we essentially have

(5.30)
(
2−d(β,α∧β)

)n+1+s

≈
{

1 if β ≤ α
0 otherwise = χ[0,α] (β) .
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This suggests we dominate the kernel by the decomposition,

(5.31)
(
2−d(β,α∧β)

)n+1+s

≤
∞∑

`=0

2−`(n+1+s)χ[0,α]`
(β) ,

where [0, α]` = {β ∈ Tn : d (β, [0, α]) ≤ `} is the set of tree elements within distance
` of the geodesic [0, α]. Note that (5.31) holds since d (β, [0, α]) = d (β, α ∧ β). Now
define the fattened operators

I`g (α) =
∑

β∈[0,α]`

g (β) , α ∈ Tn,

so that we have

gs (α) ≤
∞∑

`=0

2−`(n+1+s)I`g (α) ,(5.32)

µs (α) ≤ C
(
1− |cα|2

)np
( ∞∑

`=0

2−`(n+1+s)I`g (α)

)p

.

The desired conclusion that µs is a Carleson measure will follow if we can show
that the tree measures

µ`
s =

{(
1− |cα|2

)np

(I`g (α))p
}

α∈Tn

are Carleson measures with norm bounded by Cs2A` for some large positive constant
A. Indeed, we can then choose s sufficiently large depending on A and apply
Minkowski’s inequality. So we now fix ` and note that µ`

s is a Carleson measure
with norm C if and only if the tree condition∑

β∈Tn:β≥α

I∗µ`
s (β)p′ ≤ Cp′I∗µ`

s (α) <∞, α ∈ Tn,

holds, which written out in full becomes, for all α ∈ Tn,
(5.33)∑

β∈Tn:β≥α

 ∑
γ∈Tn:γ≥β

2−npd(γ)I`g (γ)p

p′

≤ Cp′
∑

β∈Tn:β≥α

2−npd(β)I`g (β)p
<∞.

We consider the simplest case ` = 0 first. We begin by rewriting the tree
condition (5.33) in terms of µ (α) rather than g (α). For this purpose, we use from
the second line of (5.27) that

g (α) = 2nd(α)µ (α)
1
p , α ∈ Tn,

as well as Ig (γ) =
∑

δ≤γ g (δ) and d (δ) − d (γ) = −d (δ, γ) for δ ≤ γ. Then the
case ` = 0 of (5.33) can be rewritten as, for α ∈ Tn,

(5.34)
∑
β≥α

∑
γ≥β

∑
δ≤γ

2−nd(δ,γ)µ (δ)
1
p

pp′

≤ Cp′
∑
β≥α

∑
γ≤β

2−nd(γ,β)µ (γ)
1
p

p

.
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We now show that (5.28) implies (5.34) for all 1 < p < ∞. First observe that the
right side of (5.34) satisfies

∑
β≥α

∑
γ≤β

2−nd(γ,β)µ (γ)
1
p

p

≥
∑
β≥α

∑
γ≤β

2−npd(γ,β)µ (γ)

(5.35)

=
∑

γ

µ (γ)
∑

β≥α∨γ

2−npd(γ,β)

≈
∑
γ≤α

µ (γ) 2−npd(γ,α) +
∑
γ≥α

µ (γ)

≡ A+B.

Next, we estimate the inner sum on the left side of (5.34);

∑
γ≥β

∑
δ≤γ

2−nd(δ,γ)µ (δ)
1
p

p

≤ C
∑
γ≥β

∑
δ≤β

2−nd(δ,γ)µ (δ)
1
p

p

+ C
∑
γ≥β

 ∑
β≤δ≤γ

2−nd(δ,γ)µ (δ)
1
p

p

= C (I + II) .

We use Hölder’s inequality to estimate term I by

I =
∑
γ≥β

∑
δ≤β

2−nd(δ,γ)µ (δ)
1
p

p

=
∑
γ≥β

∑
δ≤β

2−nd(δ,β)µ (δ)
1
p 2−nd(β,γ)

p

≤
∑
γ≥β

∑
δ≤β

2−npd(δ,β)µ (δ)

∑
δ≤β

2−np′d(δ,γ)

p−1

≈ C
∑
γ≥β

∑
δ≤β

2−npd(δ,β)µ (δ)

(2−npd(β,γ)
)

= C
∑
γ≥β

∑
δ≤β

2−npd(δ,γ)µ (δ)

≤ C
∑
δ≤β

2−npd(δ,β)µ (δ) .

To estimate terms II and IV above, as well as in applications to trees below,
we will use the following form of Schur’s test:

Lemma 5.17 (Schur’s test, Theorem 2.9 in [Zhu]). Let (X,µ) be a measure
space, 1 < p < ∞, and let K (x, y) be a nonnegative kernel on X. Suppose that
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there exists a positive function h on X and a positive constant C so that∫
X

K (x, y)h (y)p′
dµ (y) ≤ Ch (x)p′

, µ− a.e.x ∈ X,∫
X

K (x, y)h (x)p
dµ (x) ≤ Ch (y)p

, µ− a.e.x ∈ X.

Then the operator

Tf (x) =
∫

X

K (x, y) f (y) dµ (y)

is bounded on Lp (µ) with norm at most C.

We now claim that term II satisfies

II =
∑
γ≥β

 ∑
β≤δ≤γ

2−nd(δ,γ)µ (δ)
1
p

p

≤ C
∑
δ≥β

µ (δ) .

To see this, let

ν (δ) = µ (δ)
1
p ,

T ν (γ) =
∑

γ∈S(β)

2−nd(δ,γ)χ{δ≤γ}ν (δ) =
∑

γ∈S(β)

K (δ, γ) ν (δ) ,

where K (δ, γ) = 2−nd(δ,γ)χ{β≤δ≤γ} for δ, γ ∈ S (β). Then the desired inequality,∑
γ∈S(β)

|Tν (γ)|p ≤ C
∑

δ∈S(β)

|ν (δ)|p ,

follows from Schur’s test, Lemma 5.17, with auxiliary function h (δ) = 2td(δ) where
− n

p′ < t < 0 as follows:∑
δ∈S(β)

K (δ, γ)h (δ)p′ =
∑

δ:δ≤γ

2−nd(δ,γ)2p′td(δ)

= 2−nd(γ)
∑

δ:δ≤γ

2(p′t+n)d(δ) ≈ 2p′td(γ)

= h (γ)p′

since p′t+ n > 0, and∑
γ∈S(β)

K (δ, γ)h (γ)p =
∑

γ:γ≥δ

2−nd(δ,γ)2ptd(γ)

=
∞∑

m=d(δ)

∑
γ:γ≥δ and d(γ)=m

2−nd(δ,γ)2ptd(γ)

=
∞∑

m=d(δ)

(2n)m−d(δ) 2−n(m−d(0,δ))2ptd(γ) ≈ 2ptd(δ)

= h (δ)p
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since t < 0. Altogether we have proved that the inner sum on the left side of (5.34)
satisfies

∑
γ≥β

∑
δ≤β

2−nd(δ,γ)µ (δ)
1
p

p

≤ C
∑
δ≤α

2−npd(δ,β)µ (δ) + C
∑

α≤δ≤β

2−npd(δ,β)µ (δ)

+ C
∑
δ≥β

µ (δ) .

Thus we can estimate the left side of (5.34) by

∑
β≥α

∑
γ≥β

∑
δ≤γ

2−nd(δ,γ)µ (δ)
1
p

pp′

≤ C
∑
β≥α

∑
δ≤α

2−npd(δ,β)µ (δ)

p′

+ C
∑
β≥α

 ∑
α≤δ≤β

2−npd(δ,β)µ (δ)

p′

+ C
∑
β≥α

∑
δ≥β

µ (δ)

p′

= C (III + IV + V ) .

By the hypothesis (5.28), the main term V satisfies

V =
∑
β≥α

∑
δ≥β

µ (δ)

p′

≤ C
∑
β≥α

µ (β) = CB,

which by (5.35) is dominated by the right side of (5.34) as required.
We again use Hölder’s inequality on term III to obtain

III =
∑
β≥α

∑
δ≤α

2−npd(δ,β)µ (δ)

p′

=
∑
β≥α

∑
δ≤α

2−npd(δ,α)µ (δ) 2−npd(α,β)

p′

≤
∑
β≥α

∑
δ≤α

2−npp′d(δ,α)µ (δ)p′

∑
δ≤α

2−np2d(α,β)

p′−1

≈ C
∑
β≥α

∑
δ≤α

2−npp′d(δ,α)µ (δ)p′

(2−npp′d(α,β)
)

= C
∑
β≥α

∑
δ≤α

2−npp′d(δ,β)µ (δ)p′

≤ C
∑
δ≤α

2−npp′d(δ,α)µ (δ)p′
,
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which yields

III ≤ C
∑
δ≤α

(
2−npd(δ,α)µ (δ)

)p′

≤ C

∑
δ≤α

2−npd(δ,α)µ (δ)

p′

= CAp′

≤ CA,

since A is bounded, and by (5.35), this is dominated by the right side of (5.34) as
required.

Finally, we again use Schur’s test, Lemma 5.17, on term IV . With

Tµ (β) =
∑

δ∈S(α)

2−npd(δ,β)χ{δ≤β}µ (δ)

=
∑

δ∈S(α)

K (δ, β)µ (δ) ,

where K (δ, β) = 2−npd(δ,β)χ{α≤δ≤β} for β, δ ∈ S (α), we obtain

IV =
∑

γ∈S(α)

|Tµ (β)|p
′
≤ C

∑
δ∈S(α)

|µ (δ)|p
′
= C

∑
δ≥α

µ (δ)p′

from Schur’s test again (Theorem 2.9 in [Zhu]), but with auxiliary function h ≡ 1
this time: ∑

δ∈S(α)

K (δ, β) =
∑

δ:δ≤β

2−npd(δ,β) ≤ C,

∑
β∈S(α)

K (δ, β) =
∑

β:β≥δ

2−npd(δ,β)

=
∞∑

m=d(δ)

∑
β:β≥δ

and d(β)=m

2−npd(δ,β)

=
∞∑

m=d(δ)

(2n)(m−d(δ)) 2−np(m−d(δ)) ≤ C

since p > 1. Thus we have

IV ≤ C
∑
δ≥α

µ (δ)p′ ≤ C

∑
δ≥α

µ (δ)

p′

= CBp′ ≤ CB,

since B is bounded, and by (5.35), this is dominated by the right side of (5.34) as
required.
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We now consider the general case ` ≥ 0 of (5.33). Using g (α) = 2nd(α)µ (α)
1
p

and I`g (γ) =
∑

d(δ,γ∧β)≤` g (δ), (5.33) can be rewritten as

∑
β≥α

∑
γ≥β

 ∑
d(δ,δ∧γ)≤`

2n[d(δ)−d(γ)]µ (δ)
1
p

pp′
(5.36)

≤ Cp′
∑
β≥α

 ∑
d(γ,γ∧β)≤`

2n[d(γ)−d(β)]µ (γ)
1
p

p

,

for α ∈ Tn. This time we have only

−d (γ, δ ∧ γ) ≤ d (δ)− d (γ) = d (δ, δ ∧ γ)− d (γ, δ ∧ γ) ≤ `− d (γ, δ ∧ γ) ,

for d (δ, δ ∧ γ) ≤ `, and a similar inequality for d (γ) − d (β). In particular then,
recalling that our bound need only be established modulo an exponential in `, it
will suffice to prove

∑
β≥α

∑
γ≥β

 ∑
d(δ,δ∧γ)≤`

2−nd(γ,δ∧γ)µ (δ)
1
p

pp′

(5.37)

≤ C2`A
∑
β≥α

 ∑
d(γ,γ∧β)≤`

2−nd(β,γ∧β)µ (γ)
1
p

p

,

for α ∈ Tn, and for all ` ≥ 0. However, the methods used above to prove that
(5.34) follows from (5.28), also show that (5.37) follows from (5.28) with a constant
A depending only on n and p. This completes the proof of Lemma 5.15.

5.2.2. Multiplier approximations. The next lemma constructs a holomorphic
function that is close to 1 on the Carleson region associated to a point w ∈ Bn,
and decays appropriately away from the Carleson region. We follow Böe’s proof in
[Boe], which adapts a real-variable argument of Marshall and Sundberg in [MaSu]
to produce a holomorphic multiplier approximation. Given β < ρ < α < 1, we will
use the cutoff function cρ,α defined by

(5.38) cρ,α (γ) =


0 for γ < ρ
γ−ρ
α−ρ for ρ ≤ γ ≤ α

1 for α < γ

.

Lemma 5.18 (analogue of Lemma 4.1 in [Boe]). Suppose s > −1. There are ρ
and α satisfying β < ρ < α < 1 such that for every w ∈ Bn, we can find a function
gw so that

ϕw (z) = Γsgw (z) =
∫

Bn

gw (ζ)
(
1− |ζ|2

)s

(
1− ζ · z

)1+s dζ
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satisfies

(5.39)


ϕw (w) = 1

ϕw (z) = cρ,α (γw (z)) +O

((
log 1

1−|w|2

)−1
)
, z ∈ Vw

|ϕw (z)| ≤ C
(
log 1

1−|w|2

)1−p

, z /∈ Vw

,

where γw (z) is defined by

|1− z · Pw| =
(
1− |w|2

)γw(z)

and cρ,α is as in (5.38). Furthermore we have the estimate

(5.40)
∫

Bn

∣∣∣(1− |ζ|2)n

gw (ζ)
∣∣∣p dλn (ζ) dζ ≤ C

(
log

1
1− |w|2

)1−p

.

Remark 5.19. The proof of Lemma 5.18 shows that the third estimate in
(5.39) can be vastly improved, and also holds for a larger range of z; namely there
is β < β1 < ρ such that

|ϕw (z)| ≤ C

(
log

1
1− |w|2

)−1 (
1− |w|2

)(ρ−β1)(1+s)

, z /∈ V β1
w .

This fact will be used in the proof of Lemma 5.21 below.

Proof. Define gw (ζ) by

(5.41)
gw (ζ)

(
1− |ζ|2

)s

(
1− ζ · w

)1+s = K

(
log

1
1− |w|2

)−1 ∣∣1− ζ · Pw
∣∣−n−1

,

when ζ lives in the annular sector S centred at Pw given as the intersection of the
annulus

(5.42) A = Aw =
{
ζ ∈ Bn :

(
1− |w|2

)α

≤
∣∣1− ζ · Pw

∣∣ ≤ (1− |w|2)ρ}
and the cone

C = Cw =
{
ζ ∈ Bn :

∣∣Im (ζ · Pw)∣∣+ ∣∣ζ − (ζ · Pw)Pw∣∣2 ≤ c
(
1−

∣∣ζ · Pw∣∣)} ,
where c is a suitably small constant. Define gw (ζ) = 0 otherwise. The following
observation will be used repeatedly.

Remark 5.20. The cone Cw corresponds to the geodesic in the Bergman tree
Tn joining the root to the “boundary point” Pw. To see this, consider the case
w = (t, 0, ..., 0) and ζ =

(
reiθ, ζ ′

)
with reiθ = x + iy, so that Im

(
ζ · Pw

)
= y,

ζ −
(
ζ · Pw

)
Pw = (0, ζ ′) and 1−

∣∣ζ · Pw∣∣ = 1− r.

Now choose K so that ϕw (w) = 1, i.e.

K =

(
log

1
1− |w|2

)(∫
S

∣∣1− ζ · Pw
∣∣−n−1

dζ

)−1

,

which satisfies

(5.43) K ≈ Kα,ρ,n =
cn

α− ρ
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since the annular sector

Ea =
{
ζ ∈ Bn : a ≤

∣∣1− ζ · Pw
∣∣ ≤ 2a

}
∩ C

is comparable to a Bergman ball of radius one,
∣∣1− ζ · Pw

∣∣−n−1
dζ is comparable

to invariant measure dλn (ζ) on Ea, and S ≈ ∪J
j=0E2j(1−|w|2)α where

J = log

(
1− |w|2

)ρ

(
1− |w|2

)α = (ρ− α) log
(
1− |w|2

)
.

Note also that

(5.44)
∣∣1− ζ · Pw

∣∣ ≈ ∣∣1− ζ · w
∣∣ ≈ 1− |ζ|2 , ζ ∈ S,

and so gw satisfies the estimate

(5.45) |gw (ζ)| ≤ C

(
log

1
1− |w|2

)−1 ∣∣1− ζ · Pw
∣∣−n

, ζ ∈ Bn.

Now fix z ∈ Vw and set

E1 =
{
ζ ∈ Bn :

∣∣1− ζ · Pw
∣∣ ≤ (1− |w|2)γw(z)

}
,

E2 = Bn \ E1 =
{
ζ ∈ Bn :

∣∣1− ζ · Pw
∣∣ > (1− |w|2)γw(z)

}
.

Thus the common boundary of E1 and E2 passes through z. The main contribution
to ϕw (z) will come from integration over E2. Thus we write

ϕw (z) =
∫

E1

gw (ζ)
(
1− |ζ|2

)s

(
1− ζ · z

)1+s dζ +
∫

E2

gw (ζ)
(
1− |ζ|2

)s

(
1− ζ · z

)1+s dζ

= I + II.

By (5.44), (5.45) and the definition of γw (z), term I is dominated by a constant

multiple of
(
log 1

1−|w|2

)−1

times

∫
{(1−|w|2)α≤|1−ζ·Pw|≤|1−z·Pw|}∩C

(
1− |ζ|2∣∣1− ζ · z

∣∣
)1+s

dλn (ζ) ,

which is at most a constant C since∣∣1− ζ · z
∣∣ ≈ |1− z · Pw| , ζ ∈ C ∩ E1.

Thus we have

|I| ≤ C

(
log

1
1− |w|2

)−1

.
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We now write

II =
∫

E2∩S

gw (ζ)
(
1− |ζ|2

)s

(
1− ζ · z

)1+s dζ

=
∫

E2∩S

gw (ζ)
(
1− |ζ|2

)s

(
1− ζ · z

)1+s −
gw (ζ)

(
1− |ζ|2

)s

(
1− ζ · w

)1+s

 dζ

+
∫

E2∩S

gw (ζ)
(
1− |ζ|2

)s

(
1− ζ · w

)1+s dζ

= III + IV.

Using (5.43), and that gw is supported in S, we calculate that term IV is

K

(
log

1
1− |w|2

)−1 ∫
n
(1−|w|2)γw(z)≤|1−ζ·Pw|≤(1−|w|2)ρ

o
∩C

∣∣1− ζ · Pw
∣∣−n−1

dζ

=
γw (z)− ρ

α− ρ
log

1
1− |w|2

in the case ρ < γw (z) < α. We also have IV = 0 in the case γw (z) < ρ, and
IV = 1 in the case α < γw (z). This gives the estimate IV = cρ,α (γw (z)) , for
z ∈ Vw. Using

∣∣∣∣∣ 1(
1− ζ · z

)1+s −
1(

1− ζ · w
)1+s

∣∣∣∣∣ ≤ C
|z − w|(

1− |ζ|2
)2+s

together with (5.44) and (5.45), we obtain that

|III| ≤ C

∫
E2∩S

|gw (ζ)|
(
1− |ζ|2

)−2

|z − w| dζ

≤ C |z − w|

(
log

1
1− |w|2

)−1 ∫
E2∩S

(
1− |ζ|2

)−1

dλn (ζ)

≤ C

(
log

1
1− |w|2

)−1

,

as required. This completes the proof of the second estimate in (5.39).
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We now turn to the third estimate in (5.39). For z /∈ Vw, we have
∣∣1− ζ · z

∣∣ ≥
c
(
1− |w|2

)β

for ζ ∈ S, and thus

|ϕw (z)| ≤

(
log

1
1− |w|2

)−1 ∫
S

(
1− |ζ|2∣∣1− ζ · z

∣∣
)1+s

dλn (ζ)

≤ C

(
log

1
1− |w|2

)−1 (
1− |w|2

)(ρ−β)(1+s)

≤ Cp

(
log

1
1− |w|2

)1−p

.

Finally, the estimate (5.40) is a calculation using (5.44), (5.45) the definition
of the support of gw. Indeed, the left side of (5.40) is at most

C

∫
S

(
log

1
1− |w|2

)−p

dλn (ζ) ≤ C

(
log

1
1− |w|2

)1−p

.

The next lemma uses Lemma 5.15 to construct inductively a holomorphic func-
tion whose restriction to the sequence {zj}∞j=1 approximates an arbitrarily pre-
scribed bounded sequence {ξj}∞j=1.

Lemma 5.21 (analogue of Lemma 4.2 in [Boe]). Suppose s > −1, that {ξj}∞j=1 ∈
`∞ and let 0 < δ < 1. Let ϕj, gj and γj correspond to zj as in Lemma 5.18 and
with the same s. Then there is {ai}∞i=1 ∈ `∞ such that ϕ =

∑∞
i=1 aiϕi satisfies

(5.46)
∥∥∥{ξj − ϕ (zj)}∞j=1

∥∥∥
`∞

< δ
∥∥∥{ξj}∞j=1

∥∥∥
`∞

and

(5.47) ‖{ai}∞i=1‖`∞ , ‖ϕ‖H∞(Bn) ≤ C
∥∥∥{ξj}∞j=1

∥∥∥
`∞
.

Remark 5.22. The series
∑∞

i=1 aiϕi in Lemma 5.21 converges absolutely for
each z ∈ Bn. In fact, the proof below will show that (using #G` ≤ Cβ (0, z`))

∞∑
i=1

|ϕi (z)| ≤ C

(
1 + log

1
1− |z|2

)
, z ∈ Bn.

Remark 5.23. The construction in the proof below shows that both the se-
quence {ai}∞i=1 and the function ϕ depend linearly on the data {ξj}∞j=1.

Proof. We follow the proof of Lemma 4.2 in [Boe]. Let
∥∥∥{ξj}∞j=1

∥∥∥
`∞

= 1.
We first choose J so large that

(5.48) sup
j≥J

(
log

1
1− |zj |

)−1

+
∞∑

j=J

(
log

1
1− |zj |

)1−p

< ε,

where ε > 0 will be determined later. Note that the series above converges by the
Carleson embedding in (5.10). By standard arguments, we may discard the finitely
many points {zj}J−1

j=1 and assume that J = 1 in (5.48). Indeed, this is elementary
in dimension n = 1 using the structure of zeroes of holomorphic functions of one
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variable. In higher dimensions we must work a bit harder. Suppose that Z =
{zj}∞j=1 is an interpolating sequence for Bp, i.e. that (5.3) holds. Suppose that
w ∈ Bn \ Z. In order to show that Z ∪ {w} satisfies (5.3), it suffices to exhibit a
function h ∈ Bp that vanishes on Z, but not at w. Using the Hahn-Banach theorem
and the reflexivity of Bp, this is equivalent to showing that the point evaluation
ew = kα,p

w is not in the closure S of the linear span of the set of point evaluations{
ezj

}∞
j=1

in B′p = Bp′ . So suppose, in order to derive a contradiction, that ew ∈ S.
Above, we showed the equivalence of (5.3) for Z and the Riesz condition (5.4) for
Z, ∥∥∥∥∥∥

∞∑
j=1

aj

kα,p
zj∥∥kα,p

zj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

≈

 ∞∑
j=1

|aj |p
′

 1
p′

,

and consequently we have

(5.49) ew =
∞∑

j=1

ajωjezj
,

where ωj = 1

‖ezj‖B
p′

and

∞∑
j=1

|aj |p
′
<∞.

Now let f` ∈ Bp satisfy f` (zk) = δ`
k. Then from (5.49) we have

f` (w) =
∞∑

j=1

ajωjf` (zj) = ω`a`,

for all ` ≥ 1, and we’ll have the desired contradiction, namely ew = 0, if we can
show f` (w) = 0 for all ` ≥ 1. To see this, choose a linear function g` that vanishes
at z` and takes the value 1 at w. Then g` ∈ MBp

implies f`g` ∈ Bp, and (5.49)
yields

f` (w) = (f`g`) (w) =
∞∑

j=1

ajωj (f`g`) (zj) = a`ω`g` (z`) = 0.

Now order the points {zj}∞j=1 so that 1− |zj+1| ≤ 1− |zj | for j ≥ 1. We define
a “forest structure” on the index set N by declaring that j is a child of i (or that i
is a parent of j) provided that

i < j,(5.50)
Vzj

⊂ Vzi
,

Vzj
 Vzk

for i < k < j.

Note that a child j chooses the “nearest” parent i if we have competing indices i and
i′ with Vzj

⊂ Vzi
∩ Vzi′ . We define a partial order associated with this parent-child

relationship by declaring that j is a successor of i (or that i is a predecessor of j) if
there is a “chain” of indices {i = k1, k2, ..., km = j} ⊂ N such that k`+1 is a child of
k` for 1 ≤ ` < m. Under this partial ordering, N decomposes into a disjoint union
of trees. Thus associated to each index ` ∈ N, there is a unique tree containing `
and, unless ` is the root of the tree, a unique parent P (`) of ` in that tree. Denote
by G` the unique geodesic joining the root of the tree to `. We will now define the
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coefficients {ai}∞i=1 of ϕ =
∑∞

i=1 aiϕi, where ϕi is the function ϕzi
in Lemma 5.18

with w there replaced by zi, by considering separately the indices in each tree of
the forest N.

Let Y be a tree in the forest N with root k0. For each k ∈ Y \ {k0}, define
βk ∈ [0, 1] by

βk = c
(
γP (k) (zk)

)
,

where the functions c = cρ,α and γj = γzj
are defined as in the statement of Lemma

5.18 with w there replaced by zj . Note that by Lemma 5.18 with w = zP (k), we
have the estimate

ϕP (k) (zk) = c
(
γP (k) (zk)

)
+O

(log
1

1−
∣∣zP (k)

∣∣2
)−1


= βk +O

(log
1

1−
∣∣zP (k)

∣∣2
)−1

 ,

which can serve as motivation for the definition of the coefficients given below in
(5.52). Indeed, with gross oversimplification, what we want is

ξk = ϕ (zk) ≈ akϕk (zk) + aP (k)ϕP (k) (zk) + ...

≈ ak + aP (k)βk + ...,

which leads to (5.52).
We will now define numbers {ak}k∈Y by induction on the linear ordering in Y

induced from the natural ordering of N, so that

(5.51)

{
|ak| ≤ 2∣∣∣∑i∈Gk\{k0} βiaP (i)

∣∣∣ ≤ 1

holds for all k ∈ Y. First define ak0 = ξk0 . Now fix ` ∈ Y \ {k0} and assume that
ak has been defined for all k ∈ Y for which k < ` so that (5.51) holds for all k ∈ Y
for which k < `. We now define a` by

(5.52) a` = ξ` −
∑

i∈G`\{k0}

βiaP (i).

Of crucial importance is the observation that the geodesics G` and GP (`) are related
by

GP (`) = G` \ {`} ,

i.e. if G` = [k0, k1, ..., km−1, km] with km = `, then km−1 = P (`) and GP (`) =
[k0, k1, ..., km−1]. By the induction assumption and the fact that P (`) ∈ Y and
P (`) < `, we have ∣∣∣∣∣∣

∑
i∈GP (`)\{k0}

βiaP (i)

∣∣∣∣∣∣ ≤ 1.
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We have from (5.52) and the above that∣∣∣∣∣∣
∑

i∈G`\{k0}

βiaP (i)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
 ∑

i∈GP (`)\{k0}

βiaP (i)

+ β`

ξP (`) −
∑

i∈GP (`)\{k0}

βiaP (i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣β`ξP (`) + (1− β`)
∑

i∈GP (`)\{k0}

βiaP (i)

∣∣∣∣∣∣
≤ β`

∣∣ξP (`)

∣∣+ (1− β`)

∣∣∣∣∣∣
∑

i∈GP (`)\{k0}

βiaP (i)

∣∣∣∣∣∣ ≤ 1.

From this and (5.52) once more it immediately follows that |a`| ≤ 2, which shows
that (5.51) holds for k = ` as well. This completes the inductive definition of
the sequence {ak}k∈Y satisfying (5.51) on the tree Y, and hence defines the entire
sequence {ai}∞i=1.

We now show that both (5.46) and (5.47) hold for the function ϕ =
∑∞

i=1 aiϕi.
Fix an index ` ∈ N, and with notation as above, let F` = N \ G` and write using
ϕ` (z`) = 1 and (5.52),

ϕ (z`)− ξ` =
∞∑

i=1

aiϕi (z`)− ξ`

=

 ∑
i∈GP (`)

aiϕi (z`) + a`ϕ` (z`) +
∑
i∈F`

aiϕi (z`)


−

a` +
∑

i∈G`\{k0}

βiaP (i)


=

∑
i∈G`\{k0}

aP (i)

(
ϕP (i) (z`)− βi

)
+
∑
i∈F`

aiϕi (z`)

= I + II.

We now claim that

|I| ≤ C sup
i≥1

(
log

1
1− |zi|

)−1

,(5.53)

|II| ≤ C

∞∑
i=1

(
log

1
1− |zi|

)1−p

.

With this done we obtain from (5.48) (recall that we assume J = 1 there) that

sup
j≥1

|ϕ (zj)− ξj | ≤ Cε < δ

provided we choose ε > 0 small enough, and this proves (5.46). We note in passing
that the proof below will show that the supremum in (5.53) need only be taken
over indices i that are a root of a tree in the forest N.
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To estimate term I, we begin with

|I| =

∣∣∣∣∣∣
∑

i∈G`\{k0}

aP (i)

(
ϕP (i) (z`)− βi

)∣∣∣∣∣∣
≤

∑
i∈G`\{k0}

∣∣aP (i)

∣∣ ∣∣ϕP (i) (z`)− c
(
γP (i) (zi)

)∣∣
≤ 2

∑
i∈G`\{k0}

∣∣c (γP (i) (z`)
)
− c

(
γP (i) (zi)

)∣∣+ C

(
log

1

1−
∣∣zP (i)

∣∣2
)−1

 ,

where the final inequality follows from Lemma 5.18 since z` ∈ VzP (i) . Now if Vzi

has empty intersection with the annulus AP (i) given in (5.42) with w = zP (i), then
both c

(
γP (i) (z`)

)
and c

(
γP (i) (zi)

)
have the same value, either 0 or 1. Otherwise,

since c is Lipschitz continuous with norm 1
α−ρ , we have∣∣c (γP (i) (z`)

)
− c

(
γP (i) (zi)

)∣∣ ≤ C
∣∣γP (i) (z`)− γP (i) (zi)

∣∣
= C

∣∣∣∣∣∣− log
∣∣1− z` · PzP (i)

∣∣
− log

(
1−

∣∣zP (i)

∣∣2) −
− log

∣∣1− zi · PzP (i)

∣∣
− log

(
1−

∣∣zP (i)

∣∣2)
∣∣∣∣∣∣

≤ C

(
log

1

1−
∣∣zP (i)

∣∣2
)−1

,

since

C−1 ≤
∣∣1− z` · PzP (i)

∣∣∣∣1− zi · PzP (i)

∣∣ ≤ C

for zi, z` ∈ AP (i). Now if G` = [k0, k1, ..., km−1, km], then by applying the separation
condition repeatedly, we obtain(

1− |zki
|2
)
≤
(
1− |zk0 |

2
)ηi

,

and so combining these estimates we have

|I| ≤ C
∑

i∈G`\{k0}

(
log

1

1−
∣∣zP (i)

∣∣2
)−1

≤ C

m−1∑
j=0

η−j

(log
1

1− |zk0 |
2

)−1

≤ Cη

(
log

1
1− |zk0 |

2

)−1

since η > 1, which shows the first inequality in (5.53).
To estimate term II =

∑
i∈F`

aiϕi (z`) in (5.53), we first note that if z` /∈ Vzi
,

then

(5.54) |ϕi (z`)| ≤ C

(
log

1
1− |zi|2

)−(p−1)



68 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

by Lemma 5.18. On the other hand, if z` ∈ Vzi
, then |zi| < |z`|, and if G` =

[k0, k1, ..., km−1, km], then either |zi| < |zk0 | or there is j such that
∣∣zkj−1

∣∣ < |zi| ≤∣∣zkj

∣∣. Note however that equality cannot hold here by Lemma 5.13, and so we
actually have

∣∣zkj−1

∣∣ < |zi| <
∣∣zkj

∣∣. From (5.50) we obtain that no index m ∈
(kj−1, kj) satisfies Vzkj

⊂ Vzm
. Since i /∈ G`, we have i ∈ (kj−1, kj) and thus we

have both

Vzkj
 Vzi

and
∣∣zkj

∣∣ > |zi| .

Now using Lemma 5.13 and βη > 1, we obtain

(
1−

∣∣zkj

∣∣2)β

≤
(
1− |zi|2

)βη

�
(
1− |zi|2

)
.

If we choose w ∈ Vzkj
\ Vzi

, then w, z` ∈ Vzkj
implies |z` − w| ≤ C

(
1−

∣∣zkj

∣∣2)β

by definition, and w /∈ Vzi
implies |1− w · Pzi| ≥ c

(
1− |zi|2

)β

. Together with the
reverse triangle inequality we thus have

|1− z` · Pzi| ≥ |1− w · Pzi| − |z` · Pzi − w · Pzi|

≥ c
(
1− |zi|2

)β

− C
(
1− |zi|2

)βη

≥ (1− |zi|)β1 ,

for some β1 ∈ (β, ρ) (again provided the |zi| are large enough). Thus estimate
(5.54) now follows by Remark 5.19. With this done, we have completed the proof
of (5.53), as well as the first estimate in (5.47).

To prove the second estimate ‖ϕ‖H∞(Bn) ≤ C in (5.47), we fix z ∈ Bn. If
z ∈ ∪k∈NVzk

, let ` be such that

z ∈ Vz`
and z /∈ Vzk

for any k > `.

Then we have using (5.52) that

ϕ (z)− ξ` =
∞∑

i=1

aiϕi (z)− ξ`

=

 ∑
i∈GP (`)

aiϕi (z) + a`ϕ` (z) +
∑
i∈F`

aiϕi (z)


−

a` +
∑

i∈G`\{k0}

βiaP (i)


=

 ∑
i∈G`\{k0}

aP (i)

(
ϕP (i) (z)− βi

)+ a` (ϕ` (z)− 1) +
∑
i∈F`

aiϕi (z) ,
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and the estimates we proved above for z` show that with z` replaced by z, we also
have

|ϕ (z)− ξ`| ≤

∣∣∣∣∣∣
∑

i∈G`\{k0}

aP (i)(ϕP (i) (z)− βi)

∣∣∣∣∣∣+ |a` (ϕ` (z)− 1)|+

∣∣∣∣∣∑
i∈F`

aiϕi (z)

∣∣∣∣∣
≤ Cη

(
log

1
1− |zk0 |

2

)−1

+ C + C
∑
i∈F`

(
log

1
1− |zi|2

)−(p−1)

,

which yields |ϕ (z)| ≤ C. Finally, if z /∈ ∪k∈NVzk
, then

|ϕ (z)| =

∣∣∣∣∣
∞∑

i=1

aiϕi (z)

∣∣∣∣∣ ≤ C
∑
i∈N

(
log

1
1− |zi|2

)−(p−1)

≤ C

by Lemma 5.18. Easy modifications of these estimates also prove Remark 5.22. At
this point we can use a normal families argument to prove that ϕ is holomorphic.
This completes the proof of Lemma 5.21.

5.2.3. The proof of multiplier interpolation. Using Lemma 5.21, we first com-
plete the proof that (5.8) implies (5.6) for 1 < p < ∞. Fix s > −1, 0 <

δ < 1 and {ξj}∞j=1 with
∥∥∥{ξj}∞j=1

∥∥∥
`∞

= 1. Then by Lemma 5.21 there is f1 =∑∞
i=1 a

1
iϕi ∈ H∞ (Bn) such that

∥∥∥{ξj − f1 (zj)}∞j=1

∥∥∥
`∞

< δ and
∥∥{a1

i

}∞
i=1

∥∥
`∞

,

‖f1‖H∞(Bn) ≤ C where C is as in (5.47). Now apply Lemma 5.21 to the sequence
{ξj − f1 (zj)}∞j=1 to obtain the existence of f2 =

∑∞
i=1 a

2
iϕi ∈ H∞ (Bn) such that∥∥∥{ξj − f1 (zj)− f2 (zj)}∞j=1

∥∥∥
`∞

< δ2 and
∥∥{a2

i

}∞
i=1

∥∥
`∞

, ‖f2‖H∞(Bn) ≤ Cδ where C

is as in (5.47). Continuing inductively, we obtain fm =
∑∞

i=1 a
m
i ϕi ∈ H∞ (Bn)

such that ∥∥∥∥∥∥
{
ξj −

m∑
i=1

fi (zj)

}∞
j=1

∥∥∥∥∥∥
`∞

< δm,

‖{am
i }

∞
i=1‖`∞ , ‖fm‖H∞(Bn) ≤ Cδm−1.

If we now take ϕ =
∑∞

m=1 fm, we have

ξj = ϕ (zj) , 1 ≤ j <∞,(5.55)

‖ϕ‖H∞(Bn) ≤ Cδ,

as well as ϕ =
∑∞

i=1 aiϕi with ‖{ai}∞i=1‖`∞ ≤ Cδ. Recall that the series ϕ =∑∞
i=1 aiϕi converges absolutely by Remark 5.22, and depends linearly on the data

{ξj}∞j=1 by Remark 5.23 and the linear construction in this paragraph. Thus ϕ ∈
H∞ (Bn) linearly interpolates the values {ξj}∞j=1 on the sequence {zj}∞j=1, and it
remains to prove that ϕ ∈MBp

. Recall that our function ϕ depends on our choice
of s > −1.

By Theorem 4.2, ϕ ∈MBp will follow if we show that

(5.56)
∥∥∥∥∣∣∣(1− |z|2)n

∇nϕ (z)
∣∣∣p dλn (z)

∥∥∥∥
Carleson

≤ C.
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Since

ϕ =
∞∑

i=1

aiϕi =
∞∑

i=1

aiΓsgi = Γsg

where g =
∑∞

i=1 aigi with supi≥1 |ai| ≤ Cδ, (5.56) will follow from Theorem 3.1 and
Lemma 5.15 for s sufficiently large provided we show that (5.22) holds and that∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

satisfies the tree condition (3.2). From the definition of gi in (5.41), and the fact
that the supports of the gi are pairwise disjoint by the separation condition, we
may assume that the reverse Hölder condition on Bergman balls in (5.22) holds.
The tree condition estimate will follow from the next lemma.

Lemma 5.24. With s > n− 1
p′ and g =

∑∞
i=1 aigi as above, we have

(5.57)
∥∥∥∥∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

∥∥∥∥
tree condition

≤ C.

Proof. Inequality (5.57) follows from the estimate (5.40) as follows. If we
discretize (5.40), we obtain with w = zi and S (α) ≈ Vzi

,

(5.58)
∑

β∈Tn:β≥α

(
1− |cβ |2

)np

gzi (β)p ≤ C

(
log

1
1− |zi|2

)1−p

.

Denote the Carleson tent at cβ by S (β) = Tβ = ∪γ≥βKγ . We are assuming that

(3.2) holds for the measure ν =
∑∞

j=1

(
log 1

1−|zj |2

)1−p

δzj
,

∑
β∈Tn
β≥α

 ∑
zj∈Tβ

(
log

1
1− |zj |2

)1−p
p′

=
∑

β∈Tn:β≥α

I∗ν (β)p′

(5.59)

≤ Cp′I∗ν (α)

= Cp′
∑

zj∈Tα

(
log

1
1− |zj |2

)1−p

<∞, α ∈ Tn.

If we now also discretize (5.57), we see that we must prove∑
β∈Tn:β≥α

I∗µ (β)p′ ≤ Cp′I∗µ (α) <∞, α ∈ Tn,

where

µ (β) =
∣∣∣(1− |cβ |2)n

g (β)
∣∣∣p ,

g (β) =
∫

Kα

|g| dλn,

I∗µ (α) =
∑

β∈Tn:β≥α

µ (β) ,
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for all g =
∑∞

i=1 aigi as above. Since ν =
∑∞

j=1

(
log 1

1−|zj |2

)1−p

δzj
satisfies the

tree condition (3.2), it suffices to prove

(5.60)
∑

β∈Tn:β≥α

I∗µ (β)p′ ≤ Cp′I∗ν (α) , α ∈ Tn.

Indeed, (5.60) shows that µ+ ν satisfies (3.2), and now the equivalence of 2 and 3
in Theorem 3.1 shows that µ satisfies (3.2) as well (since the Carleson embedding
is preserved for smaller measures). Alternatively, we can obtain this fact directly
from Lemma 10.1 in the appendix at the end of the paper.

Now g =
∑∞

i=1 aigi where the supports of the gi = gzi are pairwise disjoint by
the separation condition on {zi}∞i=1. Fix α ∈ Tn. Then we have

∑
β∈Tn:β≥α

I∗µ (β)p′ =
∑

β∈Tn:β≥α

 ∑
γ∈Tn:γ≥β

µ (γ)

p′

=
∑

β∈Tn:β≥α

 ∑
γ∈Tn:γ≥β

∣∣∣∣∣(1− |cγ |2)n
( ∞∑

i=1

aigi

)
(γ)

∣∣∣∣∣
p
p′

=
∑

β∈Tn:β≥α

 ∑
i:zi∈Tβ

|ai|p
∑

γ∈Tn:γ≥β

∣∣∣(1− |cγ |2)n

gi (γ)
∣∣∣p
p′

.

Now we use (5.58) to dominate the last sum above by

C
∑

β∈Tn:β≥α

 ∑
i:zi∈Tβ

|ai|p
(

log
1

1− |zi|2

)1−p
p′

≤ C ‖{ai}∞i=1‖
pp′

`∞

∑
β∈Tn:β≥α

 ∑
i:zi∈Tβ

(
log

1
1− |zi|2

)1−p
p′

≤ C
∑

j:zj∈Tα

(
log

1
1− |zj |2

)1−p

= CI∗ν (α) ,

where the final inequality follows from (5.59). This establishes (5.60), and completes
the proof of Lemma 5.24.

With this done, we have completed the proof that (5.8) implies (5.6) for 1 <
p <∞.

We now prove that (5.5) implies (5.6) for p > 2n. For this we will argue as above
but with Lemma 5.15 replaced by Lemma 5.16, and with Lemma 5.24 replaced by
the following analogue.

Lemma 5.25. Suppose (5.5) holds. With p > 2n, s > n− 1
p′ and g =

∑∞
i=1 aigi

as above, we have

(5.61)
∥∥∥∥∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

∥∥∥∥
Carleson

≤ C.
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Proof. Inequality (5.61) follows from estimate (5.40),

(5.62)
∫

Bn

∣∣∣(1− |ζ|2)n

gzi (ζ)
∣∣∣p dλn (ζ) dζ ≤ C

(
log

1
1− |zi|2

)1−p

,

as follows. Fix an index i. From Remark 5.20 we see that the support of gzi
is

essentially the union of a geodesic segment of Bergman kubes Ki
1,K

i
2, ...,K

i
Mi

where

Mi ≈ (α− ρ) log
1

1− |zi|2
.

Indeed, recall that the support gzi
is contained in the intersection of the cone Czi

and the annulus Azi . Now for ζ in the cone Czi , we have
∣∣1− ζ · Pzi

∣∣ ≈ 1 − |ζ|2,
and thus for ζ in the annulus Azi

as well, we have approximately

log
1

1− |ζ|2
∈

(
ρ log

1
1− |zi|2

, α log
1

1− |zi|2

)
.

Thus ζ ∈ supp gzi
lies in the union of those kubes in Tn along the geodesic joining

the root to the “boundary point” Pzi, and having tree distance from the root
lying roughly between ρβ (0, zi) and αβ (0, zi). Moreover, this segment can be
continued to a longer sequence of adjacent Bergman kubes Ki

1,K
i
2, ...,K

i
Mi
, ...Ki

Ji
=

Kzi
connecting the support of gzi

to the kube Kzi
containing zi, and where

(5.63) Ji ≈ log
1

1− |zi|2
.

Choose wj ∈ Ki
j for 1 ≤ j < Ji. Then we have for z ∈ Ki

m, 1 ≤ m ≤ Mi, and
f ∈ Bp (Bn),

|f (z)|p = f (z)− f (wm)

+
Ji−1∑
j=m

[f (wj)− f (wj+1)] + [f (wJi
)− f (zi)] + f (zi) |p

. |f (z)− f (wm)|p + (Ji)
p−1

Ji−1∑
j=1

|f (wj)− f (wj+1)|p

+ |f (wJi)− f (zi)|p + |f (zi)|p

≤ C (Ji)
p−1

Ji∑
j=1

(
max

z1,z2∈(Ki
j)
∗
|f (z1)− f (z2)|

)p

+ C |f (zi)|p .

Using this together with (5.62), (5.63) and the fact that the supports of the gzi are
pairwise disjoint, we obtain∫

Bn

|f (z)|p
∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z) ≤ C

∑
i

Ji∑
j=1

(
max

z1,z2∈(Ki
j)
∗
|f (z1)− f (z2)|

)p

+ C
∑

i

|f (zi)|p
(

log
1

1− |zi|2

)1−p

.
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Since the kubes
{
Ki

j

}
are pairwise disjoint by Lemma 5.13, the first term on the

right is dominated by∑
α∈Tn

(
max

z1,z2∈Kα

|f (z1)− f (z2)|
)p

≤ C ‖f‖p
Bp(Bn)

by Theorem 6.30 of [Zhu] (or see Lemma 7.8 below). The second term is dominated

by C ‖f‖p
Bp(Bn) since we are assuming in (5.5) that

∑
i

(
log 1

1−|zi|2

)1−p

δzi is a
Bp (Bn)-Carleson measure. This completes the proof of Lemma 5.25.

Arguing as above, the proof that (5.5) implies (5.6) will follow from Theorem
3.1 and Lemma 5.16 provided we show that (5.23) holds and that∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

is a Bp (Bn)-Carleson measure. From the definition of gi in (5.41), and the fact
that the supports of the gi are pairwise disjoint by the separation condition, we

have that (5.23) holds. Lemma 5.25 above shows that
∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z)

is a Bp (Bn)-Carleson measure for p > 2n, and this completes the proof that (5.5)
implies (5.6) for p > 2n.

5.3. Besov space interpolation. Here we adapt the above arguments to
prove that (5.10), or equivalently (5.5), implies (5.3) for 1 < p < ∞, and with
linear interpolation. We note in passing that we already have that (5.10) implies
(5.3) for 1 < p ≤ 2. Indeed, the Carleson embedding in (5.10) implies that the map

Tf =

 f (zj)∥∥kα,p
zj

∥∥
Bp′


∞

j=1

in (5.3) maps Bp into `p. On the other hand, (5.10) implies (5.6) implies (5.7)
implies (this is where we use p ≤ 2) the inequality & of (5.4), which in turn implies
that the map T in (5.3) maps Bp onto `p.

Fix α, s > −1 and {ξj}∞j=1 with∥∥∥∥∥∥
 ξj∥∥kα,p

zj

∥∥
Bp′


∞

j=1

∥∥∥∥∥∥
`p

= 1.

Recall that by (5.9),
∥∥∥kα,p

zj

∥∥∥
Bp′

≈
(
log 1

1−|zj |2

) 1
p′ . We may discard finitely many

points and reorder them so that with dµ =
∑∞

j=1

∥∥∥kα,p
zj

∥∥∥−p

Bp′
δzj

, we have

(5.64) ‖µ‖ ≈
∞∑

j=1

(
log

1
1− |zj |

)1−p

< ε,

where ε > 0 will be determined later. Moreover, we may suppose that the sequence
{zj}J

j=1 is finite, and obtain an appropriate estimate independent of J ≥ 1 (see

(5.66) below). Since the sequence {ξj}J
j=1 is bounded (we are not concerned that
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this bound blows up as J → ∞), the construction in the previous section leading
to (5.55) yields ϕ =

∑J
m=1 ϕm satisfying

ξj = ϕ (zj) , 1 ≤ j < J,

‖ϕ‖H∞(Bn) ≤ C
∥∥∥{ξj}J

j=1

∥∥∥
`∞
,

as well as ϕ =
∑J

i=1 aiϕi with∥∥∥{ai}J
i=1

∥∥∥
`∞

≤ C
∥∥∥{ξj}J

j=1

∥∥∥
`∞
.

We need additional weighted `p control on the coefficients {ai}J
i=1. View dµ as the

measure assigning mass
(
log 1

1−|zj |2

)1−p

to the point j ∈ {0, 1, 2, ..., J}. By (5.9),
we have ∥∥∥{bj}J

j=1

∥∥∥
`p(dµ)

≈

∥∥∥∥∥∥∥
 bj∥∥kα,p

zj

∥∥
Bp′


J

j=1

∥∥∥∥∥∥∥
`p

,

for any sequence {bj}J
j=1.

Lemma 5.26. The sequence {ai}J
i=1 constructed in (5.55) using Lemma 5.21

satisfies

(5.65)
∥∥∥{aj}J

j=1

∥∥∥
`p(dµ)

≤ C
∥∥∥{ξj}J

j=1

∥∥∥
`p(dµ)

≈ C.

With Lemma 5.26 established, we can easily complete the proof. We have
that ϕ ∈ H∞ (Bn) interpolates the values {ξj}J

j=1 on the sequence {zj}J
j=1, and it

remains only to prove that ϕ ∈ Bp with ‖ϕ‖Bp
≤ C whenever

∥∥∥{ξj}J
j=1

∥∥∥
`p(dµ)

= 1,

independent of J ≥ 1. Thus we must show that∫
Bn

∣∣∣(1− |z|2)n

∇nϕ (z)
∣∣∣p dλn (z) ≤ C,

independent of J ≥ 1. Now

ϕ =
J∑

i=1

aiϕi =
J∑

i=1

aiΓsgi = Γsg

where g =
∑J

i=1 aigi with
∥∥∥{ai}J

i=1

∥∥∥
`∞

≤ Cδ

∥∥∥{ξj}J
j=1

∥∥∥
`∞

. Moreover,

|∇nΓsg (z)| ≤ C ′s,nT̂s |g| (z)

by (5.26) where the operator T̂s is given by

T̂sf (z) = cs,n

∫
Bn

f (w)
(
1− |w|2

)s

|1− w · z|n+1+s dw.

Thus we must estimate∫
Bn

∣∣∣(1− |z|2)n

T̂s |g| (z)
∣∣∣p dλn (z) =

∫
Bn

∣∣∣T̂s |g| (z)
∣∣∣p dνt (z)
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where t = pn − n − 1. Now by Theorem 2.10 in [Zhu], T̂s is bounded on Lp (dνt)
if and only if 0 < t+ 1 < p (s+ 1), i.e.

p > 1 and s >
n

p′
− 1.

Thus choosing s > n
p′ − 1, we have∫

Bn

∣∣∣(1− |z|2)n

∇nϕ (z)
∣∣∣p dλn (z) ≤ C

∫
Bn

|g (z)|p dνt (z)

= C

∫
Bn

∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z) .

Since the supports of the gi are pairwise disjoint by the separation condition, we
obtain from (5.40) and then (5.65) that g =

∑J
i=1 aigi satisfies∫

Bn

∣∣∣(1− |z|2)n

g (z)
∣∣∣p dλn (z) =

J∑
j=1

|ai|p
∫

Bn

∣∣∣(1− |z|2)n

gi (z)
∣∣∣p dλn (z)

≤ C

J∑
j=1

|ai|p
(

log
1

1− |zj |2

)1−p

= C
∥∥∥{aj}J

j=1

∥∥∥
`p(dµ)

≤ C
∥∥∥{ξj}J

j=1

∥∥∥
`p(dµ)

= C.

Altogether we have proved that ϕ ∈ Bp interpolates the values {ξj}J
j=1 on the

sequence {zj}J
j=1 with the norm estimate

(5.66) ‖ϕ‖Bp
≤ C

∥∥∥{ξj}J
j=1

∥∥∥
`p(dµ)

,

where C is independent of J ≥ 1 as required. A limiting argument now finishes the
proof that (5.10) implies (5.3).

It remains to prove Lemma 5.26 above. Let
∥∥∥{ξj}J

j=1

∥∥∥
`2(µ)

= 1. Recall from

the proof of Lemma 5.21 that the approximating sequence
{
am

j

}J

j=1
at the mth step

of the proof there is given in terms of the data
{
ξm
j

}J

j=1
at the mth step by (5.52),

i.e.

(5.67) am
` = ξm

` −
∑

i∈G`\{k0}

βia
m
A(i), 1 ≤ ` ≤ J,

where for any given `, the numbers βi lie in [0, 1], and the geodesics G` and GA(`)

lie in a fixed tree Y of the forest {j}J
j=1, and are related by

GA(`) = G` \ {`} ,
i.e. if G` = [k0, k1, ..., km−1, km] with km = `, then km−1 = A (`) and GA(`) =

[k0, k1, ..., km−1]. We will first prove the estimate (5.65) for the sequence
{
am

j

}J

j=1

given in terms of the data
{
ξm
j

}J

j=1
, i.e.

(5.68)
∥∥∥{am

j

}J

j=1

∥∥∥
`p(dµ)

≤ C
∥∥∥{ξm

j

}J

j=1

∥∥∥
`p(dµ)

.
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Without loss of generality, we may assume that the forest of indices {j}J
j=1 is

actually a single tree Y. For convenience we will drop the superscript m from both
am

` and ξm
` and write simply a` and ξ`.

Now fix `. At this point it will be convenient for notation to momentarily
relabel the points {zj}j∈G`

= {zk0 , zk1 , ..., zkm} as {z0, z1, ..., zm}, and similarly
relabel {a0, a1, ..., am}, {ξ0, ξ1, ..., ξm} and {β0, β1, ..., βm} so that

ak = ξk −
k∑

i=1

βiai−1, 0 ≤ k ≤ `.

We also have dµ (j) =
(
log 1

1−|zj |2

)1−p

where zj now denotes the point zkj
in the

ball corresponding to kj before the relabelling. In other words, we are restrict-
ing attention to the geodesic G` and relabeling sequences so as to conform to the
ordering in the geodesic. Now let

ωk =
k∑

i=1

βiai−1

for 1 ≤ k ≤ ` so that
ak = ξk − ωk, 0 ≤ k ≤ `.

We now claim that

(5.69)


ω1

ω2

...
ωk

 =


b11 0 · · · 0
b21 b22 · · · 0
...

...
. . .

...
bk1 bk2 · · · bkk




ξ0
ξ1
...

ξk−1

 , 1 ≤ k ≤ `,

where bij ∈ [0, 1] and bij = 0 if i < j. We prove this by induction on k. Indeed,
it is evident for k = 1 since then ω1 = β1a0 = β1ξ0. Assuming its truth for k, we
obtain from

ωk+1 = βk+1ak +
k∑

i=1

βiai−1 = βk+1 (ξk − ωk) + ωk = (1− βk+1)ωk + βk+1ξk,

that the vector


ω1

ω2

...
ωk

ωk+1

 is given by


b11 0 · · · 0 0
b21 b22 · · · 0 0
...

...
. . .

...
...

bk1 bk2 · · · bkk 0
(1− βk+1) bk1 (1− βk+1) bk2 · · · (1− βk+1) bkk βk+1




ξ0
ξ1
...

ξk−1

ξk

 ,

which has the desired form, thus proving (5.69). The consequence we need from
(5.69) is

(5.70) |ak| = |ξk − ωk| ≤ |ξk|+ |ωk| ≤
k∑

j=0

|ξj | , 0 ≤ k ≤ `.
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We now return our attention to the tree Y. For each α ∈ Y, with corresponding
index j ∈ {j}J

j=1, there are values a (α) = aj and ξ (α) = ξj . Define functions
f (α) = |a (α)| and g (α) = |ξ (α)| on the tree Y. Note that we are simply relabelling
the indices {j}J

j=1 as α ∈ Y to emphasize the tree structure of Y when convenient.
The inequality (5.70) says that

(5.71) f (α) ≤ Ig (α) , α ∈ Y.

Recall also that we are assuming that the measure dµ =
∑

α∈Y

(
log 1

1−|zα|2

)1−p

is
a Bp Carleson measure on the ball Bn, where zα = zj ∈ Bn if α corresponds to j.
The only consequence of this that we need here is the simple condition,

(5.72) β (0, α)p−1
∑

j:zj∈S(α)

µ (j) ≤ C, α ∈ Tn.

Note that this last inequality refers to the tree Tn rather than to Y. Using the fact
that β (0, α) ≈ log 1

1−|zα|2
, we obtain from this simple condition that if S (α) ≈ Vzk

,

i.e. α ≈
[
1−

(
1− |zk|β

)]
zk, then∑

β:β≥α

µ (β) =
∑

j:zj∈S(α)

µ (j) ≤ Cβ (0, α)1−p

≈ C

log
1(

1− |zk|2
)β


1−p

≈ C

(
log

1
1− |zk|2

)1−p

= Cµ (α) ,

by the definition of the region Vzk
. Thus on the tree Y, we have

(5.73) I∗µ (α) ≤ Cµ (α) , α ∈ Y.

We now claim that (5.73) implies the inequality

(5.74)
∑
α∈Y

Ig (α)p
µ (α) ≤ C

∑
α∈Y

g (α)p
µ (α) ,

which together with (5.71) yields (5.68). Note that (5.73) is obviously necessary
for (5.74).

To see (5.74), we use our more general tree theorem for the tree Y. Recall from
Subsection 1.3 on the tree theorem that∑

α∈Y
Ig (α)p

w (α) ≤ C
∑
α∈Y

g (α)p
v (α) , g ≥ 0,

if and only if

(5.75)
∑
β≥α

I∗w (β)p′
v (β)1−p′ ≤ CI∗w (α) <∞, α ∈ Y.

With w = v = µ, (5.73) yields condition (5.75) as follows:∑
β≥α

I∗µ (β)p′
µ (β)1−p′ ≤ C

∑
β≥α

µ (β)p′
µ (β)1−p′ = C

∑
β≥α

µ (β) = CI∗µ (α) ,
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and this completes the proof of (5.68) for the sequence
{
am

j

}J

j=1
given in terms of

the data
{
ξm
j

}J

j=1
by (5.67).

Next, we prove an estimate relating the data
{
ξm+1
j

}J

j=1
at the (m+ 1)st stage

to the coefficients
{
am

j

}J

j=1
at the mth stage:

(5.76)
∥∥∥{ξm+1

j

}J

j=1

∥∥∥
`p(dµ)

≤ C ‖µ‖min{p′−1,1}
∥∥∥{am

j

}J

j=1

∥∥∥
`p(dµ)

.

To see (5.76) we recall from the previous subsubsection that

ξm+1
j = fm (zj)− ξm

j =
∞∑

i=1

am
i ϕi (zj)− ξm

j .

We will again drop the superscript m and replace fm by ϕ in accordance with the
notation used in the proof of Lemma 5.21. We then have from the argument given
there that

ϕ (z`)− ξ` =
∞∑

i=1

aiϕi (z`)− ξ`

=
∑

i∈G`\{k0}

aP (i)

(
ϕP (i) (z`)− βi

)
+
∑
i∈F`

aiϕi (z`)

= I` + II`.

We now claim that

|I`| ≤ C ‖µ‖
1

p(p−1)

∥∥∥{aj}J
j=1

∥∥∥
`p(µ)

(5.77)

|II`| ≤ C ‖µ‖
1
p′
∥∥∥{aj}J

j=1

∥∥∥
`p(µ)

.

For the term I` we have from previous arguments

|I`| =

∣∣∣∣∣∣
∑

i∈G`\{k0}

aP (i)

(
ϕP (i) (z`)− βi

)∣∣∣∣∣∣
≤

∑
i∈G`\{k0}

∣∣aP (i)

∣∣ ∣∣ϕP (i) (z`)− c
(
γP (i) (zi)

)∣∣
≤

∑
i∈G`\{k0}

∣∣aP (i)

∣∣
×

∣∣c (γP (i) (z`)
)
− c

(
γP (i) (zi)

)∣∣+ C

(
log

1

1−
∣∣zP (i)

∣∣2
)−1


≤ C

∑
i∈G`\{k0}

∣∣aP (i)

∣∣(log
1

1−
∣∣zP (i)

∣∣2
)−1
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≤ C

 ∑
i∈G`\{k0}

(
log

1

1−
∣∣zP (i)

∣∣2
)1−p′


1
p′

×

 ∑
i∈G`\{k0}

∣∣aP (i)

∣∣p(log
1

1−
∣∣zP (i)

∣∣2
)1−p


1
p

≤ Cη

(
log

1
1− |zk0 |

2

)− 1
p

 ∑
i∈G`\{k0}

∣∣aP (i)

∣∣p µ (zP (i)

)
1
p

≤ C ‖µ‖
1

p(p−1)

 ∑
i∈G`\{k0}

∣∣aP (i)

∣∣p µ (zP (i)

)
1
p

,

which shows the first inequality in (5.77).
To estimate term II` =

∑
i∈F`

aiϕi (z`) in (5.77), we first note that if z` /∈ Vzi ,
then

(5.78) |ϕi (z`)| ≤ C
(
1− |zi|2

)σ

, σ > 0,

by Remark 5.19. On the other hand, if z` ∈ Vzi
, then the corresponding argument

in the previous subsubsection shows that Remark 5.19 again yields (5.78). From
the obvious inequality

(
1− |zi|2

)σ

≤ Cσ,p

(
log

1
1− |zi|2

)1−p

= Cµ (zi) ,

we thus obtain

|II`| =

∣∣∣∣∣∑
i∈F`

aiϕi (z`)

∣∣∣∣∣ ≤ ∑
i∈F`

|ai|µ (zi) ≤ C ‖µ‖
1
p′

{∑
i∈F`

|ai|p µ (zi)

} 1
p

,

which shows the second inequality in (5.77). Using (5.77) and (5.68) we then have∥∥∥{ξm+1
j

}J

j=1

∥∥∥
`p(dµ)

≤ C
∥∥∥{∣∣Im

j

∣∣+ ∣∣IIm
j

∣∣}J

j=1

∥∥∥
`p(dµ)

= C


J∑

j=1

(∣∣Im
j

∣∣+ ∣∣IIm
j

∣∣)p µ (zi)


1
p

≤ C
(
‖µ‖

1
p(p−1) + ‖µ‖

1
p′
)∥∥∥{aj}J

j=1

∥∥∥
`p(µ)

‖µ‖
1
p ,

which is (5.76).
Finally, we alternately iterate (5.76) and (5.68) to obtain∥∥∥{ξm

j

}J

j=1

∥∥∥
`p(dµ)

≤
(
C ‖µ‖min{p′−1,1})m ∥∥∥{ξj}J

j=1

∥∥∥
`p(dµ)

,
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and then using {aj}J
j=1 =

∑∞
m=1

{
am

j

}J

j=1
with Minkowski’s inequality and (5.68)

once more, we have∥∥∥{aj}J
j=1

∥∥∥
`p(dµ)

≤
∞∑

m=1

∥∥∥{am
j

}J

j=1

∥∥∥
`p(dµ)

≤
∞∑

m=1

C
∞∑

m=1

∥∥∥{ξm
j

}J

j=1

∥∥∥
`p(dµ)

≤ C

( ∞∑
m=1

(
C ‖µ‖min{p′−1,1})m

)∥∥∥{ξj}J
j=1

∥∥∥
`p(dµ)

.

If ε > 0 is chosen small enough in (5.64), the series above converges and yields
(5.65). This completes the proof of Lemma 5.26, and thus also finishes the proof
that (5.10) implies (5.3) for all 1 < p <∞.

Remark 5.27. Note that the above proof shows that the map T in (5.3) is
onto, provided both (5.72) and the separation condition in (5.5) hold. While the
separation condition is necessary for the map T in (5.3) to be onto, we do not know
a characterization of when the map T in (5.3) is onto.

5.4. The plan for completing the proof. At this point Theorem 5.1 has
been completely proved, and the only assertion remaining to be proved in Theorem
5.2 is that (5.6) implies (5.8) in the range 1 + 1

n−1 ≤ p < 2. This latter will be
accomplished by introducing analogues HBp (Tn) and MHBp(Tn) on the Bergman
tree Tn of the Besov and multiplier spaces Bp (Bn) and MBp(Bn) on the ball, that
behave in some ways similar to martingales. This will require the introduction of
an elaborate complex structure on Tn so that three important properties hold for
the new spaces:

(1) The restriction map is bounded from MBp(Bn) to MHBp(Tn).
(2) The reproducing kernels for HBp (Tn) satisfy a positivity property analo-

gous to Re 1−|w|2
1−z·w > 0 for z, w ∈ Bn.

(3) Carleson measures for HBp (Tn) are characterized by the tree condition
(3.2).

In order to define spaces HBp (Tn) with these properties, we first introduce
a more complex-geometric norm on Bp (Bn) that will serve as a model for that
of HBp (Tn), and permit natural localized norm estimates to be made between
HBp (Tn) and Bp (Bn). This is accomplished in the next section.

6. An almost invariant holomorphic derivative

We now construct a differential operator Da on each Bergman kube Kα that
is close there to the invariant gradient ∇̃, and which has the additional property
that Dm

a f (z) is holomorphic for m ≥ 1 and z ∈ Kα when f is. For our purposes
the powers Dm

a f , m ≥ 1, are easier to work with than the corresponding powers
∇̃mf , which fail to be holomorphic. We will show that Dm

a can be used to define
an equivalent norm on the Besov space Bp (Bn), and then establish an oscillation
inequality for Bp (Bn). We then use this oscillation inequality in the subsequent
sections to show that the restriction map

Tf = {f (α)}α∈Tn
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is bounded from Bp (Bn) to HBp (Tn), and, provided p < 2 + 1
n−1 , from MBp(Bn)

to MHBp(Tn) as well (see Section 8 for HBp (Tn)). This latter result will require
a choice of the structural constant θ sufficiently large in the construction of the
Bergman tree Tn. We will also establish a positivity property for reproducing
kernels of HBp (Tn) which will further require a choice of λ sufficiently small in the
construction of Tn. This restriction theorem and positivity property will enable us
to complete the proof of Theorem 5.2 by showing that (5.6) implies (5.8).

Fix α ∈ Tn and let a = cα. Recall that the gradient with invariant length given
by

∇̃f (a) = (f ◦ ϕa)′ (0) = f ′ (a)ϕ′a (0)

= −f ′ (a)
{(

1− |a|2
)
Pa +

(
1− |a|2

) 1
2
Qa

}
fails to be holomorphic in a. To rectify this, we define

Daf (z) = f ′ (z)ϕ′a (0)(6.1)

= −f ′ (z)
{(

1− |a|2
)
Pa +

(
1− |a|2

) 1
2
Qa

}
,

for z ∈ Bn. Note that ∇z (a · z) = at when we view w ∈ Bn as an n × 1 complex
matrix, and denote by wt the 1 × n transpose of w. With this interpretation, we
observe that Paz = a·z

|a|2 a has derivative Pa = P ′az = aat

|a|2 = |a|−2 [aiaj ]1≤i,j≤n.

Example 6.1. For n = 2 we can calculate the differential operator Da for

a 6= 0 more explicitly using the basis
{
a, a⊥

}
of C2 where a =

(
a1

a2

)
and a⊥ =(

−a2

a1

)
. For w = µa+νa⊥, we compute the action of the linear operator Daf (z)

on w as

−Daf (z)w = f ′ (z)
{(

1− |a|2
)
µa+

(
1− |a|2

) 1
2
νa⊥

}
= µ

(
1− |a|2

)(
a1

∂

∂z1
f (z) + a2

∂

∂z2
f (z)

)
+ ν

(
1− |a|2

) 1
2
(
−a2

∂

∂z1
f (z) + a1

∂

∂z2
f (z)

)
.

Thus in the basis
{
a, a⊥

}
, we have

−Da =
((

1− |a|2
)(

a1
∂

∂z1
+ a2

∂

∂z2

)
,
(
1− |a|2

) 1
2
(
−a2

∂

∂z1
+ a1

∂

∂z2

))
,

where at the point a,
(
a1

∂
∂z1

+ a2
∂

∂z2

)
f (a) = f ′ (a) a is the complex radial deriv-

ative of f at a, and
(
−a2

∂
∂z1

+ a1
∂

∂z2

)
f (a) = f ′ (a) a⊥ is the complex tangential

derivative of f at a.

The next lemma shows that Dm
a and Dm

b are comparable when a and b are
close in the Bergman metric.
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Lemma 6.2. Let a, b ∈ Bn satisfy β (a, b) ≤ C. There is a positive constant Cm

depending only on C and m such that

C−1
m |Dm

b f (z)| ≤ |Dm
a f (z)| ≤ Cm |Dm

b f (z)| ,

for all f ∈ H (Bn).

Proof. The equivalence is easy if a = 0, so we may assume that |a| , |b| ≥ 1
2 .

We first note that b ∈ Bd (a,C) implies the estimates

|Pa (a− b)|+ |Qa (a− b)|2 ≤ C
(
1− |a|2

)
,(

1− |a|2
)
≈
(
1− |b|2

)
,

and since Qaa = 0, this yields

|Qab| = |Qa (a− b)| ≤ C
(
1− |a|2

) 1
2
,

and by symmetry,

|Qba| ≤ C
(
1− |b|2

) 1
2 ≈

(
1− |a|2

) 1
2
.

We can now estimate the modulus of ϕ′b (0) a by

|ϕ′b (0) a| =
∣∣∣∣(1− |b|2)Pba+

(
1− |b|2

) 1
2
Qba

∣∣∣∣
≤ C

(
1− |a|2

)
+ C

(
1− |a|2

) 1
2 |Qba|

≤ C
(
1− |a|2

)
.

Thus we may write

(6.2) ϕ′b (0) a =
(
1− |a|2

) (
σa+ τv⊥

)
, |σ| , |τ | ≤ C,

where v⊥ is a unit vector in the orthogonal complement (Ca)⊥ of Ca.
Next we show that if a⊥ is any unit vector in (Ca)⊥, then

ϕ′b (0) a⊥ =
(
1− |b|2

)
Pba

⊥ +
(
1− |b|2

) 1
2
Qba

⊥(6.3)

=
(
1− |a|2

)
µa+

(
1− |a|2

) 1
2
νw⊥, |µ| , |ν| ≤ C,

where w⊥ is another unit vector in (Ca)⊥. To see this we use

Pba
⊥ = PaPba

⊥ +QaPba
⊥

and

Qba
⊥ = a⊥ − Pba

⊥ = a⊥ − b · a⊥

|b|2
b

= a⊥ − b · a⊥

|b|2
(Pab+Qab)
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to write

ϕ′b (0) a⊥ =
(
1− |b|2

) (
PaPba

⊥ +QaPba
⊥)

+
(
1− |b|2

) 1
2

(
a⊥ − b · a⊥

|b|2
Pab−

b · a⊥

|b|2
Qab

)
,

so that for (6.3) to hold we must have(
1− |a|2

)
µa =

(
1− |b|2

)
PaPba

⊥ −
(
1− |b|2

) 1
2 b · a⊥

|b|2
Pab

and (
1− |a|2

) 1
2
νw⊥ =

(
1− |b|2

)
QaPba

⊥ +
(
1− |b|2

) 1
2

(
a⊥ − b · a⊥

|b|2
Qab

)
.

Since Pa and Qa are orthogonal projections onto Ca and (Ca)⊥ respectively, we see
that the representation (6.3) holds with the stated bounds upon using

∣∣b · a⊥∣∣ = ∣∣∣(b− a) · a⊥
∣∣∣ ≤ C |b− a| ≤ C

(
1− |a|2

) 1
2
.

From (6.2) and (6.3) above we obtain in particular that for every unit vector
v ∈ Cn, there is a unit vector v⊥ ∈ (Ca)⊥ and bounded scalars µ, ν such that

(6.4) ϕ′b (0) v =
(
1− |a|2

)
µa+

(
1− |a|2

) 1
2
νv⊥

(simply write v as a linear combination of a and a vector perpendicular to a and
use (6.2) and (6.3)).

Now suppose that m = 1. Then for any unit vector v ∈ Cn, we have from (6.4)
that

|Dbf (z) v| = |f ′ (z)ϕ′b (0) v|

=
∣∣∣∣(1− |a|2)µf ′ (z) a+

(
1− |a|2

) 1
2
νf ′ (z) v⊥

∣∣∣∣
≤ C

(
1− |a|2

)
|f ′ (z) a|+ C

(
1− |a|2

) 1
2 ∣∣f ′ (z) v⊥∣∣

≤ C |Daf (z)| ,

since

|Daf (z)| =
∣∣∣∣f ′ (z){(1− |a|2)Pa +

(
1− |a|2

) 1
2
Qa

}∣∣∣∣
≈ sup

|v|≤1

∣∣∣∣f ′ (z){(1− |a|2)Pav +
(
1− |a|2

) 1
2
Qav

}∣∣∣∣
≈
(
1− |a|2

)
|f ′ (z)Pa|+

(
1− |a|2

) 1
2 |f ′ (z)Qa| .
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Now suppose that m = 2. Then viewing D2
af (z) as a symmetric bilinear form,

we have that∣∣D2
af (z)

∣∣ ≈ (1− |a|2)2

|Paf
′′ (z)Pa|(6.5)

+
(
1− |a|2

) 3
2

(|Paf
′′ (z)Qa|+ |Qaf

′′ (z)Pa|)

+
(
1− |a|2

)
|Qaf

′′ (z)Qa| .

Indeed, write P̃a =
(
1− |a|2

)
Pa and Q̃a =

(
1− |a|2

) 1
2
Qa, and note that the set

of vectors

V = {σPav + τQaw : σ, τ ∈ C; v, w ∈ Cn; |σ| , |τ | , |v| , |w| ≤ 1}

satisfies

{V ∈ Cn : |V | ≤ 1} ⊂ V ⊂ {V ∈ Cn : |V | ≤ 2} .

Then, with Vi = σiPavi + τiQawi for i = 1, 2, we have

P̃aVi + Q̃aVi = σiP̃avi + τiQ̃awi, i = 1, 2

and so
∣∣D2

af (z)
∣∣ is approximately

sup
V1,V2∈V

∣∣∣{P̃aV1 + Q̃aV1

}
f ′′ (z)

{
P̃aV2 + Q̃aV2

}∣∣∣
= sup

|σi|,|τi|≤1
|vi|,|wi|≤1

∣∣∣{σ1P̃av1 + τ1Q̃aw1

}
f ′′ (z)

{
σ2P̃av2 + τ2Q̃aw2

}∣∣∣
= sup

|σi|,|τi|≤1
|vi|,|wi|≤1

∣∣∣∣∣(σ1, τ1)

[
P̃av1f

′′ (z) P̃av2 P̃av1f
′′ (z) Q̃aw2

Q̃aw1f
′′ (z) P̃av2 Q̃aw1f

′′ (z) Q̃aw2

](
σ2

τ2

)∣∣∣∣∣
≈ sup

|vi|,|wi|≤1

{ ∣∣∣P̃av1f
′′ (z) P̃av2

∣∣∣+ ∣∣∣P̃av1f
′′ (z) Q̃aw2

∣∣∣
+
∣∣∣Q̃aw1f ′′ (z) P̃av2

∣∣∣+ ∣∣∣Q̃aw1f ′′ (z) Q̃aw2

∣∣∣
}
,

which yields (6.5). Since vtD2
bf (z)w = (ϕ′b (0) v)t

f ′′ (z)ϕ′b (0)w, we must now
show that the expression
(6.6)∣∣∣∣∣
[(

1− |a|2
)
σa+

(
1− |a|2

) 1
2
τv⊥

]t

f ′′ (z)
[(

1− |a|2
)
µa+

(
1− |a|2

) 1
2
νw⊥

]∣∣∣∣∣
is at most

∣∣D2
af (z)

∣∣. However, the expression (6.6) is dominated by

C
(
1− |a|2

)2

|Paf
′′ (z)Pa|+ C

(
1− |a|2

) 3
2 |Paf

′′ (z)Qa|

+ C
(
1− |a|2

) 3
2 |Qaf

′′ (z)Pa|+ C
(
1− |a|2

)
|Qaf

′′ (z)Qa| ,

which is at most
∣∣D2

af (z)
∣∣ by (6.5). This completes the proof of Lemma 6.2 in

cases m = 1, 2.
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The case m > 2 is handled similarly viewing Dm
b f (z) as a symmetric m-linear

form on Cn × ...× Cn (m times). Briefly, the argument is this:∣∣∣Dm
b f (z) {vj}m

j=1

∣∣∣ ≤ ∣∣∣f (m) (z) {ϕ′b (0) vj}
m

j=1

∣∣∣
≤

∣∣∣∣∣f (m) (z)
{(

1− |a|2
)
µja+

(
1− |a|2

) 1
2
νjw

⊥
j

}m

j=1

∣∣∣∣∣
≤ C

m∑
`=0

(
1− |a|2

)m−` (
1− |a|2

) `
2
∣∣∣f (m) (z) {uj}m

j=1

∣∣∣ ,
where in the summand corresponding to the index `, m− ` of the uj are equal to a
and the remaining uj are equal to w⊥j . Each summand is dominated by |Dm

a f (z)|,
thereby completing the proof of Lemma 6.2.

Definition 6.3. Suppose 1 < p < ∞ and m ≥ 1. We define a “tree semi-
norm” ‖·‖∗Bp,m

by

(6.7) ‖f‖∗Bp,m
=

(∑
α∈Tn

∫
Bd(cα,C2)

∣∣Dm
cα
f (z)

∣∣p dλn (z)

) 1
p

.

6.1. Equivalence of semi-norms. The semi-norms ‖·‖∗Bp,m
turn out to be

independent of m > 2n
p . We will obtain this fact as a corollary of the equivalence

of the norm in (2.9) with the corresponding “radial” derivative norm Rm as given
in Proposition 2.1. Note that the restriction m > 2n

p is dictated by the fact that∣∣Dm
cα
f (z)

∣∣ involves the factor
(
1− |z|2

)m
2

times mth order tangential derivatives

of f , and so we must have that
(
1− |z|2

)m
2 p

dλn (z) is a finite measure, i.e. m
2 p−

n− 1 > −1.

Lemma 6.4. Let 1 < p <∞ and m > 2n
p . Then

‖f‖∗Bp,m
+

m−1∑
j=0

∣∣∇jf (0)
∣∣ ≡ (∑

α∈Tn

∫
Bd(cα,C2)

∣∣Dm
cα
f (z)

∣∣p dλn (z)

) 1
p

+
m−1∑
j=0

∣∣∇jf (0)
∣∣

(6.8)

≈
(∫

Bn

∣∣∣(1− |z|2)m

Rmf (z)
∣∣∣p dλn (z)

) 1
p

.

Proof. We have

(6.9) |Daf (z)| =
∣∣∣f ′ (z){(1− ∣∣a2

∣∣)Pa +
(
1−

∣∣a2
∣∣) 1

2 Qa

}∣∣∣ ≥ ∣∣(1− ∣∣a2
∣∣) f ′ (z)∣∣ ,

and iterating with f replaced by (the components of) Daf in (6.9), we obtain∣∣D2
af (z)

∣∣ ≥ ∣∣(1− ∣∣a2
∣∣) (Daf)′ (z)

∣∣ .
Applying (6.9) once more with f replaced by (the components of) f ′, we get∣∣(1− ∣∣a2

∣∣) (Daf)′ (z)
∣∣ = ∣∣(1− ∣∣a2

∣∣)Da (f ′) (z)
∣∣ ≥ ∣∣∣(1− ∣∣a2

∣∣)2 f ′′ (z)∣∣∣ ,
which when combined with the previous inequality yields∣∣D2

af (z)
∣∣ ≥ ∣∣∣(1− ∣∣a2

∣∣)2 f ′′ (z)∣∣∣ .



86 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

Continuing by induction we have

(6.10) |Dm
a f (z)| ≥

∣∣∣(1− ∣∣a2
∣∣)m f (m) (z)

∣∣∣ , m ≥ 1.

Proposition 2.1 and (6.10) now show that(∫
Bn

∣∣∣(1− |z|2)m

Rmf (z)
∣∣∣p dλn (z)

) 1
p

≤ C

(∫
Bn

∣∣∣(1− |z|2)m

f (m) (z)
∣∣∣p dλn (z)

) 1
p

+
m−1∑
j=0

∣∣∇jf (0)
∣∣

≤ C

(∑
α∈Tn

∫
Bd(cα,C2)

∣∣∣(1− |z|2)m

f (m) (z)
∣∣∣p dλn (z)

) 1
p

+
m−1∑
j=0

∣∣∇jf (0)
∣∣

≤ C

(∑
α∈Tn

∫
Bd(cα,C2)

∣∣∣(1− |cα|2)m

f (m) (z)
∣∣∣p dλn (z)

) 1
p

+
m−1∑
j=0

∣∣∇jf (0)
∣∣

≤ C

(∑
α∈Tn

∫
Bd(cα,C2)

|Dm
a f (z)|p dλn (z)

) 1
p

+
m−1∑
j=0

∣∣∇jf (0)
∣∣

= C ‖f‖∗Bp,m
+

m−1∑
j=0

∣∣∇jf (0)
∣∣ .

For the opposite inequality, we employ some of the ideas in the proofs of Theo-
rem 6.11 and Lemma 3.3 in [Zhu], where the case m = 1 > 2n

p is proved. Suppose
f ∈ H (Ω) and that the right side of (6.8) is finite. By Proposition 2.1 and Theorem
6.7 of [Zhu] we have

f (z) =
n!
πn

∫
Bn

g (w)
(1− w · z)n+1 dw, z ∈ Bn,

for some g ∈ Lp (dλn) where

(6.11) ‖g‖Lp(dλn) ≈
m−1∑
j=0

∣∣∇jf (0)
∣∣+ (∫

Bn

∣∣∣(1− |z|2)m

Rmf (z)
∣∣∣p dλn (z)

) 1
p

.

Fix α ∈ Tn and let a = cα ∈ Bn. We claim that
(6.12)

|Dm
a f (z)| ≤ Cm

(
1− |a|2

)m
2
∫

Bn

|g (w)|
|1− w · z|n+1+ m

2
dw, m ≥ 1, z ∈ Bd (a,C) .

We now compute Dm
a f (z) for z ∈ Bd (a,C), beginning with the case m = 1.

Since

Da (w · z) = (w · z)′ ϕ′a (0) = −wt
{(

1−
∣∣a2
∣∣)Pa +

(
1−

∣∣a2
∣∣) 1

2 Qa

}
= −

{
(1− |a2|)Paw + (1− |a2|)

1
2 Qaw

}t

,
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we have

Daf (z)

(6.13)

=
n!
πn

∫
Bn

Da (1− w · z)−(n+1)
g (w) dw

=
(n+ 1)!
πn

∫
Bn

(1− w · z)−(n+2)
Da (w · z) g (w) dw

= − (n+ 1)!
πn

∫
Bn

(1− w · z)−(n+2)
{

(1− |a2|)Paw + (1− |a2|)
1
2 Qaw

}t

g (w) dw.

Taking absolute values inside, we obtain

(6.14) |Daf (z)| ≤ C
(
1−

∣∣a2
∣∣) 1

2

∫
Bn

(
1−

∣∣a2
∣∣) 1

2 |Paw|+ |Qaw|
|1− w · z|n+2 |g (w)| dw.

From the following elementary inequalities

|Qaw| =

∣∣∣∣∣w − w · a
|a|2

a

∣∣∣∣∣ ≤ |w − a|+ |a|−1 |1− w · a| ,

|w − a|2 = |w|2 + |a|2 − 2 Re (w · a)

≤
(
1− |w|2

)
+
(
1− |a|2

)
+ |1− w · a|

≤ C |1− w · a| ,

we obtain that |Qaw| ≤ C |1− w · a|
1
2 . Using

(
1−

∣∣a2
∣∣)+ |1− w · a| ≤ C |1− w · z|

for z ∈ Bd (a,C), we now see that(
1−

∣∣a2
∣∣) 1

2 |Paw|+ |Qaw|
|1− w · z|n+2 ≤ C

|1− w · z|n+ 3
2
, z ∈ Bd (a,C) .

Plugging this estimate into (6.14) yields

|Daf (z)| ≤ C
(
1−

∣∣a2
∣∣) 1

2

∫
Bn

|g (w)|
|1− w · z|n+ 3

2
dw,

which is the case m = 1 of (6.12).
To obtain the case m = 2 of (6.12), we differentiate (6.13) again to get

D2
af (z) = − (n+ 2)!

πn

∫
Bn

(1− w · z)−(n+3)
WW

t
g (w) dw.

where we have written W =
{(

1−
∣∣a2
∣∣)Paw +

(
1−

∣∣a2
∣∣) 1

2 Qaw
}

for convenience.
Again taking absolute values inside, we obtain

∣∣D2
af (z)

∣∣ ≤ C
(
1−

∣∣a2
∣∣) ∫

Bn

((
1−

∣∣a2
∣∣) 1

2 |Paw|+ |Qaw|
)2

|1− w · z|n+3 |g (w)| dw.
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Once again, using |Qaw| ≤ C |1− w · a|
1
2 and

(
1−

∣∣a2
∣∣)+ |1− w · a| ≤ C |1− w · z|

for z ∈ Bd (a,C), we see that((
1−

∣∣a2
∣∣) 1

2 |Paw|+ |Qaw|
)2

|1− w · z|n+3 ≤ C

|1− w · z|n+2 , z ∈ Bd (a,C) ,

which yields the casem = 2 of (6.12). The general case of (6.12) follows by induction
on m.

Now with a = m
2 , b = 0 and t = −n− 1, our assumption that m > 2n

p yields

−pa < t+ 1 < p (b+ 1) .

The inequality (6.12) shows that |Dm
a f (z)| ≤ CmS |g| (z) for z ∈ Bd (a,C), where

Sg (z) =
∫

Bn

(
1− |a|2

)m
2

|1− w · z|n+1+ m
2
g (w) dw

is the operator in Theorem 2.10 of [Zhu] with parameters a = m
2 and b = 0. Thus

the finite overlap property of the balls Bd (cα, C2) together with Theorem 2.10 of
[Zhu] yield

‖f‖∗Bp,m
=

(∑
α∈Tn

∫
Bd(cα,C2)

∣∣Dm
cα
f (z)

∣∣p dλn (z)

) 1
p

≤ Cm

(∫
Bn

|Sg (z)|p dλn (z)
) 1

p

≤ C ′m

(∫
Bn

|g (z)|p dλn (z)
) 1

p

≤ C ′′m

(∫
Bn

∣∣∣(1− |z|2)m

Rmf (z)
∣∣∣p dλn (z)

) 1
p

by (6.11). This completes the proof of Lemma 6.4.

6.2. The oscillation inequality. We will obtain an oscillation inequality for
Besov spaces by transporting Taylor polynomials at the origin to the kubes Kα

using the affine map ϕ̃a (z) = a+ϕ′a (0) z, and its inverse ϕ̃a
−1 (z) = ϕ′a (a) (z − a)

with a = cα. Inequality (6.15) below is due to Peloso [Pel].

Proposition 6.5. For 1 < p <∞ and m ≥ 1, we have the Taylor polynomial
oscillation inequality

(6.15)

{∑
α∈Tn

(
sup

z∈Kα

∣∣∣∣∣f (z)−
m−1∑
k=0

((z − aα) ·′)k
f (aα)

k!

∣∣∣∣∣
)p} 1

p

≤ C ‖f‖B∗
p,m

,

for every sequence of points {aα}α∈Tn
with aα ∈ Kα, α ∈ Tn. We also have the

local estimate

(6.16) sup
ξ∈Kα

∣∣∣∣∣f (ξ)−
m−1∑
k=0

((ξ − aα) ·′)k
f (aα)

k!

∣∣∣∣∣ ≤ C

(∫
K∗

α

∣∣Dm
cα
f (z)

∣∣p dλn (z)

) 1
p

.
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Proof. Denote by K∗
α the union of the Carleson box Kα and its neighbours

at most M boxes away. From part 1 of Lemma 2.8, and provided we choose M
sufficiently large, we obtain that there are constants A1, A2 and A∗2 in [0, 1) with
1−A∗2 = 1

2 (1−A2) depending only on n such that

B (cα, A1) ⊂ Kα ⊂ B (cα, A2) ,

B (cα, A∗2) ⊂ K∗
α,

for α ∈ Tn. We first establish the estimate

(6.17) sup
z∈B(0,A2)

|f (z)| ≤ Cm,n,p

(∫
K∗

0

|Dm
0 f (z)|p dλn (z)

) 1
p

,

for all f ∈ Bp satisfying the initial conditions

(6.18) ∇kf (0) = 0, 0 ≤ k < m.

We have by standard methods, for |z| < A2 and f ∈ Bp satisfying (6.18),

|f (z)| ≤ C

∫
B(0,A∗

2)
|∇mf (w)| dw

≤ C

∫
K∗

0

|∇mf (w)| dw

≤ C

(∫
K∗

0

|∇mf (ξ)|p dλn (ξ)

) 1
p

,

which establishes (6.17) since Dm
0 = ∇m.

Using the affine maps ϕ̃a, we now show that (6.17) implies the estimate (6.16).
Indeed, let a = cα. Since ϕ̃a (B (0, A2)) ⊃ Kα for A2 large enough, we will apply
(6.17) to the function

g (z) = (f ◦ ϕ̃a) (z)−
m−1∑
k=0

(z · ∇)k (f ◦ ϕ̃a) (0) ,

which satisfies (6.18) with g in place of f . We also restrict the supremum over z in
(6.17) to ϕ̃a

−1 (Kα). We compute that

(w · ∇) (f ◦ ϕ̃a) (0) = f ′ (a)ϕ′a (0)w = Daf (a)w ≡ (w ·Da) f (a) ,

and more generally

(w · ∇)k (f ◦ ϕ̃a) (0) = (w ·Da)k
f (a) , 0 ≤ k ≤ m− 1, w ∈ Cn,

so that

g (z) = f (ϕ̃a (z))−
m−1∑
k=0

(z ·Da)k
f (a)

k!
.

Now using ϕ̃a
−1 (ξ) = ϕ′a (a) (ξ − a) and

(ϕ′a (a) (ξ − a) ·Da) f (a) = f ′ (a)ϕ′a (0)ϕ′a (a) (ξ − a)

= f ′ (a) (ξ − a)

= ((ξ − a) ·′) f (a) ,
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we get from (6.17), with g in place of f , that

max
ξ∈Kα

∣∣∣∣∣f (ξ)−
m−1∑
k=0

((ξ − a) ·′)k
f (a)

k!

∣∣∣∣∣
p

= max
z∈K0

|g (z)|p

≤ C

∫
K∗

0

|Dm
0 g (z)|p dλn (z) .

Noting that Dm
0 g = Dm

0 (f ◦ ϕ̃a) = (Dm
a f) ◦ ϕ̃a and dλn (ξ) ≈ dλn (z), we have∫

K∗
0

|Dm
0 (f ◦ ϕ̃a) (ξ)|p dλn (ξ) ≈

∫
K∗

α

|Dm
a f (z)|p dλn (z) ,

which yields the first inequality (6.16) since a = cα.
Now we apply (6.16) to obtain the case aα = cα of (6.15) as follows:

∑
α∈Tn

(
max
z∈Kα

∣∣∣∣∣f (z)−
m−1∑
k=0

((z − cα) ·′)k
f (aα)

k!

∣∣∣∣∣
)p

≤ C
∑
α

∫
K∗

α

∣∣Dm
cα
f (z)

∣∣p dλn (z) ≤ C ‖f‖p
Bp
,

by the finite overlap condition 5 in Lemma 2.8. The general case with aα ∈ Kα is
similar. This completes the proof of Proposition 6.5.

7. Besov spaces on trees

The theory of interpolating sequences is greatly simplified in the setting of
abstract trees. A crucial advantage in the tree setting is that the appropriate
derivatives of reproducing kernels for Bp (T ) are nonnegative, or in the case of the
holomorphic Besov spaces considered in the next section, satisfy a suitable substi-
tute, a fact which holds in the ball Besov space Bp (Bn) only for the vanishingly
small range 1 < p < 1 + 1

n−1 . As we will see in Remark 7.13 however, the restric-
tion map from Bp (Bn) to Bp (Tn) fails to be bounded unless p > 2n. This limits
the usefulness of the abstract Besov spaces on the Bergman tree for the study of
Bp (Bn), and motivates the holomorphic version HBp (Tn) introduced in the next
section. On the other hand, the simple and elegant theory of the abstract spaces
Bp (T ) will prove useful in guiding the development of, and motivating proofs for
the holomorphic spaces HBp (Tn).

We begin with the definition of Besov spaces on an abstract tree T . Define the
difference operator M on the tree by

M f (α) = f (α)− f (Aα) , α ∈ T ,

where Aα denotes the predecessor or immediate Ancestor of α. Define the pointwise
multiplier operator 2d on the tree by

2df (α) = 2d(α)f (α) , α ∈ T ,

where d (α) = d (o, α) denotes the distance in the tree from the root o to α.
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Definition 7.1. For 1 < p <∞ and m ≥ 0, define the Besov space Bp,m (T )
on a tree T to consist of all sequences f = {f (α)}α∈T such that

‖f‖Bp,m(T ) =

 ∑
α∈T :d(α)≥m

∣∣∣(2−d
)m (

2d M
)m

f (α)
∣∣∣p
 1

p

+
∑

d(α)≤m−1

|f (α)| <∞.

Note that in comparing this definition to the standard definition of Besov spaces
in the unit ball of Cn, the term 2−d plays the role of

(
1− |z|2

)
, and 2d M plays the

role of gradient. It turns out that the Carleson measures on Bp,m (Tn) are identical
for all m ≥ 1.

Lemma 7.2. Let 1 < p < ∞ and m ≥ 1. Then {ρ (α)}α∈T is a Bp,m (T )-
Carleson measure if and only if {ρ (α)}α∈T is a Bp,1 (T )-Carleson measure, which
in turn holds if and only if∑

β∈T :β≥α

I∗ρ (β)p′ ≤ Cp′I∗ρ (α) , α ∈ T .

Proof. If we write g (α) =
(
2−d

)m (2d M
)m

f (α) for d (α) ≥ m and then
invert the operators, we have

f (α)

(7.1)

=
(
I2−d

)m (
2d
)m

g (α)

=
∑

β1≤α

2−d(β1)
∑

β2≤β1

2−d(β2)...
∑

βm−1≤βm−2

2−d(βm−1)
∑

γ≤βm−1

2−d(γ)2md(γ)g (γ)

=
∑

γ≤βm−1≤...≤β2≤β1≤α

2−d(β1)−d(β2)−d(βm−1)2(m−1)d(γ)g (γ)

= C1

∑
γ≤βm−1≤...≤β2≤α

2−2d(β2)−d(β3)...−d(βm−1)2(m−1)d(γ)g (γ)

= C2

∑
γ≤βm−1≤...≤β3≤α

2−3d(β3)...−d(βm−1)2(m−1)d(γ)g (γ)

...

= Cm−1

∑
γ≤βm−1≤α

2−(m−1)d(βm−1)2(m−1)d(γ)g (γ) ≈ Ig (α) .

Now {ρ (α)}α∈T is a Bp,m (T )-Carleson measure if and only if(∑
α∈T

|f (α)|p ρ (α)

) 1
p

≤ C

(∑
α∈T

∣∣∣(2−d
)m (

2d M
)m

f (α)
∣∣∣p) 1

p

+
∑

d(α)≤m−1

|f (α)| ,

which is equivalent to(∑
α∈T

∣∣∣(I2−d
)m (

2d
)m

g (α)
∣∣∣p ρ (α)

) 1
p

≤ C

(∑
α∈T

|g (α)|p
) 1

p

.
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From (7.1) we obtain that this latter inequality holds if and only if(∑
α∈T

|Ig (α)|p ρ (α)

) 1
p

≤ C

(∑
α∈T

|g (α)|p
) 1

p

,

which in turn holds if and only if {ρ (α)}α∈T is a Bp,1 (T )-Carleson measure. The
final assertion follows from the equivalence of (1.7) and (1.10).

As is the case for Besov spaces on the unit ball, the norms ‖f‖Bp,m(T ) and
‖f‖Bp,m′ (T ) are equivalent for m,m′ large enough. Just how large depends on the
notion of upper dimension n (T ) of a tree T , defined in Section 2 by

n (T ) = lim sup
`→∞

log2

(
sup
α∈T

card {β ∈ T : β ≥ α and d (β) ≤ d (α) + `}
) 1

`

.

Lemma 7.3. For m > m′, we have ‖f‖Bp,m(T ) ≤ ‖f‖Bp,m′ (T ). If n = n (T ) is

the upper dimension of the tree T , then ‖f‖Bp,m(T ) ≈ ‖f‖Bp,m′ (T ) for m,m′ > n
p .

Proof. Let g (α) =
(
2−d

)m′ (
2d M

)m′

f (α) so that for d (α) ≥ m′ we have

f (α) =
(
I2−d

)m′ (
2d
)m′

g (α) Then(
2−d

)m (
2d M

)m
f (α) =

(
2−d

)m (
2d M

)m (
I2−d

)m′ (
2d
)m′

g (α) .

If m > m′, then∣∣∣(2−d
)m (

2d M
)m

f (α)
∣∣∣ = ∣∣∣(2−d

)m (
2d M

)m−m′ (
2d
)m′

g (α)
∣∣∣ ≤ C

m−m′∑
k=0

∣∣g (Akα
)∣∣ ,

and so

‖f‖Bp,m(T ) =

(∑
α∈T

∣∣∣(2−d
)m (

2d M
)m

f (α)
∣∣∣p) 1

p

≤ C

(∑
α∈T

|g (α)|p
) 1

p

= ‖f‖Bp,m′ (T ) .

On the other hand, if m < m′, then using (7.1) with m replaced by m′ −m,
we obtain∣∣∣(2−d

)m (
2d M

)m
f (α)

∣∣∣ = ∣∣∣(2−d
)m (

I2−d
)m′−m (

2d
)m′−m (

2d
)m

g (α)
∣∣∣

≤ C
(
2−d

)m
I
(
2d
)m |g (α)|

= C
∑
β≤α

2m[d(β)−d(α)] |g (β)|

= C
∑
β∈T

K (α, β) |g (β)| ,

where the kernel K (α, β) is given by χ[o,α] (β) 2m[d(β)−d(α)]. We now apply Schur’s
test, Lemma 5.17, with auxiliary function with h (β) = 2td(β). We have∑

β∈T

K (α, β)h (β)p′ =
∑
β≤α

2(m+p′t)d(β)2−md(α) ≤ Ch (α)p′
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provided m+ p′t > 0. To estimate the complementary sum∑
α∈T

K (α, β)h (α)p =
∑
α≥β

2(pt−m)d(α)2md(β),

we use the device of splitting the sum
∑

α≥β into “sparse” pieces
∑

α∈T
d(α)∈d(β)+`N+j

for

0 ≤ j < `, where ` is chosen so large in Definition 2.7 that given ε > 0,

log2 (N`)
1
` = log2

(
sup
α∈T

card {β ∈ T : β ≥ α and d (β) = d (α) + `}
) 1

`

< n (T ) + ε.

This is similar to the “sparse” argument used surrounding (3.19) to obtain the
necessity of the tree condition for the Carleson embedding on the ball. We then
have ∑

α∈T
K (α, β)h (α)p ≤ C`

∞∑
k=0

(
2n(T )+ε

)k`

2(pt−m)[d(β)+k`]2md(β)

≤ C`h (β)p
,

provided n (T ) + ε + pt −m < 0. Thus if we can choose −m
p′ < t < m−n(T )−ε

p for
some ε > 0, Schur’s test shows that

‖f‖Bp,m(T ) =

(∑
α∈T

∣∣∣(2−d
)m (

2d M
)m

f (α)
∣∣∣p) 1

p

≤ C

∑
α∈T

∣∣∣∣∣∣
∑
β∈T

K (α, β) |g (β)|

∣∣∣∣∣∣
p

1
p

≤ C

(∑
α∈T

|g (α)|p
) 1

p

= C ‖f‖Bp,m′ (T )

as required. But this choice of t is possible if and only if −m
p′ <

m−n(T )−ε
p for some

ε > 0, or m > n(T )
p .

With a small abuse of notation the norm ‖f‖Bp,m(T ) will be denoted simply by

‖f‖Bp(T ) when it is understood that m > n(T )
p . Otherwise, we will write Bp,m (T )

to emphasize the dependence on m. We note that in general Bp,m (T ) 6= Bp,m′ (T )
if m < m′ and m ≤ n

p . For example, in the case m = 1 and m′ = 2, define
f on the Bergman tree Tn, with θ = ln 2

2 as in (3.3), by f (α) = 2−d(α). Then
M f (α) = −2−d(α) and

22d
(
2d M

)2
f (α) = 2−d M

(
−2d2−d

)
(α) = 0
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for d (α) ≥ 2. Thus f ∈ Bp,2 (Tn) for all 1 < p <∞. On the other hand, using the
“sparse” argument again, f ∈ Bp,1 (Tn) if and only if p > n:

‖f‖Bp,1(Tn) =

 ∑
α∈Tn:d(α)≥1

|M f (α)|p
 1

p

+ |f (o)|

=

(∑
α∈Tn

2−pd(α)

) 1
p

+ |f (o)|

≤ C`

( ∞∑
k=0

2(n+ε)k`2−pk`

) 1
p

+ |f (o)| ,

if log2 (N`)
1
` < n + ε, since by Lemma 2.8, the dimension of the Bergman tree Tn

is n when θ = ln 2
2 .

We can now characterize the pointwise multipliers on Bp,m (T ).

Lemma 7.4. Let m > n(T )
p . Then f ∈ MBp,m(T ) if and only if f is bounded

and
{∣∣(2−d

)m (2d M
)m

f (α)
∣∣p}

α∈T
is a Bp,m (T )-Carleson measure.

Proof. (the case m = 2 > n(T )
p ) For the sufficiency, let an = f (α), an−1 =

f (Aα), an−2 = f
(
A2α

)
and similarly bn = ϕ (α), bn−1 = ϕ (Aα), bn−2 = ϕ

(
A2α

)
for ϕ ∈ Bp,2 (T ). Then

2−d M 2d M (fϕ) (α)

= 2−d(0,α)

{
(fϕ) (α)− (fϕ) (Pα)

2−d(0,α)
−

(fϕ) (Pα)− (fϕ)
(
P 2α

)
2−d(0,Pα)

}

= (anbn − an−1bn−1)−
1
2

(an−1bn−1 − an−2bn−2)

= an

{
(bn − bn−1)−

1
2

(bn−1 − bn−2)
}

+ bn−2

{
(an − an−1)−

1
2

(an−1 − an−2)
}

+
3
2

(an − an−1) (bn−1 − bn−2)

= f (α)
(
2−d M 2d M ϕ

)
(α) + ϕ

(
A2α

) (
2−d M 2d M f

)
(α)

+
3
2

(M f) (α) (M ϕ) (Aα) .

Since f is bounded and ϕ ∈ Bp,2 (T ), we have f (α)
(
2−d M 2d M ϕ

)
(α) ∈ `p. Since

B2p,2 (T ) ≈ B2p,1 (T ) ⊃ Bp,1 (T ) upon appealing to the equivalence of norms in
Lemma 7.3 (note that 1 > n(T )

2p ), we obtain from the Cauchy-Schwartz inequality
that ∣∣∣∣32 (M f) (α) (M ϕ) (Pα)

∣∣∣∣ ≤ |(M f) (α)|2 + |(M ϕ) (Pα)|2 ∈ `p.
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Thus the `p norm of ϕ
(
A2α

) (
2−d M 2d M f

)
(α) is controlled by the Bp,2 (T ) norm

of ϕ, and this shows that
{∣∣2−d M 2d M f (α)

∣∣p}
α∈T is a Bp,2 (T )-Carleson measure.

The case m > 2 is similar.
The necessity of the boundedness of f is standard. One can reverse the above

argument to obtain the necessity of the Carleson embedding.

7.1. Interpolating sequences on trees. Let {αj}∞j=1 be a sequence of points
in a tree T having finite dimension n = n (T ). In the present subsubsection we will
state without proof the equivalence of weighted `p interpolation for the Besov spaces
Bp,m (T ), m > n

p , on the sequence {αj}∞j=1, `
∞ interpolation for their multiplier

spaces MBp,m(T ) on {αj}∞j=1, and the separation and Carleson embeddings on the
tree,

d (αi, o) ≤ Cd (αi, αj) and
∞∑

j=1

d (o, αj)
1−p

δαj is a Carleson measure for Bp,m (T ) .

In order to give a precise statement involving additional equivalent conditions,
we need to introduce duality pairings and reproducing formulas for Bp,m (T ) and
Bp′,m (T ).

For m ≥ 1, define the pairing

〈F,G〉m =
∑
α∈T

(
2−d

)m (
2d M

)m
F (α) (2−d)m (2d M)m

G (α).

In the case m = 1,
(
2−d

)m (2d M
)m =M and the reproducing kernel k1

α (β) =
k1 (α, β) with respect to the pairing

〈F,G〉1 =
∑

α∈Tn

M F (α) M G (β),

for the Besov space Bp,1 (T ) on the tree T is given by

k1
α (β) = χ[0,α] (β) d (0, β) + χS(α) (β) d (0, α) , α, β ∈ T .

Indeed, we have

(7.2) M k1
α (β) = χ[0,α] (β)

and so 〈
F, k1

α

〉
T =

∑
β∈T

M F (β) M k1
α (β) =

∑
0≤β≤α

M F (β) = F (α) .

The important property here is that the kernel M k1
α in (7.2) is nonnegative and

pointwise comparable to χ[0,α], and this is easily generalized to the reproducing
kernels km

α for all m ≥ 1:

(7.3)
(
2−d

)m (
2d M

)m
km

α (β) ≈ χ[0,α] (β) ≥ 0, α, β ∈ T .

For example, when m = 2,
(
2−d

)m (2d M
)m = 2−d M 2d M and the reproducing

kernel k2
α (β) = k2 (α, β) with respect to the pairing

〈F,G〉2 =
∑
α∈T

2−d M 2d M F (α) 2−d M 2d M G (β),
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for the Besov space Bp,2 (T ) on the tree T satisfies

(7.4) 2−d M 2d M k2
α (γ) = χ[0,α] (γ)

 ∑
β∈[γ,α]

2d(γ)−d(β)

 , α, β ∈ T .

Indeed, with f = 2−d M 2d M F , we have F = I2−dI2df and

F (α) = I2−dI2df (α) =
∑
β≤α

2−d(β)
∑
γ≤β

2d(γ)f (γ) =
∑
γ≤β

 ∑
β∈[γ,α]

2d(γ)−d(β)

 f (γ) .

Thus we have〈
F, k2

α

〉
Bp,2(T )

=
∑
γ∈T

2−d M 2d M F (γ) 2−d M 2d M k2
α (γ)

=
∑

0≤γ≤α

 ∑
β∈[γ,α]

2d(γ)−d(β)

 f (γ) = F (α) .

We have the following theorem.

Theorem 7.5. Let 1 < p <∞ and m > n
p where n = n (T ) is the dimension of

the tree T . Then the dual space of Bp,m (T ) can be identified with Bp′,m (T ) under
the pairing 〈·, ·〉m, and the reproducing kernel km

w for this pairing satisfies (7.3).

Now we suppose that m > n
p ,

n
p′ and suppress the dependence of kα = km

α and
Bp = Bp (T ) = Bp,m (T ) on m and T . Here is the abstract tree analogue of Böe’s
interpolation theorem. Note that by (7.3), we have

‖kα‖Bp′
=
∥∥∥(2−d

)m (
2d M

)m
km

α

∥∥∥
`p′
≈ d (o, α)

1
p′ , α ∈ T .

Theorem 7.6. Let 1 < p < ∞, m > n
p ,

n
p′ and kα be the reproducing kernel

for Bp relative to the pairing 〈·, ·〉m given in Theorem 7.5 above. Let {αj}∞j=1 be a
sequence in the tree T . Then the following conditions are equivalent.

(1) {αj}∞j=1 interpolates MBp
:

(7.5) The map f → {f (αj)}∞j=1 takes MBp
boundedly into and onto `∞.

(2)
{
kαj

}∞
j=1

is an unconditional basic sequence in Bp′ :

(7.6)

∥∥∥∥∥∥
∞∑

j=1

bjkαj

∥∥∥∥∥∥
Bp′

≤ C

∥∥∥∥∥∥
∞∑

j=1

ajkαj

∥∥∥∥∥∥
Bp′

, whenever |bj | ≤ |aj | .

(3) The following norm equivalence holds:

(7.7)

∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
Bp′

≈

 ∞∑
j=1

|aj |p
′

 1
p′

.

(4) {αj}∞j=1 interpolates Bp:

(7.8) The map f →

 f (zj)∥∥kαj

∥∥
Bp′


∞

j=1

takes Bp boundedly into and onto `p.
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(5) The following separation condition and Carleson embedding hold:

d (αi, o) ≤ Cd (αi, αj) and(7.9)
∞∑

j=1

d (o, αj)
1−p

δαj
is a Carleson measure for Bp,m (T ) .(7.10)

Remark 7.7. The interpolations in (7.5) and (7.8) can be taken to be linear,
i.e. there are bounded linear maps R : `∞ →MBp

and S : `p → Bp that yield right
inverses to the restriction maps in (7.5) and (7.8) respectively.

We give a brief sketch of those parts of the proof that we will need in the more
refined setting of holomorphic Besov spaces on trees. The proofs that (7.5) implies
(7.6) implies (7.7) implies (7.8) implies (7.9) follow the corresponding arguments
in Böe [Boe]. The details are standard, with the exception of the implication (7.6)
implies (7.7). The proof of this uses Böe’s Lemma 3.1 in [Boe] together with the
crucial property (7.3) that the difference operator

(
2−d

)m (2d M
)m applied to the

reproducing kernel on the tree is nonnegative for all 1 < p <∞. Indeed, assuming
(7.6) we have, with {rj(t)} being the Radamacher functions on [0, 1],∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`1

∥∥∥∥∥∥
p′

`p′

=

∥∥∥∥∥∥
∞∑

j=1

|aj |
kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
p′

Bp′

≤ C

∫ 1

0

∥∥∥∥∥∥
∞∑

j=1

|aj | rj (t)
kαj∥∥kαj

∥∥
Bp′ (T )

∥∥∥∥∥∥
p′

Bp′

dt

= C
∑
α∈T

∫ 1

0

∣∣∣∣∣∣
∞∑

j=1

|aj | rj (t)

(
2−d

)m (2d M
)m

kαj (α)∥∥kαj

∥∥
Bp′

∣∣∣∣∣∣
p′

dt

≈

∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`2

∥∥∥∥∥∥
p′

`p′

.

Continuing to follow Böe, we now use the inequality ‖·‖`2 ≤ ‖·‖`1 ‖·‖`∞ along with
the Cauchy-Schwartz inequality to obtain∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`1

∥∥∥∥∥∥
p′

`p′

≤ C

∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`2

∥∥∥∥∥∥
p′

`p′

≤ C

∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`1

∥∥∥∥∥∥
p′
2

`p′

×

∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`∞

∥∥∥∥∥∥
p′
2

`p′

,
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which yields∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
p′

Bp′

≈

∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`1

∥∥∥∥∥∥
p′

`p′

≈

∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`∞

∥∥∥∥∥∥
p′
2

`p′

≈

∥∥∥∥∥∥
∥∥∥∥∥∥aj

(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`p′

∥∥∥∥∥∥
p′
2

`p′

=

 ∞∑
j=1

|aj |p
′

 1
p′

since ∥∥∥∥∥∥
(
2−d

)m (2d M
)m

kαj∥∥kαj

∥∥
Bp′

∥∥∥∥∥∥
`p′

= 1, 1 ≤ j <∞.

It remains to prove that the separation condition and Carleson embedding in
(7.9) are sufficient for the multiplier interpolation in (7.5). This can be proved by
following the argument given for the ball in Section 5. See also Theorem 26 in
Section 6 of [ArRoSa], where the implication (7.9) implies (7.8) is proved in the
case m = 1. Since this result is not needed for subsequent developments, we omit
the proof.

7.2. The restriction map. Let p > n̂ where

n̂ =
{

1 if n = 1
2n if n > 1 .

Note that in this case we can take m = 1 in both the definition of Bp (Bn) on the
unit ball Bn and Bp (Tn) on the tree Tn. We have from the casem = 1 of Proposition
6.5, or from Theorem 6.30 of [Zhu], the following estimate on the oscillation of a
Bp (Bn) function on Bergman balls of bounded radius.

Lemma 7.8. The oscillation inequality

(7.11)

{∑
α∈Tn

(
max

z1,z2∈Kα

|f (z1)− f (z2)|
)p
} 1

p

≤ C ‖f‖Bp(Bn) ,

holds for p > n̂.

The following local version of Lemma 7.8, also essentially contained in Propo-
sition 6.5, will prove useful in estimating Carleson measure norms.

Lemma 7.9. The local oscillation inequality ∑
β∈Tn:β≥α

(
max

z1,z2∈Kβ

|f (z1)− f (z2)|
)p


1
p

≤ C

 ∑
β∈Tn:β≥α

∫
Bd(cβ ,C2)

∣∣∣∇̃f (z)
∣∣∣p dλn (z)

 1
p

, α ∈ Tn,
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holds for p > n̂.

The local oscillation inequality is not in [Zhu], and we prefer to give here a
proof of Lemma 7.8 using the invariant derivative, that immediately yields Lemma
7.9 as well, and avoids the use of the almost invariant holomorphic derivatives Da

in Proposition 6.5.

Proof. (of Lemmas 7.8 and 7.9 without using Proposition 6.5) Denote by K∗
α

the union of the Carleson box Kα and its neighbours at most M boxes away. From
part 1. of Lemma 2.8, and provided we choose M sufficiently large, we obtain that
there are constants A1, A2 and A∗2 in [0, 1) with 1 − A∗2 = 1

2 (1−A2) depending
only on n such that

B (cα, A1) ⊂ Kα ⊂ B (cα, A2) ,

B (cα, A∗2) ⊂ K∗
α,

for α ∈ Tn. We first establish the estimate

(7.12) max
z1,z2∈K0

|f (z1)− f (z2)| ≤ C

(∫
K∗

0

∣∣∣∇̃f (z)
∣∣∣p dλn (z)

) 1
p

,

for the root Carleson box K0 = 1
4Bn, and where

∣∣∣∇̃f ∣∣∣ denotes the invariant gradient
length of f defined by ∣∣∣∇̃f (z)

∣∣∣ = |∇ (f ◦ ϕz) (0)| .

Note that while the vector ∇̃f (z) = ∇ (f ◦ ϕz) (0) is not invariant under the action
of the automorphism group, its length

∣∣∣∇̃f (z)
∣∣∣ is invariant, i.e.

(7.13)
∣∣∣∇̃ (f ◦ ψ)

∣∣∣ = ∣∣∣(∇̃f) ◦ ψ∣∣∣ , ψ ∈ Aut (Bn) .

Indeed, given ψ ∈ Aut (Bn) and z ∈ Bn, let w = ψ (z). Then ϕw ◦ ψ ◦ ϕz (0) = 0
and so ϕw ◦ ψ ◦ ϕz = U is unitary. Since g and g ◦ U have the same (ordinary)
gradient length at the origin for any unitary transformation U , we obtain∣∣∣∇̃ (f ◦ ψ) (z)

∣∣∣ = |∇ (f ◦ ψ ◦ ϕz) (0)| = |∇ (f ◦ ϕw ◦ U) (0)|

= |∇ (f ◦ ϕw) (0)| =
∣∣∣(∇̃f) (w)

∣∣∣
=
∣∣∣((∇̃f) ◦ ψ) (z)

∣∣∣ .
To obtain (7.12), we use the standard Euclidean inequality,∫

B

|f (z)− f (w)| dw ≤ C

∫
B

|z − w|−1 |∇f (w)| dw,

valid for continuously differentiable f on a Euclidean ballB, together with Bergman’s
formula (applied to the derivative) scaled to the ball 3

4Bn,

f ′ (w) = cn

∫
3
4 Bn

f ′ (ξ)(
3
4 − ξ · w

)n+1 dξ,
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valid for f holomorphic on 3
4Bn, to obtain that for |z| < 1

4 and f ∈ Bp (Bn),∣∣∣∣∣f (z)− 1∣∣ 1
4Bn

∣∣ ∫ 1
4 Bn

f (w) dw

∣∣∣∣∣ ≤ 1∣∣ 1
4Bn

∣∣ ∫ 1
4 Bn

|f (z)− f (w)| dw

≤ C

∫
1
4 Bn

|z − w|−1 |f ′ (w)| dw

≤ C

∫
1
4 Bn

|z − w|−1

{∫
3
4 Bn

|f ′ (ξ)| dξ

}
dw

≤ C

∫
3
4 Bn

|f ′ (ξ)| dξ

≤ C

(∫
3
4 Bn

|f ′ (ξ)|p dξ

) 1
p

.

This establishes (7.12) since |f ′ (ξ)| ≈
∣∣∣∇̃f (ξ)

∣∣∣ and dξ ≈ dλn (ξ) for ξ ∈ 3
4Bn.

Using the holomorphic homeomorphisms ϕw of the ball, we now show that
(7.12) implies the estimate

(7.14) max
z1,z2∈Kα

|f (z1)− f (z2)| ≤ C

(∫
K∗

α

∣∣∣∇̃f (ξ)
∣∣∣p dλn (ξ)

) 1
p

, α ∈ Tn.

Recall that cα denotes the “center” of Kα. Since ϕcα
maps Tα to T0 (at least

approximately) with inverse ϕcα
, we can apply (7.12) to the function g = f ◦ ϕw

with w = cα and then use the invariance of ∇̃ (see (7.13)) and λn together with
the change of variable ξ = ϕw (z) to obtain

max
z1,z2∈Kα

|f (z1)− f (z2)|p = max
ξ1,ξ2∈K0

|g (ξ1)− g (ξ2)|p

≤ C

∫
K∗

0

∣∣∣∇̃ (f ◦ ϕw) (ξ)
∣∣∣p dλn (ξ)

= C

∫
K∗

0

∣∣∣∇̃f (ϕw (ξ))
∣∣∣p dλn (ξ)

= C

∫
K∗

α

∣∣∣∇̃f (z)
∣∣∣p dλn (z) .

This proves (7.14).
We now apply (7.14) to obtain (7.11) as follows:∑

α∈Tn

(
max

z1,z2∈Kα

|f (z1)− f (z2)|
)p

≤ C
∑

α∈Tn

∫
K∗

α

∣∣∣∇̃f (z)
∣∣∣p dλn (z)

≤ C

(∫
Bn

∣∣∣∇̃f (z)
∣∣∣p dλn (z)

) 1
p

,

by the finite overlap condition 5. in Lemma 2.8. By Theorem 6.11 in [Zhu], the
above expression is equivalent to the Besov space norm ‖f‖Bp(Bn) for p > n̂, and
this completes the proof of Lemma 7.8. Lemma 7.9 follows by adding up estimates
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in (7.14): ∑
β∈Tn:β≥α

(
max

z1,z2∈Kβ

|f (z1)− f (z2)|
)p

≤ C
∑

β∈Tn:β≥α

∫
K∗

β

∣∣∣∇̃f (z)
∣∣∣p dλn (z) , α ∈ Tn.

Corollary 7.10. Let p > n̂. Then the restriction map

Tf = {f (α)}α∈Tn
, where Tf (α) = f (cα) ,

is bounded from Bp (Bn) to Bp (Tn). If in addition n = 1 and 1 < p < ∞, then T
is also bounded from MBp(B1) to MBp(T1).

The reason the dimension is restricted to n = 1 for the boundedness of the
restriction map on the multiplier space, is that this restriction requires that Carleson
embeddings be characterized by the tree condition. We have only established this
latter result for p < 2 + 1

n−1 , which together with the restriction p > n̂ = 2n >

2+ 1
n−1 for n ≥ 2, leaves n = 1 as the only possible dimension. Nevertheless, in the

interest of motivating future proofs, we will present our arguments in as general a
setting as possible.

Proof. With the tree difference operator
(
2−d

) (
2d M

)
=M as in Definition 7.1

above with m = 1, we have

(7.15) |M f (α)| ≤ max
z1,z2∈K∗

α

|f (z1)− f (z2)| ,

where K∗
α is the Bergman ball centered at cα with radius C. Then from a modifi-

cation of (7.11) where Kα is replaced by K∗
α, we obtain

‖f‖Bp(Tn) =

 ∑
α∈Tn:d(α)≥1

|M f (α)|p
 1

p

+ |f (o)|

≤ C

 ∑
α∈Tn:d(α)≥1

∣∣∣∣ max
z1,z2∈K∗

α

|f (z1)− f (z2)|
∣∣∣∣p
 1

p

+ |f (o)|

≤ C ‖f‖Bp(Bn) .

To handle the restriction map T on the multiplier space MBp(B1), we need Ste-
genga’s characterization of multipliers on the disk in terms of Carleson embeddings
on the disk. More generally, we first record a variant of our multiplier theorem on
the ball using the invariant gradient length.

Lemma 7.11. Let ϕ ∈ H∞ (Bn) ∩ Bp (Bn) and p > n̂. Then ϕ is a multiplier
on Bp (Bn) if and only if ∣∣∣∇̃ϕ (z)

∣∣∣p dλn (z)

is a Bp (Bn)-Carleson measure on Bn.
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Proof. Using the product rule

∇̃ (fg) (z) = ∇ [(fg) ◦ ϕz] (0) = ∇ [(f ◦ ϕz) (g ◦ ϕz)] (0)

= f ◦ ϕz (0)∇ (g ◦ ϕz) (0) +∇ (f ◦ ϕz) (0) (g ◦ ϕz) (0)

= f (z) ∇̃g (z) + ∇̃f (z) g (z) ,

the case m = 1 of the proof of our multiplier theorem applies virtually verbatim.

Now let f ∈MBp(B1) and set

dµ (z) =
∑

α∈Tn

χKα
(z)
∫

K∗
α

∣∣∣∇̃f (ζ)
∣∣∣p dλ1 (ζ) .

The above lemma shows that µ is a Bp (B1)-Carleson measure. Define the dis-
cretization of µ in the usual way by

µ (α) =
∫

K∗
α

∣∣∣∇̃f (ζ)
∣∣∣p dλ1 (ζ) .

Since p < 2 + 1
n−1 when n = 1, it then follows from Theorem 3.1 that {µ (α)}α∈T1

is a Bp,1 (T1)-Carleson measure. Now set

ω (α) = |M f (α)|p .

From (7.15) and a modification of Remark 7.9, we obtain

I∗ω (α) =
∑

β∈T1:β≥α

|M f (α)|p

≤ C
∑

β∈T1:β≥α

(
max

z1,z2∈K∗
α

|f (z1)− f (z2)|
)p

≤ C
∑

α∈T1:β≥α

∫
Bd(cβ ,C2)

∣∣∣∇̃f (z)
∣∣∣p dλ1 (z)

= CI∗ν (α) .

It now follows that {ω (α)}α∈T1
is a Bp,1 (T1)-Carleson measure with norm bounded

by that of the Bp (B1)-Carleson measure µ. Finally, the tree multiplier characteri-
zation in Theorem 7.4, shows that Tf ∈MBp,1(T1) = MBp(T1) with ‖Tf‖MBp(T1)

≤
C ‖f‖MBp(B1)

.

Remark 7.12. Let p > n̂. Assume that the restriction map in Corollary 7.10
is bounded from MBp(Bn) to MBp(Tn). If {zj}∞j=1 ⊂ Bn interpolates MBp(Bn), i.e.

(7.16) The map f → {f (zj)}∞j=1 takes MBp boundedly into and onto `∞,

and if we construct the Bergman tree Tn so that {cα}α∈Tn
contains {zj}∞j=1, say

with zj = cαj
, then it follows that {αj}∞j=1 interpolates MBp(Tn), i.e. that (7.5)

holds with Tn in place of T :

(7.17) The map f → {f (αj)}∞j=1 takes MBp(Tn) boundedly into and onto `∞.
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To see that (7.17) holds if (7.16) does, suppose that {ξj}∞j=1 ∈ `
∞. Using (5.6)

we can find ϕ ∈MBp(Bn) satisfying

ϕ (zj) = ξj , 1 ≤ j <∞,

‖ϕ‖MBp(Bn)
≤ C

∥∥∥{ξj}∞j=1

∥∥∥
∞
.

Now define f on the tree Tn by

f (α) = ϕ (cα) , α ∈ Tn.

Then we have
f (αj) = ϕ

(
cαj

)
= ϕ (zj) = ξj

and our assumption on the restriction map shows that

‖f‖MBp(Tn)
≤ C ‖ϕ‖MBp(Bn)

,

thus completing the proof of (7.17).

Remark 7.13. It would be desirable to extend the conclusion of the previous
remark to all 1 < p < ∞ and n > 1, or at least to the case 1 < p < 2 + 1

n−1

where we have the equivalence of Carleson embeddings with the tree condition.
The argument above breaks down for higher order differences since the analogue
of (7.15) fails to hold. In fact, the restrictions of linear functions on the ball fail
to belong to Bp (Tn) for p ≤ 2n, n ≥ 2 (on the other hand, we showed above that
the analogous linear functions f (α) = 2−d(α) on the tree belong to Bp,2 (Tn) for all
1 < p < ∞). Indeed, if f (z) = z1, then for most α ∈ Tn, in particular for those α
at a distance at least c > 0 from the complex line C (1, 0, ..., 0), we have∑

β∈C(α)

|f (β)− f (α)| =
∑

β∈C(α)

|β1 − α1| ≈ e−d(α)θ,

where C (α) denotes the set of children of α. By property 4 of Lemma 2.8, we have

# {α ∈ Tn : d (α) = N} ≈ e2nNθ,

and thus

‖f‖p
Bp(Tn) = ‖f‖p

Bp,1(Tn)

≥ c
∑

α∈Tn

 ∑
β∈C(α)

|f (β)− f (α)|

p

≥ c
∑

α∈Tn

(
e−d(α)θ

)p

≈
∞∑

N=1

∑
α∈Tn:d(α)=N

e−pNθ

≈
∞∑

N=1

e2nNθe−pNθ = ∞

if 2n− p ≥ 0.

What is needed now is a definition of Besov space on a tree that involves
complex structure sufficient for higher order differences, or “derivatives”, to be
properly defined. This is introduced in the following subsection.
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7.3. Structured trees. In this subsection we introduce an alternative defi-
nition of Bp,1 (Tn) that is better adapted for generalization to those higher order
differences that reflect the underlying complex structure of the Bergman tree. We
must first interpret the fact that for a holomorphic function F in Bp (Bn), the dif-
ferences F (β)−F (α) are related as β ranges over the children of a fixed α; namely
they are close to F ′ (α) (β − α). Thus we wish to define in a natural way the notion
of a complex derivative f ′ of a complex-valued function f on the Bergman tree Tn.
It is convenient at this point to consider trees more general than Tn, namely those
with a complex structure.

An n-dimensional complex structure V on a tree T is a collection of n-vectors
V = {vα}α∈T , vα ∈ Cn. We can “immerse” the structured tree (T ,V) in Cn by
identifying α ∈ T with the point c (α) = vo +

∑
o<β≤α vβ ∈ Cn. For example,

the standard embedding of the Bergman tree Tn in the ball arises in this way from
the complex structure V = {cα − cAα}α∈Tn

on Tn. In general however, the map
α→ c (α) need not be one-to-one, hence the term “immerse”. Additional properties
of V will be required below.

Define the (backward) difference operator M on functions f mapping the tree
T to C by

M f (α) = f (α)− f (Aα) , α ∈ T ,
where Aα denotes the predecessor, or immediate Ancestor, of α (we reserve P for
projection). We denote the set of children of α ∈ T by C (α). We now assume that
dim (T ) is finite, so that in particular, there is an upper bound N for the branching
number of the tree, i.e. #C (α) ≤ N for all α ∈ Tn. Let

{
αj
}#C(α)

j=1
= C (α) be

an enumeration of the children of α. Then for α ∈ T we define the linear map
Lα : Cn → CN by

Lα (w) = (w · vαj )N
j=1 ,

with the convention that αj = α and vαj = 0 if #C (α) < j ≤ N . We now make
the assumption that Lα is one-to-one for all α ∈ T . Then given a complex-valued
function f on T we can define its complex derivative f ′ (α) ∈ Cn as follows. Let
Pα denote orthogonal projection of CN onto the range of Lα, and let Qα = I−Pα.
Denote by Dαf the N -vector of (forward) differences of f :

Dαf =
(
f
(
αj
)
− f (α)

)N
j=1

=
(
M f

(
αj
))N

j=1
∈ CN ,

where M f
(
αj
)

= f (α)− f (α) = 0 if #C (α) < j ≤ N by our convention. Then we
define

f ′ (α) = L−1
α Pα (Dαf) ,

so that

(7.18)
(
f
(
αj
)
− f (α)

)N
j=1

= (f ′ (α) · vαj )N
j=1 +Qα (Dαf) .

In the case of the natural complex structure introduced above on the Bergman
tree Tn, we have vαj = αj − α and (7.18) is thus an analogue of Taylor’s formula
of degree one on Tn. We now make this more precise in the special case of the
Bergman tree Tn.

For the Bergman tree Tn we can choose N = Ce2nθ, with λ ≤ 1 and θ > 1 to
be chosen below, by property 4 of Lemma 2.8. We also define the difference

M α = α−Aα, α ∈ Tn,
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where we identify α with the center cα of the Bergman kube Kα. With the con-
vention as above, we view the set of differences

Dαf =
(
M f

(
αj
))N

j=1

as a vector of complex numbers of length N , i.e. Dαf ∈ CN . The device of choosing
N larger than the branching number at any element of the tree is simply a matter
of convenience. We could just as well have worked with CN replaced replaced by
C#C(α) at each element α, but at the expense of more complicated notation. We
also consider the corresponding family of differences(

M αj
)N
j=1

,

as a vector of points in Cn of length N , i.e. in (Cn)N .
The linear map Lα defined above sends v ∈ Cn to the point

Lαv =
(
v ·
(
αj − α

))N
j=1

∈ CN .

Note that for the Bergman tree, the map Lα is one-to-one since the collection of
n-vectors

(
αj − α

)N
j=1

has rank n if θ > 1 is chosen large enough. Recall that Pα

is the orthogonal projection of CN onto the range of Lα (which has dimension n
since Lα is one-to-one) and Qα = I − Pα. The complex derivative f ′ (α) of f at
the point α is then the unique vector v such that

Lαv = Pα (Dαf) .

Thus we have

Lαf
′ (α) = Pα (Dαf) =

(
f ′ (α) ·

(
αj − α

))N
j=1

.

Now denote the radial and tangential components of f ′ (α) by f ′ (α)Pα and
f ′ (α)Qα respectively, where Pαz = z·α

|α|2α as in (2.1), and Qα = I−Pα. Here we are
viewing f ′ (α) as belonging to the space £ (Cn,C) of linear maps from Cn to C, and
Pα,Qα as belonging to the corresponding space of linear maps £ (Cn,£ (Cn,C)).
Thus we have decomposed the difference set Dαf as

Dαf =
(
M f

(
αj
))N

j=1
(7.19)

=
(
f ′ (α)Pα ·

(
αj − α

))N
j=1

+
(
f ′ (α)Qα ·

(
αj − α

))N
j=1

+Qα (Dαf) .

In our alternative definition of the Besov space Bp,1 (Tn), we weight the various
components of this decomposition in accordance with the complex structure the
Bergman tree Tn inherits from its embedding in the unit ball Bn.

Definition 7.14. For 1 < p <∞, define the holomorphic Besov space HBp,1 (Tn)
on Tn to consist of all complex-valued sequences f = {f (α)}α∈Tn

such that

‖f‖p
HBp,1(Tn) = |f (o)|p +

∑
α∈Tn

∣∣∣e−2d(α)θf ′ (α)Pα + e−d(α)θf ′ (α)Qα

∣∣∣p
+
∑

α∈Tn

|QαDαf |p

<∞.
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Remark 7.15. The expression∣∣∣e−2d(α)θvPα + e−d(α)θvQα

∣∣∣
is the tree analogue of

√
(B (α)v) · v =

√√√√√√
 Pαv(

1− |α|2
)2 +

Qαv

1− |α|2

 · v,

where B (z) = 1
n+1

∂2

∂zi∂zj
log 1

(1−|z|2)n+1 is the Bergman Riemannian metric on tan-

gent vectors v at the point z in Bn that leads to the Bergman distance β - see
(2.14) and Chapter 1.5 of [Zhu].

The equivalence of the norms ‖·‖Bp,1(Tn) and ‖·‖HBp,1(Tn) for 1 < p <∞ and θ
sufficiently large follows from the next result.

Definition 7.16. For a vector v ∈ Cn and α ∈ Tn, let

|v|α =
∣∣∣e−2d(α)θvPα + e−d(α)θvQα

∣∣∣ =√(B (α)v) · v.

Lemma 7.17. For θ sufficiently large in the construction of the Bergman tree
Tn, and for all 1 < p <∞, we have(∑

α∈Tn

|Dαf |p
) 1

p

≈

(∑
α∈Tn

|f ′ (α)|pα

) 1
p

+

(∑
α∈Tn

|QαDαf |p
) 1

p

.

Proof. Since Pα and Qα (respectively Pα and Qα) are orthogonal projections
on CN (respectively Cn), we have

|Dαf |2 = |PαDαf |2 + |QαDαf |2

= |Lαf
′ (α)|2 + |QαDαf |2

≈
∣∣∣e−2d(α)θf ′ (α)Pα

∣∣∣2 +
∣∣∣e−d(α)θf ′ (α)Qα

∣∣∣2 + |QαDαf |2

= |f ′ (α)|2α + |QαDαf |2 ,

where the third line follows from

|PαDαf |2 = |Lαf
′ (α)|2

=
∣∣∣{f ′ (α)Pα · Pα

(
αj − α

)
+ f ′ (α)Qα ·Qα

(
αj − α

)}N

j=1

∣∣∣2
≈
∣∣∣e−2d(α)θf ′ (α)Pα

∣∣∣2 +
∣∣∣e−d(α)θf ′ (α)Qα

∣∣∣2 .
To see this last equivalence, we note using (2.14) that both

N∑
j=1

∣∣Pα

(
αj − α

)∣∣ ≥ ce−2d(α)θ,(7.20)

N∑
j=1

∣∣Qα

(
αj − α

)∣∣ ≥ ce−d(α)θ.
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The first inequality is obvious. The second inequality follows if θ > 1 is chosen suffi-
ciently large, since the set of projections onto the sphere Sd(α)θ of the children C (α)
is e−2θC2-dense in the qube Qd(α)

j = Kα ∩ Sd(α)θ corresponding to Kα. Indeed, by
property 4 of Proposition 2.8, there are roughly e2nθ children of α whose projec-
tions onto the Bergman sphere Sd(α)θ all lie in Qd(α)

j . Since the Bergman distance
β is preserved by automorphisms, we see upon mapping matters to the origin that
these projections are roughly e−2θ-dense in the Bergman distance. With this es-
tablished for e−2θ sufficiently small, we now see that the vectors

{
Qα

(
αj − α

)}N

j=1

are sufficiently well distributed that (7.20) holds uniformly in α.

7.3.1. An abstract approach. The purpose of this short subsubsection is to il-
lustrate the flexibility of defining spaces via “derivatives” on trees, by including a
variety of classical spaces within a generalization of this framework. We will not
use the material here in the sequel.

Given a tree T with branching number bounded by N , we can more generally
than above, suppose that we are given an m-dimensional complex vector space W ,
and for each α ∈ T , Hilbert space norms [·]α and {·}α on W and CN respectively,
and a one-to-one linear map Lα from W to CN . Then we can define a derivative
f ′ (α) ∈W by

f ′ (α) = L−1
α Pα (Dαf) ,

where Dαf is the (forward) difference set defined as above, and Pα is orthogonal
projection onto the range of Lα. With Qα = I − Pα, define a norm on CN by

|w|2α =
[
L−1

α Pα (w)
]2
α

+ {Qα (w)}2α .

Then we define a Besov space norm ‖f‖Bp(T ) by

‖f‖p
Bp(T ) = |f (o)|p +

∑
α∈T

|f ′ (α)|pα .

In the case T = Tn and W = Cn, with Lα defined as above and

[v]α = |v|α =
∣∣∣e−2d(α)θvPα + e−d(α)θvQα

∣∣∣ , v ∈ Cn,

{w}α = |w| , w ∈ CN ,

we obtain that Bp (T ) is the holomorphic Besov space HBp,1 (Tn) defined above. If
however we take W = CN , Lα = I and the norms [·]α and {·}α to be the Euclidean
norm on CN , then Bp (T ) is the abstract space Bp,1 (T ) defined earlier.

For another example, suppose that T is a homogeneous tree with branching
number N . Take W to be the orthogonal complement in CN of the one-dimensional
subspace C (1, 1, ..., 1) generated by (1, 1, ..., 1), and let [·]α be the restriction of the
Euclidean norm to W . Let Lα be the natural inclusion of W into CN . Finally, let
{·}α be the trivial norm on CN that is infinite on all nonzero vectors and vanishes
on the zero vector. Then Bp (T ) is the martingale of all `p functions on the tree T
satisfying

f (α) =
1
N

∑
β∈C(α)

f (β) , α ∈ T .
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For yet another example, take T = T1, W = C, Lαv =
(
v
(
αj − α

))2
j=1

and

[v]α =
∣∣∣e−3d(α)θv

∣∣∣ , v ∈ C,

{w}α = |w| , w ∈ C2.

The resulting space B2 (T ) normed by

‖f‖2B2(T ) = |f (o)|2 +
∑
α∈T1

∣∣∣e−3d(α)θf ′ (α)
∣∣∣2 +

∑
α∈T1

|QαDαf |2

is a tree model for the Hardy space

H2 (D) =

F ∈ H (D) : |F (0)|2 +
∫

D

∣∣∣∣(1− |z|2) 3
2
F ′ (z)

∣∣∣∣2 dz(
1− |z|2

)2 <∞


on the unit disk. Note that |Dαf | ≈

∣∣e−2d(α)θf ′ (α)
∣∣ + |QαDαf |, so that the tree

model B2 (T ) for the Hardy space permits the differences of f to grow rapidly in the
holomorphic direction, and is thus much larger than the abstract space B2,1 (T1).
Finally, by including higher order derivatives, this example can be extended to
higher dimensions to provide a tree model for the space H2

n of Arveson [Arv], that
consists of all F ∈ H (Bn) whose radial derivative RmF satisfies∫

Bn

∣∣∣(1− |z|2)m

RmF (z)
∣∣∣2 dz(

1− |z|2
)n

=
∫

Bn

∣∣∣∣(1− |z|2)m+ 1
2 RmF (z)

∣∣∣∣2 dλn (z) <∞,

where m = 1 +
[

n−1
2

]
(the Hardy space H2 (D) on the disk is the case m = n = 1).

In the next section we will construct holomorphic Besov spaces on Bergman
trees Tn that model the Besov spaces Bp (Bn) on the ball.

8. Holomorphic Besov spaces on Bergman trees

Our goal in this lengthy section is to obtain a definition of a holomorphic
Besov space HBp,m (Tn) on the Bergman tree Tn so that the restriction map (as
in Corollary 7.10) is bounded from Bp (Bn) to HBp,m (Tn) in the range p > 2n

m ,
while retaining as many of the properties of the abstract Besov space Bp,m (Tn)
as possible. One essential property we wish to retain is that Carleson measures
for HBp,m (Tn) be characterized by the tree condition (3.2), as that is the con-
dition needed to prove the sufficiency implication for multiplier interpolation on
the ball. Another essential property is an appropriate positivity of “derivatives”
of reproducing kernels for HBp,m (Tn), as that is needed to prove the necessity
of the tree condition for multiplier interpolation on the ball in the difficult range
1 + 1

n−1 ≤ p < 2. See the discussion at the end of Section 5.
Recall that in the previous section we showed in Corollary 7.10 that the re-

striction map is bounded from Bp (Bn) to Bp,1 (Tn) in the range p > n̂ = 2n
1 . Of

course the Carleson measures for Bp,1 (Tn) are characterized by the tree condition,
and the first order difference of the reproducing kernel for Bp,1 (Tn) is nonnega-
tive (the analogues of these latter two properties actually hold for all Bp,m (Tn) by
Lemma 7.2 and (7.3)). This demonstrates that the abstract Besov space Bp,1 (Tn)
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has the properties desired of our holomorphic Besov space for p > 2n, and in view
of Lemma 7.17, we have

(8.1) HBp,1 (Tn) = Bp,1 (Tn) .

However, the proof of the restriction theorem given in Corollary 7.10 is not amenable
to generalization to higher order differences, and in fact the abstract Besov spaces
Bp,m (Tn) on trees do not capture the higher order derivatives of holomorphic func-
tions in the ball. Indeed, higher order tree differences vanish on appropriate poly-
nomial functions of r−d(α) on the tree, but not on the restrictions to the tree of
polynomials on the ball, even though the corresponding derivatives are identically
zero on the ball. In particular, recall from Remark 7.13 that linear functions on the
ball do not restrict to Bp,m (Tn) for p ≤ 2n for any m ≥ 1. Thus we now proceed,
as we did for m = 1 in our definition of HBp,1 (Tn) above, to model our definition
of HBp,m (Tn) after the almost invariant holomorphic derivatives Dm

a used in the
seminorms (6.7) for Bp (Bn).

We begin with the holomorphic Besov space HBp,1 (Tn) already defined in
Subsection 7.3, and derive its reproducing kernels relative to the duality pairing
induced by the norm ‖·‖HBp,1(Tn), along with their positivity properties. In prepa-
ration for an inductive definition of the higher order Besov spaces HBp,m (Tn), we
must also derive the analogous theory of the Besov spaces HB(k)

p,1 (Tn) of k-tensors
defined on Tn, as we will view higher order complex tree derivatives f (k) (α) as
tensor-valued functions on the tree. To expedite this process, it is advantageous to
consider first the order zero case, and develop the required tensor apparatus for `p

spaces, the order zero analogue of a holomorphic Besov space. Then we proceed to
define HBp,m (Tn) inductively for m ≥ 2 and establish the appropriate positivity
properties of their reproducing kernels, which will require a careful choice of the
structural constants λ and θ in the construction of the Bergman tree Tn, along with
an additional modification of the centers of the Bergman balls. Finally, we estab-
lish for these spaces the Carleson measure theorem and the restriction theorem, and
then complete the proof of the multiplier interpolation loop for 1 < p < 2 + 1

n−1 ,
that was left open at the end of Section 5.

8.1. The order zero and order one holomorphic Besov spaces. Recall
that for 1 < p <∞ we defined the order 1 holomorphic Besov space HBp,1 (Tn) on
Tn in Definition 7.14 to consist of all complex-valued sequences f = {f (α)}α∈Tn

such that

‖f‖p
HBp,1(Tn) = |f (o)|p +

∑
α∈Tn

∣∣∣r−d(α)f ′ (α)Pα + r−
d(α)

2 f ′ (α)Qα

∣∣∣p
+
∑

α∈Tn

|QαDαf |p

<∞,

where we have written

(8.2) r = e2θ

for convenience, so that by (2.14),

(8.3) 1− |α|2 ≈ e−2β(0,α) ≈ e−2θd(α) = r−d(α).



110 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

In comparing this definition with Definition 7.1 for the real Besov space Bp,1 (Tn)
on the Bergman tree Tn,

‖f‖p
Bp,1(Tn) = |f (o)|p +

∑
α∈Tn

|Dαf |p <∞,

recall that the set of differences Dαf can be written as the linear sum of the two
pieces PαDαf and QαDαf ; the first piece PαDαf lying in the range of Lα (the
holomorphic part), and the second piece QαDαf orthogonal to the range of Lα.
The first piece PαDαf can be further decomposed using the identities

Lαf
′ (α) = PαDαf,

f ′ (α) = L−1
α PαDαf,

where the second one follows since Lα is one-to-one and Pα is orthogonal projection
onto the range of Lα. We then decompose f ′ (α) as f ′ (α)Pα + f ′ (α)Qα. Now Lα

has the N × n matrix representation
[
αj

k − αk

]
1≤j≤N,1≤k≤n

where αj =
(
αj

k

)n

k=1

and α = (αk)n
k=1, and so resembles the nonisotropic linear operator

R−d(α) ≡ r−d(α)Pα + r−
d(α)

2 Qα,

whose action on a vector v ∈ £ (Cn,C) is given by R−d(α)v ≡ r−d(α)vPα +
r−

d(α)
2 vQα. Thus we formally have that

Dαf = Lαf
′ (α) +QαDαf

∼ R−d(α)f ′ (α) +QαDαf.

We actually proved that |Dαf | ≈
∣∣R−d(α)f ′ (α)

∣∣+ |QαDαf | in the course of proving
Lemma 7.17.

Thus locally we measure the holomorphic parts PαDαf of the differences Dαf
by the Bergman Riemannian metric, where the radial directions f ′ (α)Pα are
weighted by r−d(α), and the tangential directions f ′ (α)Qα weighted by

√
r−d(α) =

r−
d(α)

2 . This is analogous to the definition (6.1) of the almost invariant holomorphic
derivative Dα given in the ball by

Daf (z) = −f ′ (z)
{(

1− |a|2
)
Pa +

(
1− |a|2

) 1
2
Qa

}
, a ∈ Bn.

We then take the `p (Tn) norm of these local measures. We measure the anti-
holomorphic parts QαDαf of the differences Df (α) by the `p (T )-norm. We now
consider reproducing kernels associated to these norms.

8.1.1. Reproducing kernels. The reproducing kernel kα for the space `p (Tn)
is trivial: kα (γ) = χ{α} (γ), the delta function at α. We must work harder to
obtain the reproducing kernel for HBp,1 (Tn). We first observe that we can recover
a function f ∈ HBp,1 (Tn) from its differences

Dαf = PαDαf +QαDαf

= Lαf
′ (α) +QαDαf

and hence also from its derivatives and antiholomorphic differences QαDαf . In
order to give an explicit formula, we write

PαDαf =
{
PαDαf

(
αj
)}N

j=1
and QαDαf =

{
QαDαf

(
αj
)}N

j=1
,
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so that M f
(
αj
)

= PαDαf
(
αj
)
+QαDαf

(
αj
)
, where α = Aαj . Thus PαDαf

(
αj
)

is the jth component of the N -vector PαDαf = Lαf
′ (α), i.e.

PAβDAβf (β) = f ′ (Aβ) · (β −Aβ) ,

and we have the tree version of the Taylor expansion of order 1 at the point Aβ;

f (β) = f (Aβ) + f ′ (Aβ) · (β −Aβ) +QAβDAβf (β) .

For α ∈ Tn we write the geodesic to α as [o, α] = {o, α1, α2, ..., αm} (note the
different use of the terminology αj here). An explicit formula for f (α) is now given
by

f (α) = f (αm) =
m∑

k=1

M f (αk) + f (o)(8.4)

= f (o) +
m∑

k=0

Pαk−1Dαk−1f (αk) +
m∑

k=0

Qαk−1Dαk−1f (αk)

= f (o) +
m∑

k=0

f ′ (αk−1) · (αk − αk−1) +
m∑

k=0

Qαk−1Dαk−1f (αk) .

We can rewrite this as

(8.5) f (α) = f (o) +
∑
γ<α

f ′ (γ) · (γα − γ) +
∑
γ<α

QγDγf (γα) ,

where γα denotes the child of γ lying on the geodesic [o, α], so that γα = αk if
γ = αk−1. Note that an immediate consequence of (8.5) is the inequality

(8.6) |f (α)| ≤ C ‖f‖HBp,1(Tn) d (α)
1
p′ .

Indeed, using I = P 2
γ +Q2

γ we have the formula

(8.7) f ′ (γ) · (γα − γ) = f ′ (γ)Pγ · Pγ (γα − γ) + f ′ (γ)Qγ ·Qγ (γα − γ) ,

and hence the estimate

|f ′ (γ) · (γα − γ)| ≤ |f ′ (γ)Pγ · Pγ (γα − γ)|+ |f ′ (γ)Qγ ·Qγ (γα − γ)|

≤ |f ′ (γ)Pγ | r−d(γ) + |f ′ (γ)Qγ | r−
d(γ)

2

≈
∣∣∣r−d(γ)f ′ (γ)Pγ + r−

d(γ)
2 f ′ (γ)Qγ

∣∣∣ = |f ′ (γ)|γ .

Plugging this estimate into (8.5) and using Holder’s inequality yields (8.6).
Now consider the case p = 2. Since Pα and Qα are orthogonal projections with

vanishing product PγQγ = Pγ (I − Pγ) = Pγ −P 2
γ = 0, polarization shows that the

inner product 〈〈f, g〉〉1 for the Hilbert space HB2,1 (Tn), with norm ‖·‖HB2,1(Tn) as
in Definition 7.14, is given by

〈〈f, g〉〉1 = f (o) g (o)

(8.8)

+
∑

α∈Tn

{
r−2d(α)f ′ (α)Pα · g′ (α)Pα + r−d(α)f ′ (α)Qα · g′ (α)Qα

}
+
∑

α∈Tn

QαDαf · QαDαg.
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Note that the dot product in the second line of (8.8) is n-dimensional, while that
in the third line is N -dimensional.

By inequality (8.6), point evaluation at α ∈ Tn is a continuous linear func-
tional on HB2,1 (Tn). Thus there is a unique k(1)

α ∈ HB2,1 (Tn) such that f (α) =〈〈
f, k

(1)
α

〉〉
1
, which written out explicitly is

f (α) = f (o) k(1)
α (o)

(8.9)

+
∑

γ∈Tn

{
r−2d(γ)f ′ (γ)Pγ · k(1)′

α (γ)Pγ + r−d(γ)f ′ (γ)Qγ · k(1)′
α (γ)Qγ

}
+
∑

γ∈Tn

QγDγf · QγDγk
(1)
α .

Just as for the real Besov spaces Bp,1 (Tn), we can construct by hand a function
k

(1)
α ∈ HBp,1 (Tn) so that the right hand side of (8.5) matches the expression in

(8.9).
Indeed, for α ∈ Tn with geodesic [o, α] = {o, α1, α2, ..., αm = α}, we choose

(8.10) k(1)′
α (γ) =

{
r2d(γ)Pγ (γα − γ) + rd(γ)Qγ (γα − γ) if γ = αk−1

0 if γ /∈ [o, α]
.

Using the identity (8.7), we then have

f ′ (γ) · (γα − γ)(8.11)

= f ′ (γ)Pγ · Pγ (γα − γ) + f ′ (γ)Qγ ·Qγ (γα − γ)

= r−2d(γ)f ′ (γ)Pγ · r2d(γ)Pγ (γα − γ) + r−d(γ)f ′ (γ)Qγ · rd(γ)Qγ (γα − γ)

= r−2d(γ)f ′ (γ)Pγ · k(1)′
α (γ)Pγ + r−d(γ)f ′ (γ)Qγ · k(1)′

α (γ)Qγ ,

upon applying the formulas

(8.12) Pγz = zPγ , Qγz = zQγ ,

to (8.10). Indeed, (8.12) yields

k
(1)′
α (γ)Pγ = Pγk

(1)′
α (γ)

= Pγ

{
r2d(γ)Pγ (γα − γ) + rd(γ)Qγ (γα − γ)

}
= r2d(γ)Pγ (γα − γ)

and

k
(1)′
α (γ)Qγ = Qγk

(1)′
α (γ)

= Qγ

{
r2d(γ)Pγ (γα − γ) + rd(γ)Qγ (γα − γ)

}
= rd(γ)Qγ (γα − γ) ,

and the formula Pγz = zPγ in (8.12) follows from〈
zPγ , w

〉
= 〈z, Pγw〉 =

〈
Pγw, z

〉
= 〈Pγw, z〉 = 〈w,Pγz〉 = 〈Pγz, w〉 ,

where 〈a, b〉 = a · b is the usual inner product in Cn.
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The vectors QγDγk
(1)
α must be chosen to lie in the orthogonal complement of

the range of Lγ . Let Mγ = rangeLγ and let M⊥
γ be its orthogonal complement.

For γ = αk−1 we must also have the identity

Qαk−1Dαk−1f · Qαk−1Dαk−1k
(1)
α = Qαk−1Dαk−1f (αk)

or

(8.13) QγDγf · QγDγk
(1)
α = QγDγf (γα) , γ < α,

for all f , which implies that for γ < α, QγDγk
(1)
α is the unique vector Vγ in M⊥

γ

whose inner product gives rise to the “γα-coordinate” linear functional. Recall that
the γα-coordinate points to the path along which α lies. In fact we have

QγDγk
(1)
α = Vγ = Qγeγα

where eγα is the coordinate vector in CN in the direction of the γα coordinate.
Indeed,

〈w,Qγeγα〉 = 〈Qγw, eγα〉 = 〈w, eγα〉
if w ∈M⊥

γ since Qγ is a projection onto M⊥
γ . For future reference we note that

(8.14)
∣∣∣QγDγk

(1)
α

∣∣∣ = |Qγeγα
| ≤ 1, γ ≤ α,

since Qγ is an orthogonal projection in CN . Thus we define

(8.15) QγDk(1)
α (γ) =

{
Qγeγα

, if γ ∈ [o, α)
0 if γ /∈ [o, α) ,

so that∑
γ∈Tn

QγDf (γ) · QγDk(1)
α (γ) =

m∑
k=1

Qαk−1Dαk−1f (αk) =
∑
γ<α

QγDγf (γα) .

Finally, we set

(8.16) k(1)
α (o) = 1

so that

f (o) k(1)
α (o) = f (o) .

Combining these definitions and observations with (8.4) and (8.9) we obtain

f (α) =
〈〈
f, k(1)

α

〉〉
1
.

Using the fact that the representation given in (8.5),

(8.17) g (α) = g (o) +
∑
γ<α

g′ (γ) · (γα − γ) +
∑
γ<α

QγDγg (γα) ,

is uniquely determined by the condition that

QγDγg (γα) ∈M⊥
γ , γ < α,

(since g′ (γ) · (γα − γ) is obviously in Mγ) we thus see that there does indeed exist
a unique function k

(1)
α satisfying properties (8.10), (8.15) and (8.16). Indeed, if
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β ∈ [0, α], then with g = k
(1)
α in (8.17) we have

k(1)
α (β)

(8.18)

= k(1)
α (o) +

∑
γ<β

k(1)′
α (γ) · (γβ − γ) +

∑
γ<β

QγDγk
(1)
α (γβ)

= 1 +
∑
γ<β

{
r2d(γ)Pγ (γα − γ) + rd(γ)Qγ (γα − γ)

}
· (γβ − γ) +

∑
γ<β

Qγeγα (γβ)

where Qγeγα (γβ) denotes the γβ-coordinate of the N -vector Qγeγβ
. If β 6= α

is at distance exactly one from the geodesic [o, α), then Aβ ∈ [o, α) and the for-
mula for k(1)

α (β) is identical to that above except that the final term in the sum∑
γ<β Qγeγα (γβ) is now QAβeAβα (β) instead of QAβeAβα (Aβα). The function

k
(1)
α is then determined for all remaining β by the requirement that k(1)

α be con-
stant on all successor sets S (γ) with vertex γ at distance exactly one from the
geodesic [o, α).

These calculations generalize to yield duality and reproducing kernels for the
holomorphic Besov spaces HBp,1 (Tn), 1 < p < ∞. Indeed, Hölder’s inequality
yields

|〈〈f, g〉〉1| ≤ ‖f‖HBp,1(Tn) ‖g‖HBp′,1(Tn) ,

and to see that

(8.19) ‖f‖HBp,1(Tn) = sup
‖g‖HB

p′,1(Tn)=1

|〈〈f, g〉〉1| ,

we choose G to be the unique function satisfying

G (o) = f (o) |f (o)|p−2
,

G′ (γ) = f ′ (γ) |f ′ (γ)|p−2
,

QγDγG = QγDγf |QγDγf |p−2
.

Thus
DG (α) = {G′ (α) (βj − α)}N

j=1 +QαDf (α) |QαDf (α)|p−2

where QαDf (α) |QαDf (α)|p−2 ∈ M⊥
α and {G′ (α) (βj − α)}N

j−1 ∈ Mα. With this

choice we have ‖G‖HBp′,1(Tn) = ‖f‖p−1
HBp,1(Tn) since (p− 1) p′ = p, as well as

〈〈f,G〉〉1 = |f (o)|2 |f (o)|p−2 +
∑

α∈Tn:
d(α)≥1

{
|f ′ (α)Pα|

2 + |f ′ (α)Qα|
2
}
|M f ′ (α)|p−2

+
∑

α∈Tn

|QγDγf |2 |QγDγf |p−2

= ‖f‖p
HBp,1(Tn) ,

since |f ′ (α)Pα|2+|f ′ (α)Qα|2 = |f ′ (α)|2. Then taking g = G
‖G‖HB

p′,1(Tn)
we obtain

(8.19). We summarize these results in the following Proposition.

Proposition 8.1. Let 1 < p < ∞. Then the dual space of HBp,1 (Tn) can
be identified with HBp′,1 (Tn) under the pairing 〈〈·, ·〉〉1 given in (8.8), and the
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reproducing kernel k(1)
α (γ) for this pairing is the unique function k

(1)
α satisfying

(8.10), (8.15) and (8.16), and given explicitly in (8.18).

The corresponding formula (7.2) for M k1
α, the difference operator applied to

the reproducing kernel k1
α for the abstract Besov space Bp,1 (Tn), consists entirely

of nonnegative entries, a feature that plays prominently in deriving the Carleson
embedding property from multiplier interpolation using Böe’s “curious lemma”.
The terms k(1)

α (o), k(1)′
α (γ) and QγDγk

(1)
α arising in the above formula do not

consist entirely of nonnegative entries, but the following two properties will serve
as a suitable substitute:

∣∣∣r−d(γ)k(1)′
α (γ)Pγ + r−

d(γ)
2 k(1)′

α (γ)Qγ

∣∣∣(8.20)

≈ r−d(γ) Re
{
γ · r2d(γ)Pγ (γα − γ) + γ · rd(γ)Qγ (γα − γ)

}
≈ r−d(γ) Re

(
γ · k(1)′

α (γ)
)

≈ 1;∣∣∣QγDγk
(1)
α

∣∣∣ ≤ 1.

Analogues of these properties will be used in Subsection 9.1 to complete the proof
of equivalence of multiplier interpolation with the separation and tree conditions
when 1 < p < 2 + 1

n−1 .
To see the equivalence in the first line of (8.20), we compute that

γ · Pγ (γα − γ) = γ · γ · (γα − γ)
|γ|2

γ

= γ · (γα − γ)

has real part approximately r−d(γ), that

|Pγ (γα − γ)| ≥ cr−d(γ),

and that

|γ ·Qγ (γα − γ)| ≤ |Qγ (γα − γ)|
≤ |γα − γ|

≤ Cr−
d(γ)

2 .

Using (8.10), we thus obtain

r−d(γ) Re
(
γ · k(1)′

α (γ)
)

= r−d(γ) Re
(
γ · k(1)′

α (γ)
)

= r−d(γ) Re
{
γ · r2d(γ)Pγ (γα − γ) + γ · rd(γ)Qγ (γα − γ)

}
≈ r−d(γ)

{
rd(γ) +O

(
r

d(γ)
2

)}
≈ 1.
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Using (8.10) again, we obtain from (8.12) and the above that∣∣∣r−d(γ)k(1)′
α (γ)Pγ + r−

d(γ)
2 k(1)′

α (γ)Qγ

∣∣∣2
=
∣∣∣r−d(γ)k(1)′

α (γ)Pγ

∣∣∣2 +
∣∣∣r− d(γ)

2 k(1)′
α (γ)Qγ

∣∣∣2
=
∣∣∣r−d(γ)Pγk

(1)′
α (γ)

∣∣∣2 +
∣∣∣r− d(γ)

2 Qγk
(1)′
α (γ)

∣∣∣2
=
∣∣∣rd(γ)Pγ (γα − γ)

∣∣∣2 +
∣∣∣r d(γ)

2 Qγ (γα − γ)
∣∣∣2

≥ c > 0,

which completes the proof of the first line in (8.20). The inequality in the second
line of (8.20) is (8.14).

An example. We close this subsubsection by computing k(1)
α for the simple case

of the Bergman tree T1 in terms of the geometric embedding of T1 in the unit disk,
and then verifying (8.20) in this case. The branching number for the tree T1 is 2.
Fix α ∈ T1 with geodesic [o, α] = {o, α1, α2, ..., αm = α} as above, and let γ = αk−1

with children γ1 = αk and γ2. Then

M γ1 = γ1 − γ,

M γ2 = γ2 − γ,

E (γ) = {M γ1,M γ2} ,

and for v ∈ C,
Lγv = {v M γ1, v M γ2} .

Thus

Mγ = {v M γ1, v M γ2 : v ∈ C} = C {M γ1,M γ2} ,

M⊥
γ = C {−M γ2,M γ1} ,

since if V = v {M γ1,M γ2} ∈Mγ and W = w {−M γ2,M γ1} ∈M⊥
γ , then

〈V,W 〉 = vw {(M γ1) (− M γ2) + (M γ2) (M γ1)} = 0.

We now claim that

QγDγk
(1)
α =

M γ2

|M γ1|2 + |M γ2|2
{−M γ1,M γ2}

=

{
|M γ2|2

|M γ1|2 + |M γ2|2
,

−M γ1 M γ2

|M γ1|2 + |M γ2|2

}
.

Indeed, we have QγDγk
(1)
α ∈M⊥

γ from the definition, and if

W = {W1,W2} = w {−M γ2,M γ1} ∈M⊥
γ ,

then the left side of (8.13) is〈
W,QγDγk

(1)
α

〉
= w (−M γ2)

|M γ2|2

|M γ1|2 + |M γ2|2
+ w (M γ1)

−M γ1 M γ2

|M γ1|2 + |M γ2|2

= w (−M γ2) = W1,

which is the right side of (8.13) since γ1 = αk ∈ [o, α].
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Since the projection Pγ is the identity in dimension n = 1, we also have

k(1)′
α (γ) = r2d(γ)(γα − γ),

and since it is geometrically evident that Re γ · γα − γ ≈ |γ| |γα − γ|, we now have

Re
(
γ · k(1)′

α (γ)
)

= r2d(γ) Re γ · γα − γ ≈ rd(γ) ≈
∣∣∣k(1)′

α (γ)
∣∣∣ ,

|QγDγkα|2 ≤
|M γ2|4 + |M γ1|2 |M γ2|2(

|M γ1|2 |M γ2|2
)2 ≤ 1,

which is (8.20) for the Bergman tree T1.
Using (8.18), we give an explicit formula for kα (β), α, β ∈ T1. When β ∈ [o, α]

we have

k(1)
α (β) = 1 +

∑
γ<β

r2d(γ)(γα − γ) (γβ − γ) +
∑
γ<β

∣∣∣γ⊥β − γ
∣∣∣2

|γβ − γ|2 +
∣∣∣γ⊥β − γ

∣∣∣2 ,
where γ⊥β is the child of γ not lying in [o, β]. The formula for k(1)

α

(
β⊥α
)
, where

β ∈ [o, α) and β⊥α is the child of β not lying in [o, α], is given by

k(1)
α

(
β⊥α
)

= 1 +
∑

o<γ≤β

r2d(γ)(γα − γ)
(
γβ⊥α

− γ
)

.+
∑

o<γ<β

∣∣∣γ⊥β − γ
∣∣∣2

|γβ − γ|2 +
∣∣∣γ⊥β − γ

∣∣∣2 −
(βα − β)

(
β⊥α − β

)
|βα − β|2 + |β⊥α − β|2

.

The values of k(1)
α remain constant on the successor sets S (α) and S

(
β⊥α
)

for
β ∈ [o, α), and this completes the evaluation of k(1)

α (β) for all β ∈ T1.

8.1.2. Tensor-valued functions. In order to extend our definitions to tensor-
valued functions on the Bergman tree, it is convenient to consider first the simplest
case of order zero.

Definition 8.2. Let 1 < p < ∞. For a C-valued function f (α) defined for
α ∈ Tn, define

‖f‖HBp,0(Tn) = ‖f‖`p(Tn) =

(∑
α∈Tn

|f (α)|p
) 1

p

.

Define an operator R−d on Cn-valued functions v on the tree Tn by(
R−dv

)
(α) = r−d(α)v (α)Pα + r−

d(α)
2 v (α)Qα.

For vectors v ∈ Cn , let

|v|α =
∣∣(R−dv

)
(α)
∣∣ = ∣∣∣e−2d(α)θvPα + e−d(α)θvQα

∣∣∣ ≈√(B (α)v) · v,

and for a Cn-valued function v (α) defined for α ∈ Tn, define

‖v‖
HB

(1)
p,0(Tn)

= ‖|v|α‖`p(Tn) =

(∑
α∈Tn

|v|pα

) 1
p

.
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Remark 8.3. Recall from (8.1) that we have HBp,1 (Tn) = Bp,1 (Tn). Let
QDf (α) = QαDαf . Then using Definitions 8.2 and 7.14, we have the following
observation that will provide the basis for extending the definition of HBp,0 (Tn)
to HBp,m (Tn) for larger m:

‖f‖p
HBp,1(Tn) = |f (o)|p + |f ′ (o)|p +

∑
α∈Tn

|f ′ (α)|pα +
∑

α∈Tn

|QαDαf |p

= |f (o)|p + ‖f ′‖p

HB
(1)
p,0(Tn)

+ ‖QDf‖p
`p(Tn) .

In Definition 8.2 above, we defined the order zero holomorphic Besov space
HB

(1)
p,0 (Tn) on Tn for Cn-valued functions v (α) using the nonisotropic norm

|v|α =
∣∣∣r−d(α)vPα + r−

d(α)
2 vQα

∣∣∣ ,
and where v (α) was interpreted as a covariant tensor of order 1 acting on the
“tangent space” Cn at α. We now wish to extend this definition to order zero
holomorphic Besov spaces HB(t)

p,0 (Tn) of symmetric covariant tensors of order t, or
t-tensors, on Tn. First we review the tensor setup.

Let Eα be the n-dimensional Hilbert space (Cn, 〈·, ·〉α) whose inner product is
given by 〈

v1, v2
〉

α
= r−2d(α)

〈
v1, p

〉
〈v2, p〉+ r−d(α)

n∑
i=2

〈
v1, qi

〉
〈v2, qi〉

where {p, q2, ..., qn} is an orthonormal basis of Cn with Mα = span {p} and M⊥
α =

span {q2, ..., qn}. Thus p = eis α
|α| for some s ∈ R, and we will take s = 0 so that

(8.21) p =
α

|α|
.

In terms of the operator R−d we have〈
v1, v2

〉
α

=
〈
R−dv1,R−dv2

〉
,

where 〈·, ·〉 denotes the usual inner product on Cn. For t ≥ 1, denote by E(t)
α

the vector space of symmetric multilinear maps, or symmetric t-tensors, from the
product space Et

α = Eα × ...× Eα (t times) to the complex numbers C.
Using the identification of E∗α with Eα under the Euclidean inner product 〈·, ·〉

(not 〈·, ·〉α), every symmetric t-tensor A ∈ E(t)
α can be written

A =
∑

1≤i1≤i2≤...≤it≤n

ai1,i2,...,itei1 ⊗ ...⊗ eit ,

where e1 (respectively ej , j ≥ 2) is the Euclidean dual vector to e1 = p (respectively
ej = qj , j ≥ 2) so that ej (ei) = 〈ei, ej〉 = δi

j . The vectors ei depend on α, but we
will usually suppress this dependence. We have

(8.22) A
[
v1, ..., vt

]
=

∑
1≤i1≤i2≤...≤it≤n

ai1,i2,...,it
〈
v1, ei1

〉
× ...×

〈
vt, eit

〉
.

We now define an inner product 〈·, ·〉(t)α on E(t)
α by〈

ei1 ⊗ ...⊗ eit , ej1 ⊗ ...⊗ ejt
〉(t)

α
=

t∏
k=1

〈
eik , ejk

〉
α

=
t∏

k=1

〈
R−d(α)eik

,R−d(α)ejk

〉
,



8. HOLOMORPHIC BESOV SPACES ON BERGMAN TREES 119

and then extend the definition by linearity so that
(8.23)

〈A,B〉(t)α =
∑

1≤i1≤i2≤...≤it≤n

ai1,i2,...,itbi1,i2,...,itηi1,i2,...,it
(α) =

∑
i

aibiηi (α) .

where we write i = (i1, ..., it), j = (j1, ..., jt) and

ηi (α) = ηi1,i2,...,it
(α)(8.24)

=
〈
ei1 , ei1

〉
α
× ...×

〈
eit , eit

〉
α

=
〈
R−d(α)ei1 ,R

−d(α)ei1

〉
× ...×

〈
R−d(α)eit

,R−d(α)eit

〉
,

and where A =
∑

i a
iei1 ⊗ ... ⊗ eit and B =

∑
i b

iei1 ⊗ ... ⊗ eit . We extend this
inner product to t-tensor-valued functions A and B on the Bergman tree Tn in the
obvious way:

(8.25) 〈〈A,B〉〉(t)0 =
∑

γ∈Tn

〈A (γ) ,B (γ)〉(t)γ .

We denote by |A|α the norm of A in the Hilbert space E(t)
α when there is no

confusion regarding the order t of the tensor in question. For example, if F ∈
H (Bn) and α ∈ Bn, then F ′′ (α) ∈ E(2)

α is a symmetric 2-tensor, or equivalently an
n × n matrix [F ′′ (α)] relative to the basis {e1, ..., en} satisfying F ′′ (α) [v ⊗ w] =
v′ [F ′′ (α)]w, and whose norm squared in E(2)

α is given by

|F ′′ (α)|2α = 〈F ′′ (α) , F ′′ (α)〉(t)α

=

〈
n∑

i,j=1

∂2F

∂zi∂zj
(α) ei ⊗ ej ,

n∑
k,`=1

∂2F

∂zk∂z`
(α) ek ⊗ e`

〉(t)

α

=
n∑

i,j,k,`=1

∂2F

∂zi∂zj
(α)

∂2F

∂zk∂z`
(α)

〈
ei, ek

〉
α
〈ej , e`〉α

=
n∑

i,j=1

∣∣∣∣ ∂2F

∂zi∂zj
(α)
∣∣∣∣2 η(i,j),

where

η(i,j) =


r−2d(α) if i = j = 1
r−

3
2 d(α) if i = 1, 2 ≤ j ≤ n

r−
3
2 d(α) if j = 1, 2 ≤ i ≤ n

r−d(α) if 2 ≤ i, j ≤ n

.

This is of course comparable to the operator norm

sup
|v|,|w|≤1

∣∣F ′′ (α)
[
R−dv,R−dw

]∣∣2
where

∣∣F ′′ (α)
[
R−dv,R−dw

]∣∣2 is equal to∣∣∣r−2d(α)F ′′ (α) [Pαv, Pαw]
∣∣∣2 +

∣∣∣r− 3
2 d(α)F ′′ (α) [Pαv,Qαw]

∣∣∣2
+
∣∣∣r− 3

2 d(α)F ′′ (α) [Qαv, Pαw]
∣∣∣2 +

∣∣∣r−d(α)F ′′ (α) [Qαv,Qαw]
∣∣∣2 .
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In similar fashion we define the Hilbert space E(s,t)
α of symmetric (s, t)-tensors

that are covariant of order s and contravariant of order t (see for example chapter
4 of Spivak [Spi]). Then E(t)

α = E(t,0)
α and we will stop referring to tensors as

covariant or contravariant. We define the tensor product of a (s1, t1)-tensor B and
a (s2, t2)-tensor A to be the (s1 + s2, t1 + t2)-tensor B⊗A in the usual way,

B⊗A
[
v1, ..., vs1 , w1, ..., wt1 , x1, ..., xs2 , y1, ..., yt2

]
= B

[
v1, ..., vs1 , w1, ..., wt1

]
×A

[
x1, ..., xs2 , y1, ..., yt2

]
,

as well as the Euclidean contraction B∧A of an (s, t)-tensor B and a t-tensor A (see
immediately below for this definition). We will see later that reproducing kernels for
Besov spaces of t-tensor-valued functions can be interpreted as (t, t)-tensor-valued
functions on Tn.

We define the α-contraction B ∧α A of an (s, t)-tensor

B =
∑

1≤i1≤...≤it≤n

bi1,...,is

j1,...,jt
ei1 ⊗ ...⊗ eis ⊗ ej1 ⊗ ...⊗ ejt

and a t-tensor
A =

∑
1≤i1≤...≤it≤n

ai1,i2,...,itei1 ⊗ ...⊗ eit

to be the s-tensor given by

B ∧α A =
∑

1≤i1≤...≤it≤n

bi1,...,is

j1,...,jt
aj1,...,jt 〈ej1 , ej1〉α × ...× 〈ejt , ejt〉α e

i1 ⊗ ...⊗ eis

=
∑

i

bija
jηj (α) ei1 ⊗ ...⊗ eis ,

where by the summation convention, we also sum over the repeated upper and lower
indices j1, ..., jt. The Euclidean contraction B∧A is given by

∑
i b

i
ja

jei1 ⊗ ...⊗ eis

without the ηj . Thus B ∧ A [v1, ..., vs] is the contraction (trace if t = 1) of the
linear map λ given by

λ (w1, ..., wt, u1, ..., ut) = B⊗A (v1, ..., vs, w1, ..., wt, u1, ..., ut)

(see page 4-27 in [Spi]). Note that if we interpret vj as a (0, 1)-tensor (contravariant
of order 1), then from (8.22) we have

(8.26) A
[
v1, ..., vt

]
= A ∧

(
v1 ⊗ ...⊗ vt

)
.

Definition 8.4. We define the “inner product” 〈A,B〉(t)α of a t-tensor A and
a (t, t)-tensor B to be the t-tensor given by

(8.27) 〈A,B〉(t)α = B ∧α A,

so that

(8.28) 〈A,B〉(t)α =
∑

i

bija
jηj (α) ei1 ⊗ ...⊗ eit .

We also define an “inner product” 〈〈A,B〉〉(t)0 , for a t-tensor-valued function A and
a (t, t)-tensor-valued function B on the tree Tn, by

(8.29) 〈〈A,B〉〉(t)0 =
∑

γ∈Tn

〈A (γ) ,B (γ)〉(t)γ .
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The use of the same notation 〈A,B〉(t)α in both (8.23) and (8.27) should not
cause confusion as the former is a scalar and the latter a t-tensor, and similarly for
the same notation 〈〈A,B〉〉(t)0 in both (8.25) and (8.29).

Order zero spaces of t-tensors. We now define the order zero holomorphic Besov
spaces HB(t)

p,0 (Tn) of t-tensors on Tn.

Definition 8.5. For 1 < p < ∞ and t ∈ N, let HB(t)
p,0 (Tn) consist of all

t-tensor-valued functions A (α) defined for α ∈ Tn such that the norm

‖A‖
HB

(t)
p,0(Tn)

= ‖|A|α‖`p(Tn)

=

(∑
α∈Tn

|A (α)|pα

) 1
p

is finite.

The inner product for the Hilbert space HB
(t)
2,0 (Tn) is given by (8.25), and

the dual space of HB(t)
p,0 (Tn) can be identified with HB

(t)
p′,0 (Tn) under the pairing

〈〈·, ·〉〉(t)0 .

Lemma 8.6. For 1 < p <∞ and t ∈ N, we have∣∣∣〈〈A,B〉〉(t)0

∣∣∣ ≤ ‖A‖
HB

(t)
p,0(Tn)

‖B‖
HB

(t)
p′,0(Tn)

,

‖B‖
HB

(t)
p′,0(Tn)

= sup
‖A‖

HB
(t)
p,0(Tn)

≤1

∣∣∣〈〈A,B〉〉(t)0

∣∣∣ .
Moreover, in the case p = 2, the function Λv1,...,vt

α defined by

Λv1,...,vt

α A = A (α)
[
v1, ..., vt

]
is a continuous linear functional on HB

(t)
2,0 (Tn) for α ∈ Tn and every choice of

v1, ..., vt. Thus there is a unique kv1,...,vt

α in the Hilbert space HB(t)
2,0 (Tn) such that

(8.30)
〈〈

A,kv1,...,vt

α

〉〉(t)

0
= Λv1,...,vtA = A (α)

[
v1, ..., vt

]
.

By this uniqueness, the function that sends v1, ..., vt to the t-tensor kv1,...,vt

α (γ) is
multi-conjugate linear in v1, ..., vt, and so there is a unique (t, t)-tensor k(0,t)

α such
that

kv1,...,vt

α (γ)
[
w1, ..., wt

]
= k(0,t)

α (γ)
[
w1, ..., wt, v1, ..., vt

]
,

which by (8.26) is

kv1,...,vt

α (γ) = k(0,t)
α (γ) ∧ v1 ⊗ ...⊗ vt.

We refer to this (t, t)-tensor-valued function k(0,t)
α as the reproducing kernel for the

holomorphic Besov space of t-tensors HB(t)
p,0 (Tn) relative to the pairing 〈〈·, ·〉〉(t)0
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since by (8.26), (8.27) and (8.29), we have〈〈
A,k(0,t)

α

〉〉(t)

0

[
v1, ..., vt

]
=
∑

γ∈Tn

〈
A (γ) ,k(0,t)

α (γ)
〉(t)

γ

[
v1, ..., vt

]
=
∑

γ∈Tn

k(0,t)
α (γ) ∧γ A (γ)

[
v1, ..., vt

]
=
∑

γ∈Tn

k(0,t)
α (γ) ∧γ A (γ) ∧ v1 ⊗ ...⊗ vt

=
∑

γ∈Tn

k(0,t)
α (γ) ∧ v1 ⊗ ...⊗ vt ∧γ A (γ)

since ∧ and ∧γ commute, as they act on different sets of variables. We then continue
with 〈〈

A,k(0,t)
α

〉〉(t)

0

[
v1, ..., vt

]
=
∑

γ∈Tn

〈
A (γ) ,k(0,t)

α (γ) ∧γ v1 ⊗ ...⊗ vt
〉(t)

γ

=
∑

γ∈Tn

〈
A (γ) ,kv1,...,vt

α (γ)
〉(t)

γ

=
〈〈

A,kv1,...,vt

α

〉〉(t)

0

= A (α)
[
v1, ..., vt

]
,

by (8.30). Thus we have shown that

(8.31) A (α) =
〈〈

A,k(0,t)
α

〉〉(t)

0
, α ∈ Tn.

The reproducing kernel k(0,t)
α is in fact given by the (t, t)-tensor∑

i

ηi (α)−1
ei1 ⊗ ...⊗ eit ⊗ ei1 ⊗ ...⊗ eit

times the delta function at α, i.e.

k(0,t)
α (γ) = χ{α} (γ)

∑
i

ηi (α)−1 {
ei1 ⊗ ...⊗ eit

}
⊗ {ei1 ⊗ ...⊗ eit

}(8.32)

= χ{α} (γ)
∑

i

{
Rd(α)ei1 ⊗ ...⊗Rd(α)eit

}
⊗
{
Rd(α)ei1 ⊗ ...⊗Rd(α)eit

}
.

Indeed, by (8.27) and (8.28),∑
γ∈Tn

〈
A (γ) ,k(0,t)

α (γ)
〉(t)

γ
= k(0,t)

α (α) ∧α A (α)

=

{∑
i

ηi (α)−1 {
ei1 ⊗ ...⊗ eit

}
⊗ {ei1 ⊗ ...⊗ eit}

}
∧α

{∑
i

aiei1 ⊗ ...⊗ eit

}
,

=
∑

i

ηi (α)−1
aiηi (α) ei1 ⊗ ...⊗ eit = A (α) .
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Order one spaces of t-tensors. We next turn to defining the order one holomor-
phic Besov spaces HB(t)

p,1 (Tn) of t-tensors on Tn. In Remark 8.3, we have already
defined the scalar case HBp,1 (Tn) using the norm (to the pth power)

‖f‖p
HBp,1(Tn) = |f (o)|p + ‖f ′‖p

HB
(1)
p,0(Tn)

+ ‖QDf‖p
`p(Tn) .

In order to replace f with a tensor, we first need to define the complex derivative
A′ (α) of a t-tensor-valued function A (α) on the tree Tn. The derivative A′ will
be a (t+ 1)-tensor-valued function on the tree defined in the same spirit as f ′.

Define the forward difference DαA of a t-tensor-valued function A (α) in the
obvious way. Define the linear map L(t)

α from the space of (t+ 1)-tensors E(t+1)
α to

the space
(
E(t)

α

)N

by sending v ∈ E(t+1)
α to

L(t)
α v =

(
v∧
(
αj − α

))N
j=1

∈
(
E(t)

α

)N

,

where v∧
(
αj − α

)
denotes the t-tensor obtained by contracting the (t+ 1)-tensor

v with the vector
(
αj − α

)
viewed as a (0, 1)-tensor or contravariant 1-tensor, i.e.

v∧
(
αj − α

) [
v1, ..., vt

]
= v

[
αj − α, v1, ..., vt

]
,

since if v =
∑
vi

kek ⊗
{
ei1 ⊗ ...⊗ eit

}
, then both sides of the above equation equal∑

vi
k

〈
αj − α, ek

〉 〈
v1, ei1

〉
× ...×

〈
vt, eit

〉
.

In Subsection 8.5 below, we will show that by choosing θ sufficiently large in
the construction of the Bergman tree in Subsubsection 2.2.1, and then modifying
the centers, we can make the map L

(t)
α one-to-one for all 0 ≤ t ≤ M − 1 for any

finite M - we only need to take M = 2n for our purposes in this paper. Let P(t)
α

be the orthogonal projection of
(
E(t)

α

)N

onto the range M (t)
α of L(t)

α with respect

to the inner product on the product Hilbert space E(t)
α × ... × E(t)

α (N times). Let

Q(t)
α = I − P(t)

α be orthogonal projection onto
(
M

(t)
α

)⊥
. The complex derivative

A′ (α) of A at the point α is then the unique (t+ 1)-tensor v such that

Lαv = P(t)
α (DαA) .

Thus we have

L(t)
α A′ (α) = P(t)

α (DαA) =
(
A′ (α) ∧

(
αj − α

))N
j=1

,

and the first order Taylor formula for t-tensor-valued functions

DαA =
(
A′ (α) ∧

(
αj − α

))N
j=1

+Q(t)
α (DαA) .

We can now define the order one holomorphic Besov space HB(t)
p,1 (Tn) of t-

tensors on Tn. First we define∥∥∥Q(t)DA
∥∥∥p

`p(Tn)
=
∑

α∈Tn

∣∣∣Q(t)
α (DαA)

∣∣∣p
α

where
∣∣(v1, ...,vN

)∣∣2
α

=
∑N

j=1

∣∣vj
∣∣2
α

for
(
v1, ...,vN

)
∈
(
E(t)

α

)N

. Note that at the
root o, |·|o is always a Euclidean norm.
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Definition 8.7. For 1 < p <∞ and 0 ≤ t ≤M − 1, let HB(t)
p,1 (Tn) consist of

all t-tensor-valued functions A on the tree Tn such that the norm (to the pth power)

‖A‖p

HB
(t)
p,1(Tn)

= |A (o)|p + ‖A′‖p

HB
(t+1)
p,0 (Tn)

+
∥∥∥Q(t)DA

∥∥∥p

`p(Tn)

is finite.

As in Proposition 8.1, we can obtain the duality of HB(t)
p,1 (Tn) and HB(t)

p′,1 (Tn)

relative to the inner product 〈〈·, ·〉〉(t)1 for the Hilbert space HB(t)
2,1 (Tn):

〈〈A,B〉〉(t)1 = A (o)B (o) +
∑

α∈Tn

〈A′,B′〉(t+1)
α +

∑
α∈Tn

QαDαA · QαDαB(8.33)

= A (o)B (o) + 〈〈A′,B′〉〉(t+1)
0 +

∑
α∈Tn

QαDαA · QαDαB.

Lemma 8.8. For 1 < p <∞ and t ∈ N, we have∣∣∣〈〈A,B〉〉(t)1

∣∣∣ ≤ ‖A‖
HB

(t)
p,1(Tn)

‖B‖
HB

(t)
p′,1(Tn)

,

‖B‖
HB

(t)
p′,1(Tn)

= sup
‖A‖

HB
(t)
p,1(Tn)

≤1

∣∣∣〈〈A,B〉〉(t)1

∣∣∣ .
Combining the arguments for the order one space HBp,1 (Tn) in Subsubsection

8.1.1 with the arguments above for the order zero space HB(t)
p,0 (Tn) of t-tensors, we

can show there is a unique reproducing kernel k(1,t)
α for the holomorphic Besov space

of t-tensors HB(t)
p,1 (Tn) relative to this pairing. Again, k(1,t)

α is a (t, t)-tensor-valued
function on the tree satisfying

A (α) =
〈〈

A,k(1,t)
α

〉〉(t)

1
, α ∈ Tn,

for A ∈ HB(t)
p,1 (Tn), where just as in Definition 8.4, the notation 〈〈A,B〉〉(t)1 repre-

sents a scalar if B is a t-tensor, and a t-tensor if B is a (t, t)-tensor.

8.2. The order m holomorphic Besov space. We cannot simply define
the mth order holomorphic Besov space HB(t)

p,m (Tn) of t-tensor-valued functions
inductively to consist of all f such that f ′ ∈ HB

(t+1)
p,m−1 (Tn). Besides the question

of how to handle the error term
{
Q(t)

α (DαA)
}

α∈Tn

, the restriction theorem from

Bp (Bn) to HBp,2 (Tn) will fail because ‖f ′‖
HB

(1)
p,1(Tn)

will not in general be con-

trolled by ‖F‖Bp(Bn) when f is the restriction of F ∈ Bp (Bn) to the Bergman tree
Tn. The problem arises when we minimize the distance from Dαf to Mα by letting
f ′ (α) = L−1

α PαDαf . The resulting vector f ′ (α) is within order 2, but not within
order 3, of the restriction F ′ (α) of F ′ to the tree. In order to circumvent this
difficulty, we will simultaneously define the first, second and through to the mth

order derivatives f ′ (α), f ′′ (α), ..., f (m) (α) at α using a single orthogonal projec-
tion onto the range of an appropriate generalization of the operator Lα. We will
also need to define holomorphic Besov spaces of t-tensor-valued functions as well,
in order to implement an inductive definition. Recall that we defined a variant L(t)

α

of Lα ≡ L
(0)
α in order to define the complex derivative of a t-tensor-valued function
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on the Bergman tree. We will now use the notation L
(1,t)
α to denote these opera-

tors, and use the notation L(m,t)
α to define a corresponding linear operator that will

allow us to simultaneously define first through mth order complex derivatives of a
t-tensor-valued function on the Bergman tree. Here is the setup for the scalar case,
t = 0.

We define the operator L(m,0)
α as the linear map taking the point x =

(
v1, ...,vm

)
in the product space E(1)

α × E(2)
α × ...× E(m)

α to the point L(m,0)
α x given by

L(m,0)
α x =

{
m∑

`=1

1
`!

v` ∧
{
⊗`
(
αj − α

)}}N

j=1

=

{
m∑

`=1

1
`!

v`
[
αj − α, ..., αj − α

]}N

j=1

∈ CN ,

where the second equality follows from (8.26). Here ⊗`
(
αj − α

)
denotes the (0, `)-

tensor (
αj − α

)
⊗ ...⊗

(
αj − α

)
,

where
(
αj − α

)
is repeated ` times. Let M (m,0)

α = rangeL(m,0)
α and denote by(

M
(m,0)
α

)⊥
the orthogonal complement of M (m,0)

α in CN . Let P(m,0)
α denote or-

thogonal projection of CN onto M
(m,0)
α , let Q(m,0)

α = I − P(m,0)
α be orthogonal

projection of CN onto
(
M

(m,0)
α

)⊥
, and define as usual

Dαf =
(
f
(
αj
)
− f (α)

)N
j=1

∈ CN .

At this point we need to know that L(m,0)
α is one-to-one. In fact, in order

to prove the boundedness of the restriction map later, we will need the following
inequality

(8.34) cm

m∑
`=1

∣∣v`
∣∣
α
≤
∣∣∣L(m,0)

α

(
v1, ...,vm

)∣∣∣ ≤ Cm

m∑
`=1

∣∣v`
∣∣
α
,

for all 1 ≤ m ≤ M , uniformly for α ∈ Tn (we actually only need M = 2n for our
purposes). This is established in Subsection 8.5 below using a careful reconstruction
of the Bergman tree Tn with parameter θ sufficiently large depending on M .

Assuming (8.34) for the moment, we see that L(m,0)
α is one-to-one. If we now

define the derivatives
(
Dmf (α) , D2

mf (α) , ..., Dm
mf (α)

)
by

L(m,0)
α

(
Dmf (α) , D2

mf (α) , ..., Dm
mf (α)

)
= P(m,0)

α Dαf,

then we have that ∣∣∣Q(m,0)
α Dαf

∣∣∣2 =
∣∣∣Dαf − P(m,0)

α Dαf
∣∣∣2

is given by

N∑
j=1

∣∣∣∣∣f (αj
)
−

{
f (α) +

m∑
`=1

1
`!
D`

mf (α) ∧
{
⊗`
(
αj − α

)}}∣∣∣∣∣
2

,
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and is the minimum value of
∣∣∣Dαf − L

(m,0)
α x

∣∣∣2 over x =
(
v1, ...,vm

)
in the product

space E(1)
α × E(2)

α × ...× E(m)
α , where

∣∣∣Dαf − L
(m,0)
α x

∣∣∣2 is given by

N∑
j=1

∣∣∣∣∣f (αj
)
−

{
f (α) +

m∑
`=1

1
`!

v` (α) ∧
{
⊗`
(
αj − α

)}}∣∣∣∣∣
2

.

Thus if we write

Q(m,0)
α Dαf =

{
Q(m,0)

α Dαf
(
αj
)}N

j=1
,

we have the following mth order Taylor expansion of f at Aα:

f (α) = f (Aα) +
m∑

`=1

1
`!
D`

mf (Aα) ∧
{
⊗` (α−Aα)

}
(8.35)

+Q(m,0)
Aα DAαf (α) .

The remainder term Q(m,0)
α Dαf satisfies the minimizing property

(8.36)
∣∣∣Q(m,0)

α Dαf
∣∣∣ = min

x∈E(1)×...×E(m)

∣∣∣Dαf − L(m,0)
α x

∣∣∣ .
Note that the complex derivatives D`

mf (α) defined here depend on both the order
m and the degree of differentiation `, and are generally different for different m.

We now extend the definition of mth order derivatives to t-tensor-valued func-
tions A on the tree. Define the operator L(m,t)

α as the linear map taking the point
x =

(
v1, ...,vm

)
in the product space E(t+1)

α × E(t+2)
α × ... × E(t+m)

α to the point
L

(m,t)
α x given by

L(m,t)
α x =

{
m∑

`=1

1
`!

v` ∧
{
⊗`
(
αj − α

)}}N

j=1

∈
(
E(t)

α

)N

,

where v∧
{
⊗`
(
αj − α

)}
denotes the t-tensor obtained by contracting the (t+ `)-

tensor v with the (0, `)-tensor ⊗`
(
αj − α

)
, i.e.

v∧
(
⊗`
(
αj − α

)) [
v1, ..., vt

]
= v

[
αj − α, ..., αj − α, v1, ..., vt

]
.

Let M (m,t)
α = rangeL(m,t)

α and denote by
(
M

(m,t)
α

)⊥
the orthogonal complement of

M
(m,t)
α in

(
E(t)

α

)N

. Let P(m,t)
α denote orthogonal projection of

(
E(t)

α

)N

onto M (m,t)
α

with respect to the inner product on the product Hilbert space E(t)
α × ... × E(t)

α

(N times), and let Q(m,t)
α = I − P(m,t)

α be orthogonal projection of
(
E(t)

α

)N

onto(
M

(m,t)
α

)⊥
.

In Subsection 8.5 below, we also demonstrate the extension to t-tensors of in-
equality (8.34) above, namely that the map L(m,t)

α satisfies the structural inequality

(8.37) cm

m∑
`=1

∣∣v`
∣∣
α
≤
∣∣∣L(m,t)

α

(
v1, ...,vm

)∣∣∣
α
≤ Cm

m∑
`=1

∣∣v`
∣∣
α
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for all 0 ≤ m+ t ≤ M , uniformly for α ∈ Tn. This shows in particular that L(m,t)
α

is one-to-one. Suppose now that A is a t-tensor-valued function on the tree Tn. We
define the m-tuple

(
DmA (α) , D2

mA (α) , ..., Dm
mA (α)

)
of derivatives up to order

m of A so that

L(m,t)
α

(
DmA (α) , D2

mA (α) , ..., Dm
mA (α)

)
= P(m,t)

α DαA.

As in the case t = 0, the remainder term Q(m,t)
α DαA satisfies the minimizing

property

(8.38)
∣∣∣Q(m,t)

α DαA
∣∣∣
α

= min
x∈E(1)

α ×...×E(m)
α

∣∣∣DαA− L(m,t)
α x

∣∣∣
α
.

We can now define by induction on m the order m holomorphic Besov space
HB

(t)
p,m (Tn) of t-tensors on Tn. As usual, we use∥∥∥Q(m,t)DA

∥∥∥p

`p(Tn)
=
∑

α∈Tn

∣∣∣Q(m,t)
α DαA

∣∣∣p
α
,

where as above, we define

|w|2α =
N∑

j=1

|wj |2α , w = (w1, ..., wN ) ∈
(
E(t)

α

)N

.

Definition 8.9. For 1 < p < ∞ and 0 ≤ m + t ≤ M , let HB(t)
p,m (Tn) consist

of all t-tensor-valued functions A on the tree Tn such that the norm (to the pth

power)

‖A‖p

HB
(t)
p,m(Tn)

= |A (o)|p +
m∑

`=1

∥∥D`
mA

∥∥p

HB
(t+`)
p,m−`(Tn)

+
∥∥∥Q(m,t)DA

∥∥∥p

`p(Tn)

is finite. We write simply HBp,m (Tn) for the scalar case t = 0.

8.2.1. Higher order reproducing kernels for tensors and the positivity property.
In this subsubsection we establish the key positivity property of reproducing kernels
that will permit us to use the technique of Böe’s “curious lemma”. It is this property
that yields the fruit of our labour in developing the theory of holomorphic Besov
spaces on trees. Let p = 2. Then the inner product corresponding to the Hilbert
space norm ‖A‖

HB
(t)
2,m(Tn)

defined on t-tensor-valued functions A on the tree Tn is
defined by induction on m by

〈〈A,B〉〉(t)m = A (o) ·B (o) +
m∑

`=1

〈〈
D`

mA, D`
mB
〉〉(t+`)

m−`

+
∑

α∈Tn

〈
Q(m,t)

α (DαA) ,Q(m,t)
α (DαB)

〉
α
,

where the cases m = 0 and m = 1 are defined in (8.25) and (8.33) respectively. We
have the following duality relation.
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Proposition 8.10. For 1 < p <∞ and t ∈ N, we have

∣∣∣〈〈A,B〉〉(t)m

∣∣∣ ≤ ‖A‖
HB

(t)
p,m(Tn)

‖B‖
HB

(t)
p′,m(Tn)

,

‖A‖
HB

(t)
p,m(Tn)

= sup
‖B‖

HB
(t)
p′,m

(Tn)
≤1

∣∣∣〈〈A,B〉〉(t)m

∣∣∣ .
Proof. The case m = 0 is just the duality of `p and `p

′
, and the case m = 1

is proved in Proposition 8.1 and Lemma 8.8, which treat respectively the cases
t = 0 and t ≥ 1. Consider now the case m = 2. The inequality above is Hölder’s
inequality. To see the equality above, let [o, α] = {o, α1, ..., αM = α} be the geodesic
from the root to α, and note that

A (α) = A (o) +
M∑

j=1

[A (αj)−A (αj−1)]

= A (o) +
M∑

j=1

D1
2A (αj−1) ∧ (αj − αj−1)

+
M∑

j=1

1
2
D2

2A (αj−1) ∧ {(αj − αj−1)⊗ (αj − αj−1)}

+
M∑

j=1

Q(2,t)
αj−1

Dαj−1A (αj) .

To handle the termsD1
2A (αj−1) we must first use the analogue of the above formula

with m = 1, D1
2A in place of A, and αN in place of α, N < M , to obtain

D1
2A (αN ) = D1

2A (o) +
N∑

j=1

[
D1

2A (αj)−D1
2A (αj−1)

]
= D1

2A (o) +
N∑

j=1

D1
1D

1
2A (αj−1) ∧ (αj − αj−1)

+
N∑

j=1

Q(1,t+1)
αj−1

Dαj−1D
1
2A (αj) .

Using this formula forD1
2A, we see that there is a unique (t+ 1)-tensor G satisfying

G (o) = D1
2A (o)

∣∣D1
2A (o)

∣∣p−2
,

D1
1G (γ) = D1

1D
1
2A (γ)

∣∣D1
1D

1
2A (γ)

∣∣p−2

γ
,

Q(1,t+1)
γ DγG = Q(1,t+1)

γ DγD
1
2A
∣∣∣Q(1,t+1)

γ DγD
1
2A
∣∣∣p−2

γ
,
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(note the crucial property that Q(1,t+1)
γ DγG ∈

(
M

(1,t+1)
γ

)⊥
) so that by Definition

8.9,

‖G‖p′

HB
(t+1)
p′,1 (Tn)

= |G (o)|p
′
+
∥∥D1

1G
∥∥p′

HB
(t+2)
p′,0 (Tn)

+
∥∥∥Q(1,t+1)DG

∥∥∥p′

`p′ (Tn)

=
∣∣D1

2A (o)
∣∣p +

∥∥D1
1D

1
2A
∥∥p

HB
(t+2)
p,0 (Tn)

+
∥∥∥Q(1,t+1)DD1

2A
∥∥∥p

`p(Tn)

=
∥∥D1

2A
∥∥p

HB
(t+1)
p,1 (Tn)

since (p− 1) p′ = p. Using the above formula for A, we see that there is a unique
t-tensor H satisfying

H (o) = A (o) |A (o)|p−2

D1
2H (γ) = G (γ)

D2
2H (γ) = D2

2A (γ)
∣∣D2

2A (γ)
∣∣p−2

γ
,

Q(2,t)
γ DγH = Q(2,t)

γ DγA
∣∣∣Q(2,t)

γ DγA
∣∣∣p−2

γ
,

(note the crucial property that Q(2,t)
γ DγH ∈

(
M

(2,t)
γ

)⊥
) so that by Definition 8.9,

‖H‖p′

HB
(t)
p′,2(Tn)

= |A (o)|p + ‖G‖p′

HB
(t+1)
p′,1 (Tn)

+
∥∥D2

2A
∥∥p

HB
(t+2)
p,0 (Tn)

+
∥∥∥Q(2,t)DA

∥∥∥p

`p(Tn)

= |A (o)|p +
∥∥D1

2A
∥∥p

HB
(t+1)
p,1 (Tn)

+
∥∥D2

2A
∥∥p

HB
(t+2)
p,0 (Tn)

+
∥∥∥Q(2,t)DA

∥∥∥p

`p(Tn)

= ‖A‖p

HB
(t)
p,2(Tn)

again since (p− 1) p′ = p. A similar calculation also yields that

〈〈A,H〉〉(t)2 = ‖A‖p

HB
(t)
p,2(Tn)

,

and if we now take B = H
‖H‖

HB
(t)
p′,2

(Tn)

, we obtain

〈〈A,B〉〉(t)2 =
‖A‖p

HB
(t)
p,2(Tn)

‖H‖
HB

(t)
p′,2(Tn)

=
‖A‖p

HB
(t)
p,2(Tn)

‖A‖p−1

HB
(t)
p,2(Tn)

= ‖A‖
HB

(t)
p,2(Tn)

,

which yields the equality in the statement of Proposition 8.10. The case m ≥ 3 is
treated in the same fashion, and this completes the proof of Proposition 8.10.

Denote by k(m,t)
α the reproducing kernel for α ∈ Tn relative to this inner prod-

uct, which exists by a modification of the argument in the case m = 0 immediately
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following Lemma 8.6 in Subsubsection 8.1.2. Then with the usual notation conven-
tion regarding inner products as in Definition 8.4, we have

A (α) =
〈〈

A,k(m,t)
α

〉〉(t)

m
(8.39)

= A (o) · k(m,t)
α (o) +

m∑
`=1

〈〈
D`

mA, D`
mk(m,t)

α

〉〉(t+`)

m−`

+
∑

α∈Tn

〈
Q(m,t)

α (DαA) ,Q(m,t)
α

(
Dαk(m,t)

α

)〉
α
.

We can also recover A (α) from A (o) together with the data

D1
mA (γ) , D2

mA (γ) , ..., Dm
mA (γ)

and the remainder term Q(m,t)
γ DγA for γ ∈ [o, α]. Set [o, α] = {o, α1, ..., αM = α}

then we have

A (α) = A (o) +
M∑

j=1

[A (αj)−A (αj−1)](8.40)

= A (o) +
M∑

j=1

D1
mA (αj−1) ∧ (αj − αj−1)

+
M∑

j=1

1
2
D2

mA (αj−1) ∧ {(αj − αj−1)⊗ (αj − αj−1)}

...

+
M∑

j=1

1
m!
Dm

mA (αj−1) ∧ {⊗m (αj − αj−1)}

+
M∑

j=1

Q(m,t)
αj−1

Dαj−1A (αj) .

Using the reproducing kernels k(m−`,t+`)
Aβ to recover D`

mA (Aβ), we can rewrite
this as

A (α) = A (o) +
m∑

`=1

∑
o<β≤α

1
`!
D`

mA (Aβ) ∧
{
⊗` (β −Aβ)

}
+

∑
o<β≤α

Q(m,t)
Aβ DAβA (β)

= A (o) +
m∑

`=1

∑
o<β≤α

1
`!

〈〈
D`

mA,k(m−`,t+`)
Aβ

〉〉(t+`)

m−`
∧
{
⊗` (β −Aβ)

}
+

∑
o<β≤α

Q(m,t)
Aβ DAβA (β) ,
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and since ∧ and ∧Aβ commute, we have〈
D`

mA (γ) ,k(m−`,t+`)
Aβ (γ)

〉(t+`)

γ
∧
{
⊗` (β −Aβ)

}
= k(m−`,t+`)

Aβ (γ) ∧γ D
`
mA (γ) ∧

{
⊗` (β −Aβ)

}
= k(m−`,t+`)

Aβ (γ) ∧
{
⊗` (β −Aβ)

}
∧γ D

`
mA (γ)

=
〈
D`

mA (γ) ,k(m−`,t+`)
Aβ (γ) ∧

{
⊗`β −Aβ

}〉(t+`)

γ
,

and so

A (α) = A (o) +
m∑

`=1

〈〈
D`

mA,
∑

o<β≤α

1
`!

k(m−`,t+`)
Aβ ∧

(
⊗`β −Aβ

)〉〉(t+`)

m−`

(8.41)

+
∑

o<β≤α

Q(m,t)
Aβ DAβA (β) .

By uniqueness of the representation formula (8.40) subject to the condition
that

Q(m,t)
αj−1

Dαj−1A ∈M⊥
αj−1

, 1 ≤ j ≤ m,

(this uses that L(m,t)
αj−1 is one-to-one as well as the uniqueness of the orthogonal

decompositions into Mαj−1 and M⊥
αj−1

; compare with the discussion surrounding
(8.17)), we see upon comparing (8.39) and (8.41) that we have the recursion formula

(8.42) D`
mk(m,t)

α =
∑

o<β≤α

1
`!

k(m−`,t+`)
Aβ ∧

(
⊗`β −Aβ

)
, 1 ≤ ` ≤ m,

as well as

A (o) = A (o) · k(m,t)
α (o),∑

o<β≤α

Q(m,0)
Aβ DAβA (β) =

∑
α∈Tn

〈
Q(m,t)

α (DαA) ,Q(m,t)
α

(
Dαk(m,t)

α

)〉
α
.

Note that the left side (8.42) is a tensor of order 2t + `, while that of the right
side has order 2 (t+ `) − `, the same order. We now use the recursion formula in
(8.42) to establish by induction the following positivity property for derivatives of
the reproducing kernels k(m,t)

α .

Lemma 8.11. Let 0 ≤ m+t ≤M . Then provided we choose λ small enough and
θ large enough in the construction of the Bergman tree, we have for all α, γ ∈ Tn,

r−md(γ) Re
(
Dm

mk
(m,0)
α (γ) ∧ {⊗mγ}

)
≈ 1(8.43) ∣∣∣D`

mk
(m,t)
α (γ)

∣∣∣
γ

+
∣∣∣Q(m,t)

γ

(
Dγk

(m,t)
α

)∣∣∣
γ
≤
{
C for γ ≤ α
0 otherwise ,

where Dm
mk

(m,0)
α (γ) ∧ {⊗mγ} = Dm

mk
(m,0)
α (γ) [γ, ..., γ].

Proof. Using induction with (8.32) and the recursion formula (8.42), we see
that D`

mk(m,t)
α is supported in the geodesic [o, α] for ` ≥ 1. The case m = 0 of
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(8.43) is trivial from (8.32), and for m = 1 and t = 0 (8.43) has been established in
(8.20) above. Now consider the case m = 1 and t ≥ 1. Then from (8.42) we have

Dmk(1,t)
α (γ) =

∑
o<β≤α

k(0,t+1)
Aβ (γ) ∧ β −Aβ.

Note that each side of the above equation is a (2t+ 1)-tensor. By (8.32), we have
that k(0,t+1)

Aβ (γ) is a 2 (t+ 1)-tensor that vanishes if γ 6= Aβ, and so

Dmk(1,t)
α (γ) = k(0,t+1)

γ (γ) ∧ γα − γ.

Recall also from (8.32) that

k(0,t)
γ (γ) =

∑
i

{
Rd(γ)ei1 ⊗ ...⊗Rd(γ)eit

}
⊗
{
Rd(γ)ei1 ⊗ ...⊗Rd(γ)eit

}
.

We now easily obtain the second line in (8.43) for m = 1 and t ≥ 0.
For m = ` ≥ 2 and t = 0, the recursion formula (8.42) yields

Dm
mk(m,0)

α (γ) =
∑

o<β≤α

1
m!

k(0,m)
Aβ (γ) ∧

{
⊗mβ −Aβ

}
=

1
m!

k(0,m)
γ (γ) ∧ {⊗mγα − γ} ,

and so

Dm
mk(m,0)

α (γ) ∧ {⊗mγ} =
1
m!

k(0,m)
γ (γ) ∧ {⊗mγα − γ} ∧ {⊗mγ}

=
1
m!

∑
i

〈
Rd(γ)ei1 , γα − γ

〉
× ...×

〈
Rd(γ)eim , γα − γ

〉
×
〈
Rd(γ)ei1 , γ

〉
× ...×

〈
Rd(γ)eim , γ

〉
.

Now we recall from (8.21) that e1 = γ
|γ| and that ej is orthogonal to γ for j ≥ 2.

Thus
〈
Rd(γ)eik

, γ
〉

= rd(γ) |γ| δ1ik
and so

Dm
mk(m,0)

α (γ) ∧ {⊗mγ} =
1
m!

〈
Rd(γ)e1, γα − γ

〉m (
rd(γ) |γ|

)m

=
r2md(γ)

m!
〈γ, γα − γ〉m

=
r2md(γ)

m!
〈γ, Pγγα − γ〉m .

Let ε > 0 be given. The vector Pγγα lies in PγKγα
, and from the construction of

the Bergman tree Tn with λ chosen sufficiently small, we see that

|arg 〈γ, Pγγα − γ〉| < ε,

as well as
Re 〈γ, Pγγα − γ〉 = Re 〈γ, γα − γ〉 ≥ cr−d(γ).

It follows that

Re (〈γ, Pγγα − γ〉m) ≥ cmr−md(γ) (1−mε) ≥ c0r
−md(γ).

This proves the first line in (8.43) for 0 ≤ m ≤M .
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The proof of the second line in (8.43) can easily be completed by induction as
follows. By the recursion formula (8.42), we have∣∣∣D`

mk(m,t)
α (γ)

∣∣∣
γ

=

∣∣∣∣∣∣
∑

o<β≤α

1
`!

k(m−`,t+`)
Aβ (γ) ∧

{
⊗`β −Aβ

}∣∣∣∣∣∣
γ

≤
∑

o<β≤α

1
`!

∣∣∣k(m−`,t+`)
Aβ (γ) ∧

{
⊗`β −Aβ

}∣∣∣
γ
,

which is bounded by a constant C using the induction assumption with m − ` <

m, together with the fact that β > Aβ ≥ γ if k(m−`,t+`)
Aβ (γ) is nonzero. The

boundedness of
∣∣∣Q(m,t)

γ

(
Dγk

(m,t)
α

)∣∣∣
γ

follows from (8.38), and this completes the

proof of Lemma 8.11.

8.3. Carleson measures. Here we characterize Carleson measures on the
holomorphic Besov space HBp,m (Tn).

Theorem 8.12. Let 1 < p < ∞ and 1 ≤ m ≤ M . Then there are λ and θ in
the construction of the Bergman tree, sufficiently small and large respectively, such
that µ is a HBp,m (Tn)-Carleson measure, i.e.

(8.44)

(∑
α∈Tn

|f (α)|p µ (α)

) 1
p

≤ C ‖f‖HBp,m(Tn) ,

if and only if the tree condition (3.2) holds, i.e.

(8.45)
∑
β≥α

∑
γ≥β

µ (γ)

p′

≤ C
∑
β≥α

µ (β) <∞, α ∈ Tn.

Proof. We first show that (8.45) implies (8.44). To see this, note that by
Definition 8.9 with t = 0 and (8.40) with f in place of A, we have

|f (α)| ≤ |f (o)|+
m∑

`=1

∑
o<β≤α

1
`!

∣∣D`
mf (Aβ) ∧

{
⊗` (β −Aβ)

}∣∣
+

∣∣∣∣∣∣
∑

o<β≤α

Q(m,t)
Aβ DAβA (β)

∣∣∣∣∣∣
≤ |f (o)|+ C

m∑
`=1

∑
o<β≤α

1
`!

∣∣D`
mf (Aβ)

∣∣
Aβ

+

∣∣∣∣∣∣
∑

o<β≤α

Q(m,t)
Aβ DAβA (β)

∣∣∣∣∣∣
≤ |f (o)|+ CIg (α) ,

where

g (β) =
m∑

`=1

∣∣D`
mf (Aβ)

∣∣
Aβ

+ |QAβDAβf (β)| .

However, because the terms
∣∣D`

mf (Aβ)
∣∣
Aβ

are large when ` < m, the `p norm of g
is not dominated by ‖f‖HBp,m(Tn). Instead we must iterate (8.40) with A replaced
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first by D`
mf , ` < m, then by D`2

m−`1
D`1

mf , and in general by

D`
mf = D`k

m−sk−1
...D`2

m−`1
D`1

mf, sk ≡ `1 + `2 + ...+ `k,

where ` = (`1, `2, ..., `k) is now a k-tuple, k ≤ m. The resulting estimate is

|f (α)| ≤
∑

sk<m

∣∣∣D`k
m−sk−1

...D`2
m−`1

D`1
mf (o)

∣∣∣+ CIg (α) ,

where g is now given by

g (β) =
∑

sk=m

∣∣∣D`k
m−sk−1

...D`1
mf
(
Akβ

)∣∣∣
Akβ

(8.46)

+
∑

sk=m

∣∣∣Q(m−sk−1,sk−1)

Akβ
DAkβD

`k−1
m−sk−2

...D`1
mf
∣∣∣
Akβ

.(8.47)

Using this, together with our assumption (8.45) and Theorem 3.1, we have(∑
α∈Tn

|f (α)|p µ (α)

) 1
p

≤ C

|f (o)|+

(∑
α∈Tn

|Ig (α)|p µ (α)

) 1
p


≤ C

|f (o)|+

(∑
α∈Tn

|g (α)|p
) 1

p


≤ C ‖f‖HBp,m(Tn) ,

which is (8.44). The final line above is proved in more detail in (8.59) below.

Remark 8.13. The Bergman norm
∣∣D`

mf (Aβ)
∣∣
Aβ

ofD`
mf (Aβ) arises naturally

in (8.46) as a pointwise bound for the expression
∣∣D`

mf (Aβ) ∧
{
⊗` (β −Aβ)

}∣∣. The
somewhat simpler scaled Euclidean norm r−`d(Aβ)

∣∣D`
mf (Aβ)

∣∣ does not provide
a pointwise upper bound for this, and this is one reason why we choose to use
the slightly more complicated Bergman norms over the scaled Euclidean norms.
Another reason is the growth estimate (8.6) for functions inHBp,m (Tn) that ensures
point evaluations are continuous linear functionals on HBp,m (Tn). The Bergman
norms are also natural in view of the almost invariant seminorms ‖·‖∗Bp,m

defined
on the ball in Definition 6.3. On the other hand, it seems likely that one can
develop the theory of holomorphic Besov spaces on Bergman trees using the scaled
Euclidean norm together with Schur lemma techniques, just as on the ball, but we
will not pursue this here.

Conversely, we show that the dual of (8.44) implies (8.45). Let k(m,0)
α be the

(scalar-valued) reproducing kernel for HBp,m (Tn). Since∑
α∈Tn

f (α) g (α)µ (α) =
∑

α∈Tn

〈〈
f,k(m,0)

α

〉〉(0)

m
g (α)µ (α)

=

〈〈
f,
∑

α∈Tn

g (α)µ (α)k(m,0)
α

〉〉(0)

m

,
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(8.44) and Proposition 8.10 imply the dual inequality∥∥∥∥∥∑
α∈Tn

g (α)µ (α)k(m,0)
α

∥∥∥∥∥
HBp′,m(Tn)

= sup
‖f‖HBp,m(Tn)≤1

∣∣∣∣∣∣
〈〈

f,
∑

α∈Tn

g (α)µ (α) kα

〉〉(0)

m

∣∣∣∣∣∣
= sup

‖f‖HBp,m(Tn)≤1

∣∣∣∣∣ ∑
α∈Tn

f (α) g (α)µ (α)

∣∣∣∣∣
≤ sup

‖f‖HBp,m(Tn)≤1

‖f‖Lp(µ) ‖g‖Lp′ (µ)

≤ C ‖g‖Lp′ (µ) .

By Definition 8.9 with t = 0, this implies in particular that

∥∥∥∥∥Dm
m

(∑
α∈Tn

g (α)µ (α)k(m,0)
α

)∥∥∥∥∥
HB

(m)
p′,0(Tn)

≤

∥∥∥∥∥∑
α∈Tn

g (α)µ (α)k(m,0)
α

∥∥∥∥∥
HBp′,m(Tn)

(8.48)

≤ C ‖g‖Lp′ (µ) .

Note as always that we may assume µ has finite support.
We now restrict g to be nonnegative in (8.48). From the first part of (8.43) in

Lemma 8.11, and the fact that the support of Dm
mk(m,0)

α is contained in the geodesic
[o, α), we obtain that

‖I∗gµ‖`p′ (γ)

=

∥∥∥∥∥∥
∑

α∈Tn:α≥γ

g (α)µ (α)

∥∥∥∥∥∥
`p′ (γ)

≤ C

∥∥∥∥∥∑
α∈Tn

g (α)µ (α) r−md(γ) Re
(
Dm

mk(m,0)
α (γ) ∧ {⊗mγ}

)∥∥∥∥∥
`p′ (γ)

= C

∥∥∥∥∥r−md(γ) Re

(∑
α∈Tn

g (α)µ (α)Dm
mk(m,0)

α (γ) ∧ {⊗mγ}

)∥∥∥∥∥
`p′ (γ)

≤ C

∥∥∥∥∥r−md(γ)Dm
m

(∑
α∈Tn

g (α)µ (α)k(m,0)
α (γ)

)∥∥∥∥∥
`p′ (γ)

≤ C

∥∥∥∥∥Dm
m

(∑
α∈Tn

g (α)µ (α)k(m,0)
α (γ)

)∥∥∥∥∥
HB

(m)
p′,0(Tn)

≤ C ‖g‖Lp′ (µ)

for all g ≥ 0 by (8.48). This yields (8.45) as required upon taking g = χS(α).

8.4. The holomorphic restriction map. In the special case where f arises
as the restriction f = TF = {F (cα)}α∈Tn

of a holomorphic function F ∈ Bp (Bn),
m > 2n

p , then D`
mf (α) ≈ F (`) (cα) for 1 ≤ ` ≤ m, and using Taylor’s formula we
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will see that Q(m,0)
α Dαf is controlled by F (m+1). Similarly, D`

mf (α) = F (`) (α) +{
D`

mf (α)− F (`) (α)
}
, and we will show that each term in this sum is also controlled

by F (m+1). In this way we will obtain the following Besov space restriction theorem,
as well as the corresponding multiplier space restriction theorem:

Theorem 8.14. Let m > 2n
p . Then provided θ is chosen large enough in the

construction of the Bergman tree Tn, the restriction map

TF = {F (α)}α∈Tn
, where TF (α) = F (cα) ,

is bounded from Bp (Bn) to HBp,m (Tn), and if in addition p < 2 + 1
n−1 , then T is

also bounded from MBp(Bn) to MHBp,m(Tn).

The proof of the first assertion in Theorem 8.14 will be given immediately
below. The more difficult second assertion will be the content of Subsubsection
8.4.1, and will require the lengthy proof of Lemma 8.17, characterizing the pointwise
multipliers of HBp,m (Tn).

Proof. We first prove a stronger assertion for Besov spaces by induction on
m. To state this stronger version, we need to recast the seminorms ‖·‖∗Bp,m(Bn) we
introduced for Besov spaces on the ball in Section 6, in the language of the discrete
tensors we are using on the Bergman tree. This is easily accomplished by observing
that for f ∈ H (Bn), and z, α ∈ Bn, we have

(8.49)
∣∣D`

αf (z)
∣∣ = ∣∣∣f (`) (z)

∣∣∣
α
.

Indeed,

|Dαf (z)|2 =
∣∣∣∣f ′ (z){(1− |α|2)Pα +

(
1− |α|2

) 1
2
Qα

}∣∣∣∣2
=
∣∣∣f ′ (z){r−d(α)Pα + r−

d(α)
2 Qα

}∣∣∣2
=

∣∣∣∣∣∑
i

∂f

∂zi
(z) ei

{
r−d(α)Pα + r−

d(α)
2 Qα

}∣∣∣∣∣
2

=
∑

i

∣∣∣∣ ∂f∂zi
(z)
∣∣∣∣2 〈R−d(α)ei,R−d(α)ei

〉
= |f ′ (z)|2α ,

and the general case ` ≥ 1 can be verified by expanding each of the `-tensors
D`

αf (z) and f (`) (z) as a sum of the basis tensors ei1 ⊗ ... ⊗ ei` , and then using
definitions. Then by Lemma 6.4 we have

‖f‖Bp(Bn) ≈
m−1∑
j=0

∣∣∇jf (0)
∣∣+(∑

α∈Tn

∫
Kα

∣∣∣f (m) (z)
∣∣∣p
α
dλn (z)

) 1
p

,

provided m > 2n
p .

To fully exploit this realization of the Besov space norm, we now define the
Besov space B(t)

p,m (Bn) of t-tensors on the ball.
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Definition 8.15. The space B
(t)
p,m (Bn) consists of all holomorphic t-tensor-

valued functions A on the ball Bn such that the norm

‖A‖
B

(t)
p,m(Bn)

≡
m−1∑
j=0

∣∣∇jA (0)
∣∣+(∑

α∈Tn

∫
Kα

∣∣∣A(m) (z)
∣∣∣p
α
dλn (z)

) 1
p

is finite.

Note that A(m) (z) is a (t+m)-tensor and
∣∣A(m) (z)

∣∣
α

is its norm in the Hilbert

space E(t+m)
α given by

√〈
A(m) (z) ,A(m) (z)

〉(t+m)

α
. If A is a polynomial, then∣∣∣A(m) (z)

∣∣∣
α
≤ CA,m,t

(
1− |z|2

) t+m
2
, z ∈ Kα,

and we thus see that the space B(t)
p,m (Bn) contains all polynomials if p

(
t+m

2

)
−n−

1 > −1, or m > 2n
p . One can in fact show that the above norms are equivalent for

different m,m′ if both t+m and t+m′ are greater than 2n
p , but we will not need

this fact. We will use however the trivial inequality

(8.50)
∥∥∥A(`)

∥∥∥
B

(t+`)
p,m−`(Bn)

≤ ‖A‖
B

(t+m)
p,m (Bn)

, t+m >
2n
p
,

for holomorphic t-tensor valued functions, which uses only the definitions and the
identity

(
A(`)

)(k)
= A(`+k).

We now extend the definition of the restriction map T to t-tensor-valued func-
tions A on the ball by

TA = {A (α)}α∈Tn
, where TA (α) = A (cα) .

The stronger assertion we will prove by induction on m is:

(8.51) ‖TA‖
HB

(t)
p,m(Tn)

≤ C ‖A‖
B

(t)
p,m(Bn)

, t+m >
2n
p
.

The case t = 0 is the required Besov space restriction theorem.
The case m = 0 of (8.51), i.e.∑

α∈Tn

|A (α)|pα ≤ C
∑

α∈Tn

∫
Kα

|A (z)|pα dλn (z) ,

follows immediately from the mean value equality for holomorphic functions and
tensors,

(8.52) A (α) =
∫

ϕα(K0)

A (z) dλn (z) ,

followed by an application of Minkowski’s inequality with the norm |·|α, and then
observing that ϕα (K0) ≈ Kα. Inequality (8.52) is in turn a consequence of the
mean value equality A (0) =

∫
B(0, 1

2 ) A (z) dλn (z) and the invariance of the measure
dλn.

Now fix 0 < m, t ≤ M with t + m > 2n
p and make the induction assumption

that (8.51) holds for all smaller m′ < m and 0 ≤ t′ ≤ M satisfying t′ +m′ > 2n
p .

By Definition 8.9 we have, with a = TA,

(8.53) ‖a‖p

HB
(t)
p,m(Tn)

= |a (o)|p +
m∑

`=1

∥∥D`
ma
∥∥p

HB
(t+`)
p,m−`(Tn)

+
∥∥∥Q(m,t)Da

∥∥∥p

`p(Tn)
.
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To estimate the term
∥∥D`

ma
∥∥p

HB
(t+`)
p,m−`(Tn)

in (8.53) we write

D`
ma = T

(
A(`)

)
+
(
D`

ma− T
(
A(`)

))
,

and estimate the terms

(8.54)
∥∥∥T (A(`)

)∥∥∥p

HB
(t+`)
p,m−`(Tn)

and

(8.55)
∥∥∥D`

ma− T
(
A(`)

)∥∥∥p

HB
(t+`)
p,m−`(Tn)

separately. The first term (8.54) is easy by the induction assumption:∥∥∥T (A(`)
)∥∥∥p

HB
(t+`)
p,m−`(Tn)

≤ C
∥∥∥A(`)

∥∥∥p

B
(t+`)
p,m−`(Bn)

,

since (t+ `) + (m− `) = t+m > 2n
p , and then (8.50) yields∥∥∥T (A(`)

)∥∥∥p

HB
(t+`)
p,m−`(Tn)

≤ C ‖A‖p

B
(t)
p,m(Bn)

.

To handle the second term (8.55), let a(`) = T
(
A(`)

)
denote the restriction of

the holomorphic (t+ `)-tensor A(`) to the tree, and use the structure inequality
(8.37) with v` = D`

ma− a(`), to obtain

cm

m∑
`=1

∣∣∣D`
ma− a(`)

∣∣∣
α
≤
∣∣∣L(m,t)

α

(
D1

ma, ..., Dm
ma
)
− L(m,t)

α

(
a(1), ...,a(m)

)∣∣∣
α

=
∣∣∣P(m,t)

α DαA− U(m,t)
α

∣∣∣
α

=
∣∣∣V(m,t)

α

∣∣∣
α

where the vectors U
(m,t)
α and V

(m,t)
α in

(
E(t)

α

)N

are defined by

U(m,t)
α = L(m,t)

α

(
a(1), ...,a(m)

)
= L(m,t)

α

(
A(1), ...,A(m)

)
,

V(m,t)
α = Dαa− U(m,t)

α = DαA− U(m,t)
α .

By a generalization of the local oscillation inequality (6.16) in Proposition 6.5, with
the scalar f replaced by a t-tensor A, we have the estimate (recall we are identifying
α with cα),

∣∣∣V(m,t)
α

∣∣∣
α

=

∣∣∣∣∣∣
{

A
(
αj
)
−A (α)−

m∑
`=1

D`
mA (α) ∧ ⊗`

(
αj − α

)}N

j=1

∣∣∣∣∣∣
α

(8.56)

≤ C

(∫
K∗

α

∣∣Am+1 (z)
∣∣p
α
dλn (z)

) 1
p

≤ C

(∫
K∗∗

α

|Am (z)|pα dλn (z)

) 1
p

.

Altogether we can now estimate the second term (8.55) above using the embedding

`p(t+`) (Tn) ⊂ HB
(t+`)
p,m−` (Tn) ,
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where `p(t) (Tn) is the space of t-tensor-valued functions A on the tree with

‖A‖`p
(t)(Tn) =

(∑
α∈Tn

|A (α)|pα

) 1
p

<∞,

to obtain ∥∥∥D`
ma− T

(
A(`)

)∥∥∥p

HB
(t+`)
p,m−`(Tn)

≤ C
∥∥∥∣∣∣D`

ma− T
(
A(`)

)∣∣∣
α

∥∥∥p

`p(Tn)
(8.57)

≤ C
∥∥∥∣∣∣V(m,t)

α

∣∣∣
α

∥∥∥p

`p(Tn)

≤ C

(∑
α∈Tn

∫
K∗

α

|Am (z)|pα dλn (z)

) 1
p

≤ C ‖A‖p

B
(t+m)
p,m (Bn)

.

To estimate the term
∥∥Q(m,t)DA

∥∥p

`p(Tn)
in (8.53), we note that the minimizing

property (8.38) yields∣∣∣Q(m,t)
α DαA

∣∣∣
α

= min
x∈E(1)

α ×...×E(m)
α

∣∣∣DαA− L(m,t)
α x

∣∣∣
α

(8.58)

≤
∣∣∣DαA− U(m,t)

α

∣∣∣
α

=
∣∣∣V(m,t)

α

∣∣∣
α
.

Thus by (8.56) we can bound
∣∣∣Q(m,t)

α DαA
∣∣∣
α

by C
(∫

K∗
α
|Am (z)|pα dλn (z)

) 1
p

, and
so ∥∥∥Q(m,t)DA

∥∥∥p

`p(Tn)
≤ C

∥∥∥∣∣∣V(m,t)
α

∣∣∣
α

∥∥∥p

`p(Tn)
≤ C ‖A‖p

B
(t+m)
p,m (Bn)

,

by (8.57). This completes the proof of the first assertion in Theorem 8.14.

8.4.1. Multiplier restriction. We now turn to proving that T is bounded from
the ball multiplier space MBp(Bn) to the tree multiplier space MHBp,m(Tn) for 2n

m <

p < 2+ 1
n−1 . First we record a variant of the ball multiplier Theorem 4.2 using the

derivatives Dm
cα

in place of ∇m.

Lemma 8.16. Let ϕ ∈ H∞ (Bn)∩Bp (Bn) and m > 2n
p . Then ϕ is a multiplier

on Bp (Bn) if and only if∑
α∈Tn

χKα (z)
{∫

Kα

∣∣Dm
cα
ϕ (ζ)

∣∣p dλn (ζ)
}
dλn (z)

is a Bp (Bn)-Carleson measure on Bn.

Proof. Since the operators Dm
cα

satisfy the same product rule as ∇m, and can
be used in place of ∇m in the seminorm for Bp (Bn) when m > 2n

p by Lemma 6.4,
the proof of Theorem 4.2 applies almost verbatim. This completes the proof of
Lemma 8.16.

Second, we prove the analogue of the tree multiplier Lemma 7.4 for the holo-
morphic Besov space HBp,m (Tn). We only need the sufficiency statement in the
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sequel. In order to state the lemma, we begin by expressing the Besov space norm
HBp,m (Tn) as an `p norm of appropriate quantities. We have

‖f‖p
HBp,m(Tn) = |f (o)|p +

∑
α∈Tn

∣∣∣Q(m,0)
α Dαf

∣∣∣p +
m∑

`1=1

∥∥D`1
mf (α)

∥∥p

HB
(`1)
p,m−`1

(Tn)

= |f (o)|p +
∑

α∈Tn

∣∣∣Q(m,0)
α Dαf

∣∣∣p +
∑

α∈Tn

|Dm
mf (α)|pα

+
m−1∑
`1=1

∥∥D`1
mf (α)

∥∥p

HB
(`1)
p,m−`1

(Tn)
.

Now write each term
∥∥D`1

mf (α)
∥∥p

HB
(`1)
p,m−`1

(Tn)
as∥∥D`1

mf (α)
∥∥p

HB
(`1)
p,m−`1

(Tn)
=
∣∣D`1

mf (o)
∣∣+ ∑

α∈Tn

∣∣∣Q(m,m−`1)
α DαD

`1
mf
∣∣∣p

+
∑

α∈Tn

∣∣∣Dm−`1
m−`1

D`1
mf (α)

∣∣∣p
α

+
m−`1−1∑

`2=1

∥∥∥D`2
m−`1

D`1
mf (α)

∥∥∥p

HB
(`1)
p,m−`1

(Tn)
,

to get

‖f‖p
HBp,m(Tn) = |f (o)|p +

m−1∑
`1=1

∣∣D`1
mf (o)

∣∣
+
∑

α∈Tn

∣∣∣Q(m,0)
α Dαf

∣∣∣p +
m−1∑
`1=1

∑
α∈Tn

∣∣∣Q(m,m−`1)
α DαD

`1
mf
∣∣∣p

+
∑

α∈Tn

|Dm
mf (α)|pα +

m−1∑
`1=1

∑
α∈Tn

∣∣∣Dm−`1
m−`1

D`1
mf (α)

∣∣∣p
α

+
m−1∑
`1=1

m−`1−1∑
`2=1

∥∥∥D`2
m−`1

D`1
mf (α)

∥∥∥p

HB
(`1)
p,m−`1

(Tn)
.

Continuing in this way we arrive at the desired formula (let sk = `1 + ...+ `k):

‖f‖p
HBp,m(Tn) =

∑
sk<m

∣∣∣D`k
m−sk−1

...D`2
m−`1

D`1
mf (o)

∣∣∣p(8.59)

+
∑

sk=m

∑
α∈Tn

∣∣∣Q(m−sk−1,sk−1)
α DαD

`k−1
m−sk−2

...D`1
mf
∣∣∣p
α

+
∑

sk=m

∑
α∈Tn

∣∣∣D`k
m−sk−1

...D`1
mf (α)

∣∣∣p
α
.

Lemma 8.17. Let m > 2n
p . Then f ∈ MHBp,m(Tn) if and only if f is bounded

and {ω (α)}α∈T is a HBp,m (Tn)-Carleson measure, where
(8.60)

ω (α) ≡
∑

sk=m

∣∣∣D`k
m−sk−1

...D`1
mf (α)

∣∣∣p
α

+
∑

sk=m

∣∣∣Q(m−sk−1,sk−1)
α DαD

`k−1
m−sk−2

...D`1
mf
∣∣∣p
α
.
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For the proof of this characterization of the pointwise multipliers ofHBp,m (Tn),
we will need the embeddings

HBq,2 (Tn) ⊂ HBr,2 (Tn) , 1 < q < r <∞(8.61)

HBp,m (Tn) = HBp,m′ (Tn) , m,m′ >
2n
p
.

The embedding HBq,2 (Tn) ⊂ HBr,2 (Tn) for q < r is automatic from Definition
7.14 and the embeddings of `q spaces. The equality HBp,m (Tn) = HBp,m′ (Tn) for
m,m′ > 2n

p is established in the following lemma.

Lemma 8.18. HBp,m (Tn) ⊂ HBp,m+1 (Tn) for m ≥ 0, 1 < p < ∞; and
HBp,m (Tn) = HBp,m′ (Tn) for m,m′ > 2n

p .

Proof. We first show by induction on m that

‖A‖
HB

(t)
p,m+1(Tn)

≤ C ‖A‖
HB

(t)
p,m(Tn)

, 1 < p <∞,m ≥ 0,

for all t-tensor-valued functions A on the tree Tn. We have from (8.37) that

‖A‖p

HB
(t)
p,1(Tn)

= |A (o)|p + ‖D1A‖p
HBp,0(Tn) +

∥∥∥Q(1,t)DA
∥∥∥p

`p(Tn)

≈ |A (o)|p +
∥∥∥P(1,t)DA

∥∥∥p

`p(Tn)
+
∥∥∥Q(1,t)DA

∥∥∥p

`p(Tn)

≤ |A (o)|p + C ‖DA‖p
`p(Tn)

≤ |A (o)|p + C ‖A‖p
`p(Tn)

= C ‖A‖p

HB
(t)
p,0(Tn)

.

The significant inequality above is ‖DA‖p
`p(Tn) ≤ C ‖A‖p

`p(Tn), which cannot be
reversed for general functions A. This establishes the case m = 0 of the induction.
Now from the case m = 0 applied to the (t+ 1)-tensor D2A we have

‖A‖p

HB
(t)
p,2(Tn)

= |A (o)|p + ‖D2A‖p
HBp,1(Tn)

+
∥∥D2

2A
∥∥p

HBp,0(Tn)
+
∥∥∥Q(2,t)DA

∥∥∥p

`p(Tn)

≤ |A (o)|p + ‖D2A‖p
HBp,0(Tn)

+
∥∥D2

2A
∥∥p

HBp,0(Tn)
+
∥∥∥Q(2,t)DA

∥∥∥p

`p(Tn)

≈ |A (o)|p +
∥∥∥P(2,t)DA

∥∥∥p

`p(Tn)
+
∥∥∥Q(2,t)DA

∥∥∥p

`p(Tn)

≈ |A (o)|p + ‖DA‖p
`p(Tn)

≈ |A (o)|p +
∥∥∥P(1,t)DA

∥∥∥p

`p(Tn)
+
∥∥∥Q(1,t)DA

∥∥∥p

`p(Tn)

= ‖A‖p

HB
(t)
p,1(Tn)

,

which is the case m = 1, and the general case is left to the interested reader.
This proof of the opposite inequality,

(8.62) ‖f‖HBp,m(Tn) ≤ C ‖f‖HBp,m+1(Tn) , m >
2n
p
,
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is similar to the proof of the analogous Theorem 2.1 on the ball - see Theorem 6.1
of [Zhu]. To illustrate we prove only the case m = 1 of (8.62), the case m = 0
being trivial. We must show that ‖f‖HBp,1(Tn) ≤ C ‖f‖HBp,2(Tn) provided p > 2n.
Recall that

‖f‖HBp,1(Tn) ≈ |f (o)|+ ‖D1f‖HBp,0(Tn) +
∥∥∥Q(1,0)Df

∥∥∥
`p(Tn)

,

‖f‖HBp,2(Tn) ≈ |f (o)|+ ‖D2f‖HBp,1(Tn) +
∥∥D2

2f
∥∥

HBp,0(Tn)
+
∥∥∥Q(2,0)Df

∥∥∥
`p(Tn)

.

Now we have

‖D1f‖HBp,0(Tn) +
∥∥∥Q(1,0)Df

∥∥∥
`p(Tn)

≈
∥∥∥P(1,0)Df

∥∥∥
`p(Tn)

+
∥∥∥Q(1,0)Df

∥∥∥
`p(Tn)

≈ ‖Df‖`p(Tn)

≈
∥∥∥P(2,t)Df

∥∥∥
`p(Tn)

+
∥∥∥Q(2,t)Df

∥∥∥
`p(Tn)

≈ ‖D2f‖HBp,0(Tn) +
∥∥D2

2f
∥∥

HBp,0(Tn)
+
∥∥∥Q(2,0)Df

∥∥∥
`p(Tn)

,

and thus it suffices to show that ‖D2f‖HBp,0(Tn) ≤ C ‖D2f‖HBp,1(Tn), or

∑
α∈Tn

|D2f (α)|pα ≤ C

(
|D2f (o)|p +

∑
α∈Tn

|D1D2f |pα +
∑

α∈Tn

∣∣∣Q(1,0)
α DαD2f

∣∣∣p
α

)

≈ |D2f (o)|p +
∑

α∈Tn

∣∣∣P(1,0)
α DαD2f

∣∣∣p
α

+
∑

α∈Tn

∣∣∣Q(1,0)
α DαD2f

∣∣∣p
α

≈ |D2f (o)|p +
∑

α∈Tn

|DαD2f |pα ,

i.e.

(8.63)
∑

α∈Tn

|D2f (α)|pα ≤ C

(
|D2f (o)|p +

∑
α∈Tn

|M D2f (α)|pα

)

(we use the convention M D2f (o) = D2f (o)).
Now using (8.2), (8.3) and the operator(

R±d
)
(α) = r±d(α)Pα + r±

d(α)
2 Qα

as in Definition 8.2, we have(
R−df ′

)
(α) = f ′ (α)

(
R−d

)
(α)

=

 ∑
o≤γ≤α

M f ′ (γ)

(R−d
)
(α)

=
∑

o≤γ≤α

(
R−d M f ′

)
(γ)
(
Rd
)
(γ)
(
R−d

)
(α) ,
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and thus the estimate

|D2f (α)|α =
∣∣(R−dD2f

)
(α)
∣∣(8.64)

≤
∑

o≤γ≤α

∣∣(R−d M D2f
)
(γ)
∣∣ ∣∣(Rd

)
(γ)
(
R−d

)
(α)
∣∣

=
∑

o≤γ≤α

∣∣(Rd
)
(γ)
(
R−d

)
(α)
∣∣ |M D2f (γ)|γ .

We now claim that

(8.65)
∣∣(Rd

)
(γ)
(
R−d

)
(α)
∣∣ ≤ Cr−

d(α)−d(γ)
2 .

To see this we expand the product of operators as(
Rd
)
(γ)
(
R−d

)
(α)

=
(
rd(γ)Pγ + r

d(γ)
2 Qγ

)(
r−d(α)Pα + r−

d(α)
2 Qα

)
= r−

d(α)−d(γ)
2

{
r−

d(α)−d(γ)
2 PγPα + r

d(γ)
2 PγQα + r−

d(α)
2 QγPα +QγQα

}
,

which reduces the proof of the claim to

|PγQα| ≤ Cr−
d(γ)

2 .

For this it is enough to show that the adjoint (PγQα)∗ = Q∗αP
∗
γ = QαPγ has norm

bounded by Cr−
d(γ)

2 . However, for a unit vector v, Pγv = λγ where λ is a complex
number of modulus at most one, and so

|QαPγv| = |Qα (λγ)| = |λγ − Pα (λγ)|

= |λ|

∣∣∣∣∣(γ − α)− ((γ − α) · α)α
|α|2

∣∣∣∣∣
≤ 2 |γ − α| ≤ C

(
1− |γ|2

) 1
2

= Cr−
d(γ)

2 ,

by (8.3).
Combining (8.64) and (8.65) we obtain

|D2f (α)|α ≤ C
∑

o≤γ≤α

r−
d(α)−d(γ)

2 |M D2f (γ)|γ .

We write this as

|D2f (α)|α ≤ C
∑
β∈T

K (α, β) |M D2f (β)|β

where the kernel K (α, β) is given by χ[o,α] (β) r
1
2 [d(β)−d(α)]. We now apply Schur’s

test, Lemma 5.17, with auxiliary function with h (β) = rtd(β). We have∑
β∈T

K (α, β)h (β)p′ =
∑
β≤α

r(
1
2+p′t)d(β)r−

1
2 d(α) ≤ Ch (α)p′
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provided 1
2 + p′t > 0. We also have using the “sparse” argument of Lemma 7.3,

that for ε > 0,∑
β∈T

K (α, β)h (α)p =
∑
α≥β

r(pt− 1
2 )d(α)r

1
2 d(β)

≤ C`

∞∑
k=0

(
rn+ε

)k`
r(pt− 1

2 )(d(β)+k`)r
1
2 d(β)

≤ C`h (β)p

provided n + ε + pt − 1
2 < 0, where ` is chosen so large in Definition 2.7 that

2(N`)
1
` < rn+ε. Now since p > 2n, we can choose − 1

2p′ < t <
1
2−n−ε

p for some
ε > 0, and then Schur’s test shows that

(∑
α∈T

|D2f (α)|pα

) 1
p

≤ C

∑
α∈T

∣∣∣∣∣∣
∑
β∈T

K (α, β) |M D2f (β)|β

∣∣∣∣∣∣
p

1
p

≤ C

∑
β∈T

|M D2f (β)|pβ

 1
p

,

which is (8.63) as required. This completes the proof of the case m = 1 of (8.62).
The general case is similar and is left to the interested reader. The proof of Lemma
8.18 is complete.

Proof. (of Lemma 8.17) We first prove the sufficiency assertion of the Lemma
8.17. Let f be bounded and suppose that {ω (α)}α∈T is a HBp,m (Tn)-Carleson
measure where ω is as in (8.60). Then if g ∈ HBp,m (Tn), we must show that
fg ∈ HBp,m (Tn) with norm control

‖fg‖HBp,m(Tn) ≤ C ‖g‖HBp,m(Tn) ,

where C depends on the Carleson norm ‖ω‖Carleson of {ω (α)}α∈T . We have

‖fg‖p
HBp,m(Tn) =

∑
sk<m

∣∣∣D`k
m−sk−1

...D`2
m−`1

D`1
m (fg) (o)

∣∣∣p(8.66)

+
∑

sk=m

∑
α∈Tn

∣∣∣Q(m−sk−1,sk−1)
α DαD

`k−1
m−sk−2

...D`1
m (fg)

∣∣∣p
α

+
∑

sk=m

∑
α∈Tn

∣∣∣D`k
m−sk−1

...D`1
m (fg) (α)

∣∣∣p
α
.

Consider first the case that s1 = m in (8.66), so that `1 = m. We must show
that
(8.67)∑

α∈Tn

∣∣∣Q(m,0)
α Dα (fg)

∣∣∣p
α

+
∑

α∈Tn

|Dm
m (fg) (α)|pα ≤ C ‖ω‖p

Carleson ‖g‖
p
HBp,m(Tn) .
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To see this we write

Dα (fg) = {(fg) (αj)− (fg) (α)}N
j=1

= f (α) {M g (αj)}N
j=1 + g (α) {M f (αj)}N

j=1

+ {M f (αj) M g (αj)}N
j=1 ,

and using the definitions of D`
mf (α) and D`

mg (α) we obtain

Dα (fg) = f (α)

{
m∑

`=1

1
`!
D`

mg (α) ∧
{
⊗` (αj − α)

}}N

j=1

+ g (α)

{
m∑

`=1

1
`!
D`

mf (α) ∧
{
⊗` (αj − α)

}}N

j=1

+ f (α)Q(m,0)
α Dαg + g (α)Q(m,0)

α Dαf

+ {M f (αj) M g (αj)}N
j=1 .

Now using (8.35), the jth component in the final term above is

(
m∑

`=1

1
`!
D`

mf (α) ∧
{
⊗` (αj − α)

})( m∑
`=1

1
`!
D`

mg (α) ∧
{
⊗` (αj − α)

})

+

(
m∑

`=1

1
`!
D`

mf (α) ∧
{
⊗` (αj − α)

})(
Q(m,0)

α Dαg (αj)
)

+

(
m∑

`=1

1
`!
D`

mg (α) ∧
{
⊗` (αj − α)

})(
Q(m,0)

α Dαf (αj)
)

+
(
Q(m,0)

α Dαf (αj)
)(
Q(m,0)

α Dαg (αj)
)
,

where the first line is

m∑
k=1

m∑
`=1

1
k!`!

(
Dk

mf (α) ∧
{
⊗k (αj − α)

}) (
D`

mg (α) ∧
{
⊗` (αj − α)

})
=

m∑
k=1

m∑
`=1

1
k!`!

(
Dk

mf (α)⊗D`
mg (α)

)
⊗k+` (αj − α)

=
m∑

r=1

[
r∑

`=1

(
r
`

)(
Dr−`

m f (α)⊗D`
mg (α)

)]
⊗r (αj − α) .
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Altogether we have

(fg) (αj) =
m∑

r=0

[
r∑

`=0

(
r
`

)(
Dr−`

m f (α)⊗D`
mg (α)

)]
⊗r (αj − α)(8.68)

+

(
m∑

`=1

1
`!
D`

mg (α) ∧
{
⊗` (αj − α)

})(
Q(m,0)

α Dαf (αj)
)

+

(
m∑

`=1

1
`!
D`

mf (α) ∧
{
⊗` (αj − α)

})(
Q(m,0)

α Dαg (αj)
)

+
(
Q(m,0)

α Dαf (αj)
)(
Q(m,0)

α Dαg (αj)
)
.

Recall the notation |A|α =
√
〈A,A〉(t)α introduced in (8.23). The first term on

the right side of (8.68) lies in Mα, and by the fact that Pα and Qα are orthogonal
projections onto Mα and M⊥

α respectively, we thus have∣∣∣Q(m,0)
α Dα (fg)

∣∣∣ ≤ m∑
`=1

∣∣D`
mf (α)

∣∣
α

∣∣∣Q(m,0)
α Dαg

∣∣∣(8.69)

+
m∑

`=1

∣∣D`
mg (α)

∣∣
α

∣∣∣Q(m,0)
α Dαf

∣∣∣
+
∣∣∣Q(m,0)

α Dαf
∣∣∣ ∣∣∣Q(m,0)

α Dαg
∣∣∣ .

As in the proof of the corresponding multiplier characterization on the ball, Theo-
rem 4.2, we set

(8.70) q` =
m

m− `
, q′` =

m

`
, 1 ≤ ` ≤ m− 1,

and continue by estimating the `p norm of the first terms on the right side of (8.69)
by

∑
α∈Tn

∣∣D`
mf (α)

∣∣p
α

∣∣∣Q(m,0)
α Dαg

∣∣∣p ≤ {∑
α∈Tn

∣∣D`
mf (α)

∣∣pq′`
α

} 1
q′
`

×

{∑
α∈Tn

∣∣∣Q(m,0)
α Dαg

∣∣∣pq`

α

} 1
q`

≤ ‖f‖p
HBpq′

`
,`(Tn) ‖g‖

p
HBp,m(Tn)

≤ ‖f‖p
HBpq′

`
,m(Tn) ‖g‖

p
HBp,m(Tn)

≤ ‖f‖p
HBp,m(Tn) ‖g‖

p
HBp,m(Tn) ,

where we have used first that{∑
α∈Tn

∣∣D`
mf (α)

∣∣pq′`
α

} 1
pq′

`

≤ C ‖f‖HBpq′
`

,`(Tn)

for ` > 2n`
pm = 2n

pq′`
and m ≥ ` (the case m = ` is by definition, and the case m > `

follows easily), and then (8.61). The `p norms of the remaining terms in (8.69) are
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handled similarly and thus we have obtained∑
α∈Tn

∣∣∣Q(m,0)
α Dα (fg)

∣∣∣p ≤ C ‖f‖p
HBp,m(Tn) ‖g‖

p
HBp,m(Tn)(8.71)

≤ C ‖ω‖p
Carleson ‖g‖

p
HBp,m(Tn) ,

which is the first half of (8.67).
The other half of (8.67) requires that

(8.72)
∑

α∈Tn

|Dm
m (fg) (α)|pα ≤ C ‖ω‖p

Carleson ‖g‖
p
HBp,m(Tn) .

To prove this we write

Dm
m (fg) (α) =

(8.73)

m∑
`=0

(
m
`

)(
Dm−`

m f (α)⊗D`
mg (α)

)
+

{
Dm

m (fg) (α)−
m∑

`=0

(
m
`

)(
Dm−`

m f (α)⊗D`
mg (α)

)}
,

where the first term is what one expects from Liebniz’ rule, and the second term is
the error. With q` and q′` as in (8.70), we estimate the first term on the right side
of (8.73) by ∑

α∈Tn

∣∣Dm−`
m f (α)⊗D`

mg (α)
∣∣p
α

(8.74)

≤
∑

α∈Tn

∣∣Dm−`
m f (α)

∣∣p
α

∣∣D`
mg (α)

∣∣p
α

≤

{∑
α∈Tn

∣∣Dm−`
m f (α)

∣∣pq`

α

} 1
q`
{∑

α∈Tn

∣∣D`
mg (α)

∣∣pq′`
α

} 1
q′
`

≤ ‖f‖p
HBpq`,m−`(Tn) ‖g‖

p
HBpq′

`
,`(Tn)

≤ ‖f‖p
HBp,m(Tn) ‖g‖

p
HBp,m(Tn) ,

again since m− ` > 2n(m−`)
pm = 2n

pq`
and ` > 2n`

pm = 2n
pq′`

. To estimate the second term
on the right side of (8.73), we use (8.34) to obtain∣∣∣∣∣Dm

m (fg) (α)−
m∑

`=0

(
m
`

)(
Dm−`

m f (α)⊗D`
mg (α)

)∣∣∣∣∣
α

≤ C

∣∣∣∣∣L(m,0)
α

{
Dr

m (fg) (α)−
r∑

`=0

(
r
`

)(
Dr−`

m f (α)⊗D`
mg (α)

)}m

r=1

∣∣∣∣∣ .
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We now compute that L(m,0)
α {Dr

m (fg) (α)}m
r=1 = P(m,0)

α Dα (fg) and that the jth

component of L(m,0)
α

{∑r
`=0

(
r
`

)(
Dr−`

m f (α)⊗D`
mg (α)

)}m

r=1

is

m∑
r=1

r∑
`=0

1
(r − `)!`!

(
Dr−`

m f (α)⊗D`
mg (α)

)
⊗r (αj − α)

=
m∑

r=1

r∑
`=0

1
(r − `)!`!

(
Dr−`

m f (α)⊗r−` (αj − α)
) (
D`

mg (α)⊗` (αj − α)
)

=

(
m∑

`=0

1
`!
D`

mf (α) ∧
{
⊗` (αj − α)

})( m∑
`=0

1
`!
D`

mg (α) ∧
{
⊗` (αj − α)

})
− f (α) g (α)

=
(
f (α) + P(m,0)

α Dαf (αj)
)(

g (α) + P(m,0)
α Dαg (αj)

)
− f (α) g (α) .

Thus the jth component of

(8.75) L(m,0)
α

{
Dr

m (fg) (α)−
r∑

`=0

(
r
`

)(
Dr−`

m f (α)⊗D`
mg (α)

)}m

r=1

is

P(m,0)
α Dα (fg) (αj)− g (α)P(m,0)

α Dαf (αj)− f (α)P(m,0)
α Dαg (αj)

− P(m,0)
α Dαf (αj)P(m,0)

α Dαg (αj)

=M (fg) (αj)−Q(m,0)
α Dα (fg) (αj)− g (α)

(
M f (αj)−Q(m,0)

α Dαf (αj)
)

− f (α)
(
M g (αj)−Q(m0)

α Dαg (αj)
)

−
(
M f (αj)−Q(m,0)

α Dαf (αj)
)(

M g (αj)−Q(m,0)
α Dαg (αj)

)
,

and now, noting that all products not involving a projection Q(m,0)
α cancel, we

obtain that the jth component of (8.75) is

Q(m,0)
α Dα (fg) (αj) + g (α)Q(m,0)

α Dαf (αj) + f (α)Q(m,0)
α M g (αj)

+ M f (αj)Q(m,0)
α Dαg (αj) + M g (αj)Q(m,0)

α Dαf (αj)

−Q(m,0)
α Dαf (αj)Q(m,0)

α Dαg (αj) ,

or simply

f (αj)Q(m,0)
α Dαg (αj) + g (αj)Q(m,0)

α Dαf (αj)

−Q(m,0)
α Dα (fg) (αj)−Q(m,0)

α Dαf (αj)Q(m,0)
α Dαg (αj)

= I (αj) + II (αj) + III (αj) + IV (αj) .

To handle the sum∑
α∈Tn

|I (αj)|p =
∑

α∈Tn

|f (αj)|p
∣∣∣Q(m,0)

α Dαg (αj)
∣∣∣p ,
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we simply use the boundedness of f together with the definition of ‖g‖p
HBp,m(Tn).

To handle the sum∑
α∈Tn

|II (αj)|p =
∑

α∈Tn

|g (αj)|p
∣∣∣Q(m,0)

α Dαf (αj)
∣∣∣p ,

we use the inequality ∣∣∣Q(m,0)
α Dαf (αj)

∣∣∣p ≤ ω (α)

together with our assumption that {ω (α)}α∈Tn
is a HBp,m (Tn)-Carleson measure.

The sum
∑

α∈Tn
|III (αj)|p is controlled by (8.71), and the final sum is easy:

∑
α∈Tn

|IV (αj)|p ≤ C

(∑
α∈Tn

∣∣∣Q(m,0)
α Dαf

∣∣∣2p
) 1

2
(∑

α∈Tn

∣∣∣Q(m,0)
α Dαg

∣∣∣2p
) 1

2

≤ C ‖f‖p
HB2p,m(Tn) ‖g‖

p
HB2p,m(Tn)

≤ C ‖f‖p
HBp,m(Tn) ‖g‖

p
HBp,m(Tn) .

This completes the proof of (8.67), which is the case s1 = 1 in (8.66).
The remaining cases sk = `1 + ... + `k = m with k > 1 are handled similarly,

using repeated application of Hölder’s inequality on products of tensors as in (8.74),
and using the structural inequality (8.37) to estimate the error in the Liebniz for-
mula, as in (8.73). The details are routine but long, and are left to the interested
reader. The normalizing terms∑

sk<m

∣∣∣D`k
m−sk−1

...D`2
m−`1

D`1
m (fg) (o)

∣∣∣p
in (8.66) are handled easily, just as the corresponding terms

m−1∑
k=0

∣∣∇k (ϕf) (0)
∣∣

in the proof of Theorem 4.2 on the ball. This completes the proof of the sufficiency
assertion in Lemma 8.17.

For the necessity, a standard argument using the boundedness of the adjoint of
the multiplication operator shows that ‖f‖∞ ≤ C ‖f‖MHBp,m(Tn)

. The arguments
above can then be reversed to show that {ω (α)}α∈Tn

is a HBp,m (Tn)-Carleson
measure. This completes the proof of Lemma 8.17.

Now we return to the proof of the multiplier restriction in Theorem 8.14. Let
F ∈MBp(Bn) and set

dµ (z) =
∑

α∈Tn

χKα
(z)

{∫
K∗

α

∣∣Dm
cα
F (ζ)

∣∣p dλn (ζ)

}
dλn (z) .

Since p > 2n
m by hypothesis, Lemma 8.16 shows that µ is a Bp (Bn)-Carleson mea-

sure. Define the discretization of µ in the usual way by

µ (α) =
∫

K∗
α

∣∣Dm
cα
F (ζ)

∣∣p dλn (ζ) .
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Since p < 2+ 1
n−1 , Theorem 3.1 shows that {µ (α)}α∈Tn

satisfies the tree condition
(8.45). Set

ω (α) =
∑

sk=m

∣∣∣D`k
m−sk−1

...D`1
mf (α)

∣∣∣p
α

+
∑

sk=m

∣∣∣Q(m−sk−1,sk−1)
α DαD

`k−1
m−sk−2

...D`1
mf
∣∣∣p
α
,

as in (8.60) in the proof of Lemma 8.17. It will follow from Lemma 8.17 that
the restriction f = TF lies in MHBp,m(Tn) if we can show that {ω (α)}α∈Tn

is a
HBp,m (Tn)-Carleson measure.

To this end, we invoke the following local version of (8.51):∑
sk=m

∣∣∣D`k
m−sk−1

...D`1
mA (α)

∣∣∣p
α

+
∑

sk=m

∣∣∣Q(m−sk−1,t+sk−1)
α DαD

`k−1
m−sk−2

...D`1
mA

∣∣∣p
α

≤ C

∫
K∗∗

α

∣∣∣A(m) (z)
∣∣∣p
α
dλn (z) ,

for all holomorphic t-tensor-valued functions A on the Bergman tree. This can be
proved by induction similar to the proof of (8.51), and we omit the details. From
this we obtain that

I∗ω (α) =
∑

β∈Tn:β≥α

ω (β)

≤ C
∑

β∈Tn:β≥α

∫
K∗∗

β

∣∣∣Dm
cβ
F (z)

∣∣∣p dλn (z)

= CI∗µ (α) .

It now follows that {(µ+ ω) (α)}α∈Tn
satisfies the tree condition (8.45), hence is a

HBp,m (Tn)-Carleson measure by Theorem 8.12. This finally yields that {ω (α)}α∈Tn

is a HBp,m (Tn)-Carleson measure with norm bounded by that of the Bp (Bn)-
Carleson measure µ. At long last, this completes the proof of Theorem 8.14.

Embeddings and isomorphisms. We first observe that Tn is neither a zero set
for Bp (Bn), nor for MBp(Bn), and hence the restriction map T is one-to-one from
Bp (Bn) to HBp,m (Tn), as well as from MBp(Bn) to MHBp,m(Tn). Indeed, if a holo-
morphic function f in the ball vanishes on Tn, then the admissible limits f∗ of f
on ∂Bn are zero whenever they exist, and thus f vanishes identically on the ball if
it is in the Nevanlinna class ([Rud]: Theorem 5.6.4).

Second, we observe that Lemma 8.18 shows that `p (Tn) = HBp,0 (Tn) embeds
continuously into HBp,m (Tn). As a consequence, the restriction map T cannot be
onto from Bp (Bn) to HBp,m (Tn). Indeed, if T is onto HBp,m (Tn), and α ∈ Tn,
then there is F ∈ Bp (Bn) such that F (β) = 0 for all β ∈ Tn \ {α}, and F (α) = 1.
Thus F (z) is not identically zero, and hence neither is G (z) = F (z) (z1 − α1)
where α = (α1, ..., αn). But G ∈ Bp (Bn) by Theorem 4.2, and this implies that Tn

is a zero set for Bp (Bn), a contradiction. The same argument also shows that T
cannot be onto from MBp(Bn) to MHBp,m(Tn).

Conjecture. We conjecture that the above restriction maps have closed range.

8.5. The modified Bergman tree. In this subsection, we construct a modi-
fied Bergman tree Tn that satisfies the structural inequality (8.37) for all 0 ≤ m+t ≤
M , where M is chosen so large that M > 2n

p for all 1 < p < ∞, e.g. M = 2n will
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do. Our construction will also have the property that given a sequence Z = {zj}∞j=1

in the ball satisfying the separation condition in (5.1),

β (zi, 0) ≤ Cβ (zi, zj) , 1 ≤ i 6= j <∞,

we can arrange to have Z ⊂ Tn. This property is crucial for the arguments in
Section 5 on interpolating sequences. We now recall (8.37): for 0 ≤ m+ t ≤M , we
have

(8.76) cm

m∑
`=1

∣∣v`
∣∣
α
≤
∣∣∣L(m,t)

α

(
v1, ...,vm

)∣∣∣
α
≤ Cm

m∑
`=1

∣∣v`
∣∣
α
,

where

L(m,t)
α x =

{
m∑

`=1

1
`!

v` ∧
{
⊗`
(
αj − α

)}}N

j=1

∈
(
E(t)

α

)N

,

and x =
(
v1, ...,vm

)
∈ E(t+1)

α × E(t+2)
α × ...× E(t+m)

α . The main point here is that
the constants cm and Cm in (8.76) are independent of α ∈ Tn. Indeed, it is not
hard to see that, given a construction of the Bergman tree Tn = {α}α∈Tn

, we can

perturb the centers γ = cγ slightly so that the expression
∣∣∣L(m,t)

α x
∣∣∣
α

vanishes only
when x vanishes. However, we need a uniform version, and to see this we will use
the equivalence of norms on a finite dimensional vector space together with unitary
maps and the affine maps ψα (z) = α+ϕ′α (0) z. These latter maps have the property
that ψα takesK0 toKα approximately, and thus we can initially fix our attention on
the root kube K0. The argument is however complicated by the fact that while we
localize our perturbations to a sufficiently small portion of K0 that the affine maps
ψα are a good approximation to the corresponding automorphism ϕα, we must also
perturb a large enough number of points in that portion in order that (8.76) holds.
For convenience in notation, we will prove only the case t = 0 ≤ m ≤ M as given
in (8.34) above,

(8.77) cm

m∑
`=1

∣∣v`
∣∣
α
≤
∣∣∣L(m,0)

α

(
v1, ...,vm

)∣∣∣ ≤ Cm

m∑
`=1

∣∣v`
∣∣
α
,

where

L(m,0)
α x =

{
m∑

`=1

1
`!

v` ∧
{
⊗`
(
αj − α

)}}N

j=1

, x =
(
v1, ...,vm

)
.

It suffices to take m = M .
To begin, we will assume that a perturbation has already been performed on

the first (N = 1) generation of centers c1j in the construction of the Bergman tree
Tn, as given in section 2 above, so that

{
c1j
}

j
is not contained in the zero set of any

nontrivial complex polynomial of degree at most M . This will require that some
of the centers c1j are displaced a small distance away from the sphere S 3

2 θ on which
they initially resided in the construction. We now construct a fixed collection of
points E with the above zero set property, and then use unitary and affine maps to
transplant these points as replacements for certain of the remaining centers cNj .

Let Π denote the real (2n− 1)-dimensional vector space perpendicular to e1 =
(1, 0, .., 0) ∈ Bn, i.e.

Π = {z ∈ Cn : Re z1 = 0} .
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Let D denote the Euclidean ball of radius 1
2 centered at the origin in Π,

D =
{
z ∈ Π : |z| ≤ 1

2

}
,

and let E = {zj}J
j=1 be a maximal ρ-separated subset of D in the Bergman metric,

i.e.

β (zi, zj) ≥ ρ, for i 6= j,

β (z, E) < ρ, for z ∈ D,

where 0 < ρ < λ will be chosen later. Note that we can arrange to have J as large
as we wish by taking ρ sufficiently small. We also suppose that θ is large enough
that D ⊂ K0.

We now perturb the points zj slightly by moving them to points z′j so that

β
(
zj , z

′
j

)
< ε� ρ,

and such that the set of points E =
{
z′j
}J

j=1
is not contained in the zero set of any

nontrivial polynomial F on Cn of degree at most M . This can be done provided
J is large enough, which in turn follows from choosing ρ small enough (the zero
set property will necessarily force some of the points z′j to lie outside the space Π).
Now define V(M) (Cn) to be the vector space of polynomials on Cn of degree at
most M that vanish at the origin. Then for all ζ ∈ Cn the expression

‖F‖ζ =

 J∑
j=1

∣∣F (z′j − ζ
)∣∣2 1

2

is a norm on V(M) (Cn). Another norm on V(M) (Cn) is given by |x|α, where
x =

(
v1, ...,vM

)
is the unique element such that F (z) =

∑M
`=1

1
`!v

`∧
{
⊗`z

}
. Since

the vector space V(M) (Cn) is finite dimensional, these norms are all equivalent, and
uniformly so for ζ in any compact subset K of Cn. Such a K will be fixed below.

We now transport these points and norms to Kγ , where γ is a child of α, by
induction on N where α = cNj is in the N th generation of the construction in
Section 2. So let N ≥ 1 and α = cNj so that d (α) = N . We will perturb certain of
the children of α as follows. Let α∗ be the unique point on the sphere S(d(α)+ 1

2 )θ

(where the children of α currently reside) such that

Pd(α)θα
∗ = zα = Pd(α)θα

for α ∈ Tn (see the construction of the Bergman tree prior to Lemma 2.8). We now
pick a unitary map Uα that takes e1 to α

|α| and use the map ψα∗Uα, where ψα∗ is
the affine map defined above, to transport points and norms to ∪γ∈C(α)Kγ .

The points E =
{
z′j
}J

j=1
are taken by the affine map ψα∗Uα to a set of points

Eα =
{
αj′}J

j=1
=
{
ψα∗Uαz

′
j

}J

j=1
,

whose Bergman distance from α∗ is at most a constant C. Indeed, to see this we
note that

β
(
αj′, α∗

)
= β

(
ϕα∗

(
αj′) , 0)
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since the automorphisms preserve the Bergman distance, and thus it suffices to
prove

(8.78) β
(
ϕα∗ψα∗Uαz

′
j , 0
)
≤ C.

However, a calculation shows that

(8.79) ϕaψa (z) =
z

1 + a · z
,

which in particular yields |ϕaψa (z)| ≤ 1
2 if |z| ≤ 1

3 , and thus (8.78) as required.
To calculate (8.79), we obtain from (2.2) and (2.3) that

ϕa (z) =
a− Paz −

(
1− |a|2

) 1
2
Qaz

1− a · z
,

ψa (z) = a−
(
1− |a|2

)
Paz −

(
1− |a|2

) 1
2
Qaz

= (1− a · z)ϕa (z) + |a|2 Paz.

Thus with w = ψa (z), we obtain

ϕa (w) = (1− a · w)−1
{
ψa (w)− |a|2 Paw

}
where

ψa (w)− |a|2 Paw = a−
(
1− |a|2

)
Paψa (z)

−
(
1− |a|2

) 1
2
Qaψa (z)− |a|2 Paψa (z)

= a− Pa

[
a−

(
1− |a|2

)
Paz −

(
1− |a|2

) 1
2
Qaz

]
−
(
1− |a|2

) 1
2
Qa

[
a−

(
1− |a|2

)
Paz −

(
1− |a|2

) 1
2
Qaz

]
= a−

[
a−

(
1− |a|2

)
Paz

]
−
(
1− |a|2

) 1
2
[
−
(
1− |a|2

) 1
2
Qaz

]
=
(
1− |a|2

)
[Paz +Qaz]

=
(
1− |a|2

)
z

and

1− a · w = 1− a ·
[
a−

(
1− |a|2

)
Paz −

(
1− |a|2

) 1
2
Qaz

]
= 1− |a|2 +

(
1− |a|2

)
a · z

=
(
1− |a|2

)
(1 + a · z) .

Combining these equalities yields (8.79).
Now project the set of points Eα onto the sphere S(N+1)θ to obtain the set

P(N+1)θEα =
{
P(N+1)θα

j′}J

j=1
. We note that the sets of points P(N+1)θEα and

P(N+1)θEγ are well separated from each other for α 6= γ, N = d (α) = d (γ) if θ
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is chosen large enough. We now redefine the points
{
zN+1
j

}J

j=1
and unit qubes{

QN+1
j

}J

j=1
in S(N+1)θ satisfying (2.15) in Subsubsection 2.2.1. We start with the

points EN+1 = ∪α∈Tn:d(α)=NP(N+1)θEα. They are (1−
√
rε) ρ-separated where

r = e2θ as in (8.2). Now extend the collection EN+1 to E′N+1 by adding those
original points zN+1

j that are at distance at least λ from the set EN+1. The resulting
collection E′N+1 = {x′i} satisfies

d
(
x′i, x

′
j

)
≥
(
1−

√
rε
)
ρ, i 6= j,

d (x,E′N ) <
(
1 +

√
rε
)
λ, x ∈ S(d+1)θ,

Now we proceed with the construction of the qubes QN+1
j as in Lemma 2.6, and

then construct the new kubes KN+1
j with new centers as in Subsubsection 2.2.1.

Finally, we repeat this construction inductively for N ≥ 1 to obtain a perturbed
Bergman tree.

We have
ψα∗Uαz = α∗ + ϕ′α∗ (0)Uαz = α∗ + Tαz

where Tα = ϕ′α∗ (0)Uα is linear, and so for F (z) =
∑M

`=1
1
`!v

` ∧
{
⊗`z

}
and x =(

v1, ...,vM
)
,

∣∣∣L(M,0)
α x

∣∣∣2 =

∣∣∣∣∣∣
{

M∑
`=1

1
`!

v` ∧
{
⊗`
(
αj − α

)}}N

j=1

∣∣∣∣∣∣
2

(8.80)

≥
J∑

j=1

∣∣∣∣∣
M∑

`=1

1
`!

v` ∧
{
⊗`
(
αj′ − α

)}∣∣∣∣∣
2

=
J∑

j=1

∣∣∣∣∣
M∑

`=1

1
`!

v` ∧
{
⊗`TαT

−1
α

(
αj′ − α

)}∣∣∣∣∣
2

=
J∑

j=1

∣∣∣∣∣
M∑

`=1

1
`!
Tαv` ∧

{
⊗`
[
z′j − T−1

α (α− α∗)
]}∣∣∣∣∣

2

= ‖F‖2ζ ≈
M∑

`=1

∣∣Tαv`
∣∣2 ≈ M∑

`=1

∣∣v`
∣∣2
α
,

since the perturbed children
{
αj′}J

j=1
are a subset of C (α), and we also have that ζ

= T−1
α (α− α∗) lies uniformly in a sufficiently large compact set K, independent of

α ∈ Tn. Thus we have proved the left-hand inequality of (8.77) for the new centers.
The right hand inequality is trivial (and not used in this paper anyway).

Finally, we can adapt this construction so that Tn contains a given sequence
Z = {zj}∞j=1 in the ball satisfying the separation condition

β (zi, 0) ≤ Cβ (zi, zj) , 1 ≤ i 6= j <∞.

To see this, let Uα = ∪J
j=1Kαj′ be the union of the kubes Kαj′ corresponding to

a set of perturbed points Eα constructed above. Then the separation condition
implies the points zi are so well separated that no more than one of them occurs
in any Uα, and in fact those Uα that contain a point zi are themselves pairwise
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disjoint and well separated. Thus it suffices to choose the model set E =
{
z′j
}J

j=1

to have the somewhat stronger property that, even after the removal of a fixed
number C of points z′i, the resulting set E ′ is still not contained in the zero set of
any nontrivial complex polynomial of degree at most M . Then if a point zi from
Z lies in the kube Kα, we simply replace α by zi, and if necessary, modify at most
C of the neighbouring points so as not to lie too close to zi.

Definition 8.19. We define HBp (Tn) to be any of the spaces HBp,m (Tn)
with m > 2n

p . Lemma 8.18 shows that these spaces are identical, and the above
construction of the Bergman tree Tn shows that we can use the same tree Tn for all
Besov spaces HBp,M (Tn) with p > 1 if we choose M = 2n.

9. Completing the multiplier interpolation loop

We can now complete the proof of the loop of implications for MBp(Bn) inter-
polation on the ball for all 1 < p < 2 + 1

n−1 upon choosing M = 2n in the above
definition. As we will see, the following three properties of HBp (Tn) essentially
suffice to prove that MBp(Bn) interpolation implies the tree condition (3.2):

(1) The restriction map is bounded from MBp(Bn) to MHBp(Tn).
(2) The reproducing kernels k(m,0)

α of HBp,m (Tn) = HBp (Tn), m > 2n
p , sat-

isfy the positivity property (8.43).
(3) Carleson measures for HBp (Tn) are characterized by the tree condition

(3.2).
Indeed, property 1 will show that MBp(Bn) interpolation on the ball implies

MHBp(Tn) interpolation on the Bergman tree. Then property 2 will show that the
atomic measure µ associated with the interpolation sequence is a Carleson measure
for HBp (Tn). Finally, property 3 will then show that µ satisfies the tree condition.
This will complete the multiplier interpolation loop since we have already shown
in Section 5, that if µ satisfies the tree condition, then MBp(Bn) interpolation holds
on the ball.

Before giving the details, we point out that property 1 follows from Theorem
8.14 if m > 2n

p and the structural constant θ is large enough; property 2 follows
from Lemma 8.11 if in addition the structural constant λ is small enough; and
finally, property 3 follows from Theorem 8.12 if both λ is small enough and θ is
large enough.

We now give the details. If {zj}∞j=1 ⊂ Bn interpolates MBp(Bn), i.e.

(9.1) The map f → {f (zj)}∞j=1 takes MBp(Bn) boundedly into and onto `∞,

and if we construct the Bergman tree Tn so that {cα}α∈Tn
contains {zj}∞j=1, say

with zj = cαj
, then it follows easily from Theorem 8.14 that {αj}∞j=1 interpolates

MHBp(Tn), i.e.

(9.2) The map f → {f (αj)}∞j=1 takes MHBp(Tn) boundedly into and onto `∞.

Indeed, to see that (9.2) holds, suppose that {ξj}∞j=1 ∈ `
∞. Using (9.1) we can find

ϕ ∈MBp(Bn) satisfying

ϕ (zj) = ξj , 1 ≤ j <∞,

‖ϕ‖MBp(Bn)
≤ C

∥∥∥{ξj}∞j=1

∥∥∥
∞
.
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Now define f on the tree Tn by

f (α) = ϕ (cα) , α ∈ Tn.

Then we have

f (αj) = ϕ
(
cαj

)
= ϕ (zj) = ξj

and Theorem 8.14 shows that

‖f‖MHBp(Tn)
≤ C ‖ϕ‖MBp(Bn)

,

thus establishing (9.2).
We can now use soft arguments, together with the positivity property (8.43)

of the reproducing kernels k(m,0)
α , with m > 2n

p in Lemma 8.11, to show that the
measure

µ =
∞∑

j=1

∥∥∥k(m,0)
αj

∥∥∥−p

HBp′ (Tn)
δαj

is a HBp (Tn)-Carleson measure. Theorem 8.12 then shows that µ satisfies the tree
condition (3.2). Finally then, to obtain that

ν =
∞∑

j=1

(
log

1
1− |αj |2

)1−p

δαj

satisfies the tree condition (3.2), we use ‖kα‖p′

HBp′ (Tn) ≈
∑

γ∈[o,α] 1 = d (α) ≈
log 1

1−|α|2 , by (8.43).

9.1. Soft arguments. We now give the above-mentioned soft arguments in
detail. For convenience in notation, we abbreviate HBp′ (Tn) by HBp′ and k

(m,0)
αj

by kαj . From (9.2) we obtain in the usual way that
{
kαj

}∞
j=1

is an unconditional
basic sequence in HBp′ :

(9.3)

∥∥∥∥∥∥
∞∑

j=1

bjkαj

∥∥∥∥∥∥
HBp′

≤ C

∥∥∥∥∥∥
∞∑

j=1

ajkαj

∥∥∥∥∥∥
HBp′

, whenever |bj | ≤ |aj | .

We will now use (8.43),

r−md(γ) Re
(
Dm

mk
(m,0)
α (γ) ∧ {⊗mγ}

)
≈ 1∣∣∣D`

mk
(m,t)
α (γ)

∣∣∣
γ

+
∣∣∣Q(m,t)

γ

(
Dγk

(m,t)
α

)∣∣∣
γ
≤
{
C for γ ≤ α
0 otherwise ,

and (9.3), along with a modification of the technique of Böe’s “curious” Lemma 3.1
in [Boe], to obtain the following norm equivalence:

(9.4)

∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
HBp′

≈

 ∞∑
j=1

|aj |p
′

 1
p′

.
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We use the `p variant (8.59) of Definition 8.9 for the scalar function f , namely

‖f‖p
HBp(Tn) = ‖f‖p

HBp,m(Tn)

=
∑

sk<m

∣∣∣D`k
m−sk−1

...D`2
m−`1

D`1
mf (o)

∣∣∣p
+
∑

sk=m

∑
α∈Tn

∣∣∣Q(m−sk−1,sk−1)
α DαD

`k−1
m−sk−2

...D`1
mf
∣∣∣p
α

+
∑

sk=m

∑
α∈Tn

∣∣∣D`k
m−sk−1

...D`1
mf (α)

∣∣∣p
α

=
∥∥Ďf∥∥p

`p(Tn)
,

where Ďf is defined on the tree in the obvious way and the `p norm involves the
metric |·|α as usual, together with the Rademacher functions rj (t) in conjunction
with (9.3) to obtain∥∥∥∥∥∥

∞∑
j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
p′

HBp′

≈
∫ 1

0

∥∥∥∥∥∥
∞∑

j=1

ajrj (t)
kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
p′

HBp′

dt

≈
∫ 1

0

∥∥∥∥∥∥
∞∑

j=1

ajrj (t)∥∥kαj

∥∥
HBp′

Ďkαj
(γ)

∥∥∥∥∥∥
p′

`p′ (γ)

dt.

Now Khinchine’s inequality holds for finite-dimensional vector spaces in place
of scalars. Indeed, if aj = (aj (i))N

i=1 ∈ C
N , then

∫ 1

0

∣∣∣∣∣∣
∞∑

j=1

rj (t)aj

∣∣∣∣∣∣
q

dt


1
q

≈

∫ 1

0


N∑

i=1

∣∣∣∣∣∣
∞∑

j=1

rj (t) aj (i)

∣∣∣∣∣∣
q dt


1
q

≈
N∑

i=1

∫ 1

0

∣∣∣∣∣∣
∞∑

j=1

rj (t) aj (i)

∣∣∣∣∣∣
q

dt


1
q

≈
N∑

i=1

 ∞∑
j=1

|aj (i)|2
 1

2

≈

 ∞∑
j=1

|aj |2
 1

2

.

Thus with N sufficiently large, we have that∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
p′

HBp′
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is dominated by a constant multiple of∥∥∥∥∥∥∥∥


∞∑
j=1

∣∣∣∣∣∣ |aj |∥∥kαj

∥∥
HBp′

Ďkαj
(γ)

∣∣∣∣∣∣
2

γ


1
2

∥∥∥∥∥∥∥∥
p′

`p′ (γ)

.

Using (8.43), we can then continue the above with∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
p′

HBp′

≤ C

∥∥∥∥∥∥∥∥


∞∑
j=1

∣∣∣∣∣∣ |aj |∥∥kαj

∥∥
HBp′

r−md(γ) Re
(
Dm

mk
(m,0)
α (γ) ∧ {⊗mγ}

)∣∣∣∣∣∣
2


1
2

∥∥∥∥∥∥∥∥
p′

`p′ (γ)

.

Let

Aj (γ) =
|aj |∥∥kαj

∥∥
HBp′

r−md(γ) Re (Dm
mkα (γ) ∧ {⊗mγ})

= Re

 |aj |∥∥kαj

∥∥
HBp′

r−md(γ)Dm
mkα (γ)

 ∧ {⊗mγ} .

We now use ‖·‖`2 ≤
√
‖·‖`1 ‖·‖`∞ and the nonnegativity of Aj (γ) to obtain∥∥∥∥∥∥

∞∑
j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
p′

HBp′

≤ C

∥∥∥∥∥∥∥


∞∑
j=1

Aj (γ)2


1
2

∥∥∥∥∥∥∥
p′

`p′ (γ)

≤ C

∥∥∥∥∥∥∥

 ∞∑

j=1

Aj (γ)

[ sup
1≤j<∞

Aj (γ)
]

1
2

∥∥∥∥∥∥∥
p′

`p′ (γ)

≤ C

∥∥∥∥∥∥
∞∑

j=1

Aj (γ)

∥∥∥∥∥∥
p′
2

`p′ (γ)

∥∥∥∥ sup
1≤j<∞

Aj (γ)
∥∥∥∥

p′
2

`p′ (γ)

.

Now set K =
∑∞

j=1
|aj |

‖kαj‖HB
p′

kαj
so that

∞∑
j=1

Aj (γ) = Re


∞∑

j=1

|aj |∥∥kαj

∥∥
HBp′

r−md(γ)Dm
mkαj (γ)

 ∧ {⊗mγ}

= Re
{
r−md(γ)Dm

mK (γ)
}
∧ {⊗mγ}

Using the inequality

(9.5)
∣∣∣r−md(γ)Dm

mK (γ)
∣∣∣2 ≤ ∣∣ĎK∣∣2γ ,
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and (8.59) again, we obtain∥∥∥∥∥∥
∞∑

j=1

Aj (γ)

∥∥∥∥∥∥
`p′ (γ)

=
∥∥∥Re

{
r−md(γ)Dm

mK (γ)
}
∧ {⊗mγ}

∥∥∥
`p′ (γ)

≤ C
∥∥ĎK∥∥

`p′ (γ)

≤ C ‖K‖HBp′

= C

∥∥∥∥∥∥
∞∑

j=1

|aj |
kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
HBp′

.

Another application of the unconditional basic sequence property (9.3), shows that
this is dominated by a constant multiple of∥∥∥∥∥∥

∞∑
j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
HBp′

.

Altogether we now have∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
p′

HBp′

≤ C

∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
p′
2

HBp′

∥∥∥∥ sup
1≤j<∞

Aj (γ)
∥∥∥∥

p′
2

`p′ (γ)

,

which yields∥∥∥∥∥∥
∞∑

j=1

aj

kαj∥∥kαj

∥∥
HBp′

∥∥∥∥∥∥
HBp′

≤ C

∥∥∥∥ sup
1≤j<∞

Aj (γ)
∥∥∥∥

`p′ (γ)

≤ C

∥∥∥∥∥∥∥
 ∞∑

j=1

Aj (γ)p′

 1
p′
∥∥∥∥∥∥∥

`p′ (γ)

= C


∞∑

j=1

 |aj |∥∥kαj

∥∥
HBp′

p′ ∥∥∥Re
{
r−md(γ)Dm

mkαj
(γ)
}
∧ {⊗mγ}

∥∥∥p′

`p′ (γ)


1
p′

≤ C


∞∑

j=1

|aj |p
′


1
p′

,

since by (9.5) and (8.59) once more,∥∥∥Re
{
r−md(γ)Dm

mkαj
(γ)
}
∧ {⊗mγ}

∥∥∥
`p′ (γ)

≤ C
∥∥Ďkαj

(γ)
∥∥

`p′ (γ)

≤ C
∥∥kαj

∥∥
HBp′

.

This completes the proof of the inequality . in (9.4), and the opposite inequality
is standard.



160 N. ARCOZZI, R. ROCHBERG, AND E. SAWYER

From the inequality . in (9.4), we obtain in the usual way that the measure

µ =
∞∑

j=1

∥∥kαj

∥∥−p

HBp′
δαj

is a HBp (Tn)-Carleson measure, and as shown above, this completes the loop.

10. Appendix

Here we use a stopping time argument to directly prove the following lemma,
rather than by appealing to Theorem 3.1.

Lemma 10.1. Suppose that µ is a measure on a tree T satisfying the tree con-
dition (1.10), i.e. ∑

β∈T :β≥α

I∗µ (β)p′ ≤ Cp′I∗µ (α) <∞, α ∈ T .

If I∗ω ≤ I∗µ on T , then ω also satisfies the tree condition (1.10), and with tree
condition norm at most Cp′ times that of µ.

Proof. (direct proof without Theorem 3.1) It suffices to prove the case when
α = o, the root of the tree T , i.e.∑

β∈T

I∗ω (β)p′ ≤ Cp′C
p′I∗ω (o) .

Let G0 = {o}. Let G (o) consist of all minimal tree elements β > o satisfying

I∗ω (β)
I∗µ (β)

> 2
I∗ω (o)
I∗µ (o)

.

We refer to the elements in G1 = G (o) as first generation elements. For each first
generation element α ∈ G1, let G (α) consist of all minimal tree elements β > α
satisfying

I∗ω (β)
I∗µ (β)

> 2
I∗ω (α)
I∗µ (α)

.

We refer to the elements in G2 = ∪α∈G1G (α) as second generation elements. Con-
tinuing in this way, we define generations Gk for k ≥ 1 (actually k is at most
log2

(
I∗ω(o)
I∗µ(o)

)
) with the property

I∗ω (β)
I∗µ (β)

> 2
I∗ω (α)
I∗µ (α)

, for α ∈ Gk, β ∈ Gk+1, β > α, k ≥ 0.

Let G be the subset T of whose elements are ∪k≥0Gk. For each element α ∈ G,
let H (α) = ∪γ∈G(α) [α, γ) be the union of all geodesics in T (open at the far end)
that start at α and end at an element γ of G (α). This yields a pairwise disjoint
decomposition of the tree T given by T = ∪α∈GH (α).
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We have from the defining scheme of G that∑
β∈T

I∗ω (β)p′ =
∑
α∈G

∑
β∈H(α)

(
I∗ω (β)
I∗µ (β)

)p′

I∗µ (β)p′

≤ 2p′
∑
α∈G

(
I∗ω (α)
I∗µ (α)

)p′ ∑
β∈H(α)

I∗µ (β)p′

≤ 2p′
∑
m≥0

2−mp′
∑

α∈Gm

∑
β∈H(α)

I∗µ (β)p′
,

where

Gm =
{
α ∈ G : 2−m−1 ≤ I∗ω (α)

I∗µ (α)
≤ 2−m

}
.

It is here in asserting that m ≥ 0 that we use the hypothesis I∗ω (α) ≤ I∗µ (α). If
we let Mm be the minimal elements in Gm, then we have

2−mp′
∑

α∈Gm

∑
β∈H(α)

I∗µ (β)p′ ≤ 2−mp′
∑

γ∈Mm

∑
α∈Gm:α≥γ

∑
β∈H(α)

I∗µ (β)p′

≤ 2−mp′
∑

γ∈Mm

∑
β≥γ

I∗µ (β)p′

≤ 2−mp′
∑

γ∈Mm

Cp′I∗µ (γ) .

Now using that Mm ⊂ Gm, we continue with

Cp′2−m(p′−1) ∑
γ∈Mm

2−mI∗µ (γ) ≤ Cp′2−m(p′−1) ∑
γ∈Mm

(
2
I∗ω (γ)
I∗µ (γ)

)
I∗µ (γ)

= 2Cp′2−m(p′−1) ∑
γ∈Mm

I∗ω (γ)

≤ 2Cp′2−m(p′−1)I∗ω (o) .

Adding these estimates up for m ≥ 0 yields∑
β∈T

I∗ω (β)p′ ≤ 2p′
∑
m≥0

2Cp′2−m(p′−1)I∗ω (o)

≤ Cp′C
p′I∗ω (o) .
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