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Abstract. In two articles published in 1868 and 1869, Eugenio Beltrami pro-

vided three models in Euclidean plane (or space) for non-Euclidean geometry.

Our main aim here is giving an extensive account of the two articles’ content.
We will also try to understand how the way Beltrami, especially in the first

article, develops his theory depends on a changing attitude with regards to

the definition of surface. In the end, an example from contemporary mathe-
matics shows how the boundary at infinity of the non-Euclidean plane, which

Beltrami made intuitively and mathematically accessible in his models, made

non-Euclidean geometry a natural tool in the study of functions defined on the
real line (or on the circle).
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1. Introduction

In two articles published in 1868 and 1869, Eugenio Beltrami, at the time pro-
fessor at the University of Bologna, produced various models of the hyperbolic ver-
sion non-Euclidean geometry, the one thought in solitude by Gauss, but developed
and written by Lobachevsky and Bolyai. One model is presented in the Saggio di
interpretazione della geometria non-euclidea[5] [Essay on the interpretation of non-
Euclidean geometry], and other two models are developed in Teoria fondamentale
degli spazii di curvatura costante [6] [Fundamental theory of spaces with constant
curvature]. One of the models in the Teoria, the so-called Poincaré disc, had been
briefly mentioned by Riemann in his Habilitationschrift [26], the text of which was
posthumously published in 1868 only, after Beltrami had written his first paper
[5]1, and it served as a lead for the second one [6]. Riemann was not so much
interested in getting involved in a querelle between Euclidean and non-Euclidean
geometry, which he had in fact essentially solved in his remark, as he was interested

1In a letter to Genocchi in 1868 ([15] p.578-579), Beltrami says that he had the manuscript
of the Saggio ready in 1867, but that, faced with criticisn from Cremona, he had postponed its
publication. After reading Riemann’s Habilitationschrift, he felt confident in submitting the article
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in developing a broad setting for geometry, a “library” of theories of space useful
for the contemporary as well as for the future developments of sciences. At the time
Beltrami wrote his Saggio, however, Riemann’s Habilitationschrift was not widely
available and although its connection to non-Euclidean geometry was rather clear,
it was not explicitely stated. It should be mentioned that the second model in the
Teoria had been previously considered by Liouville, who used it as an example of
a surface with constant, negative curvature.

Beltrami’s papers were widely read and promptly translated into French by Jules
Hoüel. Their impact was manifold. (i) They clearly showed that the postulates of
non-Euclidean geometry described the simply connected, complete surfaces of nega-
tive curvature (surfaces which, however, only locally could be thought of as surfaces
in R3). (ii) Hence, it was not possible proving the Postulate of the Paralles using
the remaining ones, as J. Hoüel explicited in [17]2. (iii) It was then possible to
consider and use non-Euclidean geometry without having an opinion, much less a
faith, concerning the “real geometry” (of space, of Pure Reason). (iv) More im-
portant, and lasting, the universe of non-Euclidean geometry was not anymore the
counter-intuitive world painted by Lobachevsky and Bolyai: any person instructed
in Gaussian theory of surfaces could work out all consequences of the non-Euclidean
principles directly from Beltrami’s models; this legacy is quite evident up to the
present day. (v) In all of Beltrami’s models, the non-Euclidean plane (or n-space) is
confined to a portion of the Euclidean plane (or n-space), whose boundary encodes
important geometric features of the non-Euclidean space it encloses.

The presence of an important “boundary at infinity” in non-Euclidean geom-
etry had been realized before. In Beltrami’s models, this boundary is (from the
Euclidean viewpoint of the “external observer”) wholly within reach, easy to vi-
sualize, complete with natural coordinate systems (spherical, when the boundary
is seen as a the limit of a sphere having fixed finite center and radius tending to
infinity; Euclidean-flat when it is seen as the limit of horocycles: distinguished
spheres having infinite radius and center at infinity). With this structure in place,
it was possible to radically change viewpoint and to see the non-Euclidean space
as the “filling” of its boundary, spherical or Euclidean. To wit, some properties of
functions defined on the real line or on the unit circle become more transparent
when we consider their extensions to the non-Euclidean plane of which the line or
the circle are the boundary in Beltrami’s models. This line of reasoning is not to
be found in Beltrami’s articles, but it relies on Beltrami’s models, and it is the
main reason why non-Euclidean (hyperbolic) geometry has entered the toolbox of
such different areas as harmonic and complex analysis, potential theory, electrical
engineering and so on. The pioneer of these kind of applications is Poincaré [25].
It is still matter of discussion whether or not Poincaré had had any exposure to
Beltrami’s work, or if he re-invented one of Beltrami’s models ([19], p. 277-278).
Even if he had not had first-hand knowledge of Beltrami’s work, however, I find

to the Neapolitan Giornale di matematiche, emended of a statement about three dimensional non-
Euclidean geometry and with some integration “which I can hazard now, because substantially
agreeing with some of Riemann’s ideas.”

2In another letter to Genocchi ([15] p.588), Beltrami writes that it this fact clearly follows from

his Saggio, and that “in the note of Hoüel I do not find further elements to prove it”. Beltrami

being generally rather unassuming about his own work, it is likely that he had already thought
of this consequence of his model, but that he thought it prudent to leave it to state explicitely to

the reader.
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it unlikely that he had not heard of the debate about non-Euclidean geometry in
which Beltrami’s work was so central, and of the possibility of having concrete
models of it. It is nowadays very common, for mathematicians from all branches,
to start with a class of objects (tipically, but not only, functions) naturally defined
on some geometric space, and to look for a “more natural” geometry which might
help in understanding some properties of those same objects. The new geometry,
this way, has a “model” built on the old one.

Let me end these introductory remarks by reminding the reader that, unfortu-
nately, in the mathematical pop-culture the name of Beltrami is seldom attached
to his models. The model of the Saggio is generally called the Klein model and the
two models of the Teoria are often credited to Poincaré. There are reasons for this.
Klein made more explicit the connections between the model in the Saggio and
projective geometry, which Beltrami had just mentioned in his article. Poincaré, as
I said above, was the first to use the other two models in order to understand phe-
nomena apparently far from the non-Euclidean topic. More informed sources refer
to the projective model as the Beltrami-Klein (projective) disc model; the other two
should perhaps be called Riemann-Beltrami-Poincaré (conformal) disc model and
Liouville-Beltrami (conformal) half-plane model.

The aim of this note is mostly expository. There are excellent accounts of how
non-Euclidean geometry developed: from the scholarly and influential monograph
of Roberto Bonola [11], which is especially interesting for the treatment of the early
history, to the lectures of Federigo Enriques [16], to the recent, flamboyant book
by Jeremy Gray [19], in which the development of modern geometry is treated in
all detail. To have a taste of what happened after Beltrami, Klein and Poincaré,
I reccommend the beautiful article [21] by Milnor, which is also historically accu-
rate, and the less historically concerned, but equally useful article [14] by Cannon,
Floyd, Kenyon and Parry. An extensive account of the modern view of hyperbolic
spaces (from the metric space perspective) is in Bridson and Haefliger’s beautiful
monograph [13]. I will just summarize the well known story up to Beltrami for ease
of the reader. Then, I will describe in some detail the main mathematical content
of the Saggio and of the Teoria. Not only such content is a masterful piece of math-
ematics, but it was also in the non-pretentious style of Beltrami to present his work
as double faced: his reader could think of it as an investigation on the foundations
of geometry, but, if skeptical, he could also give it a purely analytic meaning ([6]
p.406; Beltrami refers to the geometric terms he uses, but the same distinction
applies to the two papers as a whole). We can appreciate the analytic content in
itself. With this at hand, we will try to understand what Beltrami claimed to have
achieved in geometric (and logical) terms.

To end on a different tune, I will describe how, starting from a reasonable problem
about functions defined on the real line (looking at a signal at different scales)
one is naturally led to consider non-Euclidean geometry in the upper-half space,
the last of Beltrami’s models. My aim here is giving a simple example of one of
the most important legacies of Beltrami’s models, which is point (v) above. For
understandandable reasons, this aspect is seldom mentioned in historical accounts,
while it is central (and popular) in the research literature and in textbooks.

A disclaimer is due. I am neither trained in geometry, nor in history of math-
ematics. This surely accounts for the bibliography, which is probably not the one
an historian of science would have used, and for other naiveties I can not be aware
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of. I have tried, however, to be as historically correct as I could and to be honest
about anachronisms. I have been using Beltrami’s models for many years, as a
tool or as an inspiring metaphor, while working in harmonic analysis and complex
function theory, and this is my only title to discuss them. I thank Salvatore Coen,
who entrusted me with writing this note and for investing so much energy to edit
the volume.
Note on bibliography. Beltrami’s papers in the bibliography are given with the
coordinates of their publication, except for the page numbers, which refer to the
edition of his collected works [2].

2. Non-Euclidean geometry before Beltrami

Like in many other scientific revolutions, at the roots of the non-Euclidean one
we find an orthodox theory and a disturbing asimmetry. The orthodox theory is
Euclid’s Elements, in which the science of measurement and space (ideal space from
a Platonic viewpoint, real from an Aristotelian one: it does not matter here) is given
a hierarchical structure (axioms, postulates, definitions, theorems), held together
by logics. The postulates should encode unquestionable truths about space, from
which other truths are deduced. The asimmetry consists in the Fifth Postulate (or
Parallel Postulate), concerning properties of parallel lines, which Euclid postpones
until after Proposition XXVIII. He has just proved that two straight lines a and
b in the plane do not meet, if the internal angles they make on the same side of
a third line c meeting both of them sum to a straight angle. The Fifth Postulate
states that the converse is true: if the sum is less than a straight angle, then a
and b eventually meet on that same side of c. The main disturbig feature of the
Fifth Postulate is that, in order to verify the property it states, one has to consider
the straight lines in their infinite extension. It was soon realized that the Fifth
Postulate is equivalent to the uniqueness of the straight line through a given point
P , which is parallel to a given straight line a not containing P . Very early, attempts
were made to prove it, based on the remaining Postulates and Axioms.

In the effort, several properties were found which, given the other Postulates,
were equivalent to the Fifth. Also, the critical thought unleashed in search for
a proof of the Fifth Postulate helped in finding a number of hidden assumption
(namely, hidden postulates) in Euclid’s work: the line divides the plane into two
parts, for instance, or the Archimedean property of lengths.

Trying without success to prove the Postulate of Parallels by contradiction, math-
ematicians went deeper and deeper into a geometric world in which the Postulate
did not hold, finding increasingly counterintuitive properties of figures. This kind
of research reached maturity with the work if Girolamo Saccheri3 [1667-1733]. In
his Euclides ab omni naevo vindicatus (see [11], Chapter II), Saccheri considered a
fixed quadrilateral ABCD with right angles in A and B and equal sides AC = BD.
He considered the three possibilities for the angles Ĉ = D̂: (r) the angles are both
right (then the Fifth Postulate holds); (o) the angles are both obtuse; (a) the angles
are bothe acute. The obtuse hypothesis (o) leads to contradiction4 It remained the

3 Interestingly, the work of Saccheri, which had an indirect role in the development of non-
Euclidean geometry and was then forgotten, was re-discovered by Beltrami [10].

4The obtuse hypothesis holds on a sphere, using geodesics (great circles) as straight lines; but
on a sphere we do not have uniqueness of the geodesic through two points. This was considered
to be a major problem by Beltrami, who was looking for a geometry in which all principles of
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acute angle hypothesis, which Saccheri developed at length. I again refer to Bonola’s
monograph [11] for more on this early history, but let me mention a few among the
properties which, in the effort of proving the Fifth Postulate by contradiction, were
found to hold in the fictional geometry where the Fifth would be false.

(i) The set of points equidistant from a straight line a (on one side of a) is
not a straight line (this is already implicit in Posidonius [I cent. a.C.], who
defines two straight lines to be parallel if they are equidistant).

(ii) For each planar figure F , there is not a similar figure F ′ (i.e., with the point
having reciprocal distances in proportion to F ) of arbitrary size (J. Wallis
[1616-1703]).

(iii) The sum of the internal angles for one (hence, of all) triangle ABC is less
than a straight angle (G. Saccheri).

(iv) More, the quantity π−(Â+B̂+Ĉ) is proportional to the area of ABC (J.E.
Lambert [1728-1777]); hence, the proportionality constant is an absolute
quantity.

(v) There are distinct parallel lines a and b having a common point and a
common orthogonal line at infinity (G. Saccheri).

(v) There are points P,Q,R which are not collinear, such that no cricle passes
through all of them (W. Bolyai [1775-1856], padre di J. Bolyai).

Lambert went on to observe that (iv) holds, with reversed signs, for geodesic tri-
angles on a sphere of radius r:

Area(ABC) = r2(Â+ B̂ + Ĉ − π);

hence, that (iv) could be seen as a phenomenon taking place on a sphere of imag-
inary radius. This viewpoint played a major role in the developement of non-
Euclidean geometry.

Finally, independently of each other, N.I Lobachevsky [1793-1856], J. Bolyai
[1802-1860] and C.F. Gauss [1777-1855] totally changed perspective. Starting from
the assumption that the Parallel Postulate could not be proved based on the remain-
ing ones, they assumed it did not hold and went on developing the corresponding
theory, trusting that no contradiction could possibly arise. They all shared the view
that geometry was a description of physical space, and Gauss and Lobachevsky even
compared their non-Euclidean geometry (as Gauss called it) and the absolute quan-
tity already pointed out by Lambert, with available astronomical evidence. They
deduced that, in real space, the value of r must be very large. Lobachevsky and

Euclidean geometry hold true, but the uniqueness of parallels, but not for Riemann. In the

Habilitationschrift, Riemann offered the sphere as a model for a geometry in which no parallel
existed. Some of the principles used by Saccheri had to be abandoned: uniqueness of the line
through two points, it seemed; but also the infinite extension of lines (Riemann seems to be the

first to point out that the right geometric requirement is not that the straight lines have infinite
length -what he calls “infinite extent of the line“, translated in ”unboudedness” in modern netric

space theory-, but that one finds no obstructions while following a straight line -a property he calls

“unboundedness“, translated nowadays in ”metrically complete and without boundary“). Clifford
used the two-to-one covering of the real projective plane by the sphere to exhibit a geometry with
positive constant curvature in which (i) there was just one line throughtwo points; (ii) space was
homogeneous and isotropic; (iii) there are no distinct, parallel straight lines. Kelin realized the
role of this model in the discussion of non-Euclidean geometries. Of course, in the projective-space

model, often called Riemann’s non-Euclidean geometry, one not only has to give up the infinite
extension of straight lines, but also the fact that a line divides the plane into two parts; or, which
is about the same, orientability of the plane.
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Bolyai published their foundings, but Gauss did not: because he did not want to
be involved in a philosophical-mathematical struggle, but also because he learned
of the research of Bolyai and Lobachevsky and was satisfied that others had gone
public with the new geometry.

At this stage we have two competing geometries: Euclidean and non-Euclidean,
with and without the Fifth Postulate. There also was a substantial body of absolute
geometry, which was the intersection of the two. Bonola suggests that Kant’s
doctrine of space, according to which Euclidean Geometry was the main concrete
example of synthetic a priori knowledge, acted against the acceptance of, or even the
debate about non-Euclidean geometry. J. Gray [18] argues that, at the time Bolyai
and Lobachevsky published their work, Kantian philosophy was not hegemonic as
it had been a generation before. On the mathematical side, Lobachevsky proposed
to model non-Euclidean geometry using as analytic model hyperbolic trigonometry,
the non-Euclidean version of trigonometry (or, better, the “imaginary” version of
spherical trigonometry). He was logically on firm ground, but the mathematical
community seem not to have reacted to his proposal.

Another fact has to be taken into account. At the beginning of XIX century,
Euclidean geometry was considered the least questionable of all sciences (an ancient
state of affairs, of course, that had also directed Kant to exemplify by it the notion
of “synthetic a priori“), while the conceptual foundations of calculus were still
matter of debate and controversy. It was through the work of Cauchy, Bolzano and,
especially, Weierstrass, that mathematical analysis, hence the differential geometry
of surfaces, reached a level of philosophical reliability comparable (for the standards
of the time) to that of geometry [12]. Weierstrass lectured on the foundations of
calculus in 1859-60. The ’60’s were an excellent decade for developing analytic
models for geometry.

Starting with Gauss work on surfaces, a substantial body of knowledge had been
accumulating on surfaces of constant curvature. The reason is clear: on these sur-
faces only could figures be moved freely, at leaast locally, without alteration of
their metric properties. Gauss published his Theorema egregium in 1827 and it
was already clear that, if figures could be moved isometrically, cuvature had to be
constant. Minding observed that the converse was true in the 30’s, and he found
various surfaces of constant negative curvature in Euclidean space, the tractroid
among them. Liouville found other examples in 1850, one of which -the Liouville-
Beltrami half plane- will be discussed below. Riemann, in 1854, revolutioned the
concepts of geometry in his Habilitationschrift, in which surfaces of constant cur-
vature played a distinguished and exemplary role. Codazzi, in 1857, found that the
trigonometric formulae on the tractroid could be obtained by those on the sphere
by considering the radius as imaginary. With the exception of Riemann’s work, at
that time unpublished. See [19] for an extensive and very readable account of the
early history of differential geometry. Beltrami knew all of this litrature, which he
brought to sinthesis, and more, in the Saggio.

3. The models of Beltrami

Between 1868 and 1869, in two influential articles, Beltrami provided models
of the non-Euclidean geometry of Lobachevsky and Bolyai. One of these models
is better known as the Klein model, another one as the Poincaré disc model, the
third as the Poincaré half plane model. A fourth one, which Beltrami worked out,
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like the disc model, directly from Riemann’s Habilitationschrift, has had a much
minor impact. In a sense, the first article, Saggio di interpretazione della Geometria
non-euclidea [5], was written under the influence of Gauss, and the second, Teoria
fondamentale degli spazi di curvatura costante [6], under the influence of Riemann.
In this section we first give an exposition of the mathematical content of the two
papers, then we will try to clarify some points of methodology and philosophy.

3.1. The “projective” model. In his Saggio ([5], p.377), Beltrami introduces a
family of Riemannian metrics on the disc of radius a > 0 centered at the origin by
letting

(1) ds2 = R2 (a2 − v2)du2 + 2uvdudv + (a2 − u2)dv2

(a2 − u2 − v2)2
.

The Gaussian curvature of ds2 is the constant −1/R2. The advantage of such
metric is that its geodesics are straight lines.

Were does the metric ds2 come from? In 1865 ([3], p.262-280), Beltrami had
considered the problem of finding all surfaces which could be parametrized in such
a way that all geodesics were given by straight lines. The starting point was La-
grange’s rather obvious observation that, by projecting the sphere S onto a plane
Π from the center of S, the geodesics of S (great circles) were mapped 2 − 1 onto
straight lines in Φ, and viceversa. To his suprise, Beltrami found out that the
only surfaces which had such distinguished parametrizations where the surfaces of
constant curvature. In the positive curvature case, he computed the Riemannian
metric

(2) ds2 = R2 (a2 + v2)du2 − 2uvdudv + (a2 + u2)dv2

(a2 + u2 + v2)2
,

which is in fact the spherical metric on a sphere of radius R, written after the sphere
has been projected from its center C to a plane Π having distance a from C. He
had probably worked out the analogous expression (1) for the negative curvature
case, but he did not write it in the article per abbreviare il discorso, “for the sake
of brevity” ([3], p.276). Beltrami also mentions ([5], Nota I, p.399) that (1) can
be obtained from (2) by changing a and R in their imaginary counterparts ia and
iR, according to the general euristic principle we have already mentioned, that
hyperbolic geometry is spherical geometry on a sphere of imaginary radius. Since
the equations of the geodesics are the same in both the real and in the imaginary
case, the geodesics with respect to the coordinates u, v are straight lines. Hence,
they are chords of the limiting circle.

The angle θ between two “extrisically perpendicular“ geodesics u = const and
v = const is computed:

(3) cos(θ) =
uv√

(a2 − u2)(a2 − v2)
; sin(θ) =

a
√
a2 − u2 − v2√

(a2 − u2)(a2 − v2)
.

Form the expression of sin(θ) we see that, when the two geodesics meet at a point on
the circle at infinity, the angle they make vanishes5. This is exactly the phenomenon
(recalled in Section 2, (v)) that Saccheri had found ”repugnant to the nature of the
straight line“.

5This is true also for geodesics not in the form u = const and v = const. See the formulae at
p.381 in the Saggio.
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Beltrami’s first aim is proving two basic properties he singles out as crucial in
the introduction to the Saggio([5], p.375-76):

(A1) Given two distinct points A and B, there is exactly a line passing through
them ([5], p.381).

(A2) Given points A and B and oriented lines l 3 A and m 3 B, there is a rigid
movement of the plane which maps A to B and l into m, preserving the
orientation ([5], Nota II, p.400-405: I summarize in XX century language
what Beltrami writes as ”principle of superposition“ at p.376).

The first property does not hold, he says, in the positive curvature case. He is
thinking of the sphere model and the statement, as such, is not wholly accurate. In
fact, as Clifford had shown, but not linked to the dibate on the Parallel Postulate,
the real projective space has the properties (A1) and (A2). It was known that
properties (A1) and (A2) locally hold on surfaces of constant negative curvature:
Beltrami’s goal is realizing a model in which they hold globally.

Here, Beltrami explains, “point” means “point on the surface of constant cur-
vaturem parametrized by (u, v) in the disc {(u, v) : u2 + v2 < a2}” and “line”
is a geodesic for the metric (1). I use the expresion “rigid movement” for any
transformation which preserves the metric (Beltrami writes of of the possibility of
superposing without restrictions a figure onto another). To have a complete picture
of the model, it is useful to know:

(A3) Lines can be indefinitely prolonged ([5], p.380 for geodesics passing through
the origin; extend to the general case using (A3)) and they have infinite
length in both directions.

(A4) The plane is simply connected ([5], p.378).
(A5) There are more lines passing through a point A /∈ l, which do not meet l

([5], p.382).
Beltrami calls psedudospheres the surfaces bijectively parametrized by the coor-
dinates (u, v) and endowed with the metric (1) (below, we will use idifferently
psedosphere, hyperbolic plane, non-Euclidean plane). At p.381, he correctly says
that the theorems of non-Euclidean geometry apply (translating geometric terms
in differential-geometric terms as above) to the pseudospheres. We know that the
implication goes in the other direction as well: if a question is posed in terms of
non-Euclidean geometry and it is answered working on the pseudosphere model, we
can consider that answer as belonging to non-Euclidean geometry; the same way
questions in Euclidean geometry can be answered in terms of the Cartesian plane.6

How aware was Beltrami of this?
It is my opinion that he was personally convinced, but hesitant to state it ex-

plicitely. He surely lacked the conceptual frame which was going to be provided,
much later, by Peano and Hilbert [27]. He also did not have the philosophical
confidence of Riemann, who simply avoided this kind of questions, to go directly
to the general science of space. There is little doubt I think, that, for Riemann,
non-Euclidean, hyperbolic geometry was that of the model he had mentioned in
the Habilitationschrift and that Beltrami was going to study in depth in his Teoria
fondamentale [6].

6This amounts to say that, for each given value of R there is, but for isometries, exactly
one non-Euclidean plane having “radius of curvature” equal to R (where R is connected to the

universal geometric constants envisioned by Lobachevsky, Bolyai and Gauss).
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Instead of simply saying that his model was, rather than contained, non-Euclidean
geometry, Beltrami further proceeds in two directions. On the one hand, he goes
on to deduce from his model a number of important theorems in non-Euclidean
geometry, as to convince the reader and himself that his model correctly answers
all reasonable questions in non-Euclidean geometry. On the other hand, he seems
to worry that the surface with the metric (1) might not be considered wholly “real”,
since it is not clear in which relation it stands with respect to Euclidean three space
(the strictest measure of “reality”). Then, he will show that, after cutting pieces of
it, the pseudosphere can be isometrically folded onto a “real” constant curvature
surface in Euclidean space.7 If it is true that both directions seem to be suggested
by logical and philosophical hesitation, this hesitation induces Beltrami to do some
really elegant mathematics, and to unravel some very interesting features of his
model.

After one knows that the geodesics for (1) are chords of the unit disc, it is obvious
that the geodesics in this metric satisfy the incidence properties of straight lines
in non-Euclidean geometry, and Beltrami is very coscious in proving this with all
details ([5], p.382). In the Nota II ([5], Nota II, p.400-405), as we said in (A2),
Beltrami shows that the metric ds2 is invariant under rotations around the origin
and, for each fixed (u0, v0), there is a metric preserving transformation of the unit
disc, which maps (0, 0) to (u0, v0): that is, with respect to the metric (1), the
disc is -in contemporary terms- homogeneous and isotropic; figures can be moved
around with no more restrictions than the ones they are subjected to in Euclidean
plane. Being the geodesics straight lines, one is not surprised in learning that the
isometries are the projective transformations of the plane fixing the circle at infinity.
The isometries of the pseudosphere are compositions of (Euclidean with respect to
u, v coordinates) rotations around the origin, reflections in the coordinate axis and
maps of the form

(u, v) 7→

(
a2(u− r0)
a2 − r0u

,
a
√
a2 − r20v

a2 − r0u

)
, 0 < r0 < a.

This is one of the two points in which Beltrami makes explicit the connection
between his model and projective geometry, which will be later developed in depth
by Felix Klein.

The distance ρ between the origin and (u, v) is computed by straightforward
integration as

(4) ρ =
R

2
log

a+
√
u2 + v2

a−
√
u2 + v2

,

which implies (A3). Also, using another integration of (1) on a Euclidean (hence, by
(4), non-Euclidean) circle centered at the origin, one deduces that the semiperimeter
of the non-Euclidean circle having radius ρ is

πR sinh(ρ/R),

a formula already known to Gauss ([5], p.380 and 384).

7 As a matter of fact, later Hilbert showed that no regular surface in Euclidean three space is
isometric to the whole pseudosphere. Much later, Nash showed that any surface can be isometri-

cally imbedded in a Euclidean space having dimension large enough.
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Beltrami now turns his attention to the angle of parallelism. Consider two
geodesics α and β meeting at right angles at a point P , a point Q on β at non-
Euclidean distance δ from P and let ζ, ξ be the two geodesics passing through
Q which are parallel to α (that is, which separate the geodesics through Q which
meet, and the ones which do not, α). Let ∆ be the angle ζ and ξ make with β
(by reflection invariance, it is the same). Assume Q is the origin in the model.
Using the facts that (1) is conformal to the Euclidean metric at the origin and that
geodesics are straight lines, and (4), one easily computes

tan(∆) = 1/ sinh(δ/R),

which had been previously found by Battaglini on surfaces of constant negative cur-
vature. After standard manipulation, this becomes Lobachevsky’s pivotal formula

(5) tan(∆/2) = e−
δ
R .

Among the other theorems Beltrami deduces from his models we find the main
formulae of non-Euclidean trigonometry and the formula for the area of a geodesic
triangle having angles Â, B̂, Ĉ;

R2(π − Â− B̂ − Ĉ).

When the angles vanishe, we obtain the single value πR2 for the area of a ge-
odesic triangle with all vertices at infinity. It is curious that ([5], p.389), when
mentioning that the value “is independent of its [the triangle’s] shape”, Beltrami’s
fails to observe that all such triangles are in fact isometric and hence, from the
pseudospherical point of view, they have in fact the same shape.

At p.387, between the discussion of trigonometry and that about areas, Beltrami
writes: “The preceeding results seem to fully show the orrespondence between non-
Euclidan (two-dimensional) geometry and geometry of the pseudosphere.” Again,
this is evidence that he thought of his model as essentially identical to Lobachevsky’s
geometry, but he lacked a conceptual frame for defending his belief in front of
possible criticism; hence, he preferred to keep a reasonably low profile.

We now come to the second appearence of projective geometry in the article ([5],
p.391-392). In the Nota II, Beltrami finds that the equation of the pseudospherical
circle having radius ρ and center (u0, v0) is

(6)
a2 − u0u− v0v√

(a2 − u2 − v2)(a2 − u2
0 − v2

0)
= cosh(ρ/R) ≥ 1.

From Gauss Lemma, such circles are orthogonal to the geodesics issuing from
(u0, v0). In Beltrami’s model, however, it makes sense to find the curves which
are ortogonal to the geodesics passing through (u0, v0) even when u2

0 + v2
0 = a2 (a

point at infinity) u2
0 + v2

0 > a2 (an ideal point). The equation of the orthogonal
curve is deduced the same way as (6), and it has a similar form,

(7)
a2 − u0u− v0v√
a2 − u2 − v2

= C, u2 + v2 < a2.

We might be called generalized (metric) circles the curves γC given by (7). The
curves γC corresponding to the same (u0, v0), but to different values of C, are
equidistant as it is easy to show. When the center (u0, v0) is ideal, the value C = 0
is admissible and γ0 is a geodesic, in pseudospherical terms, and it is the polar of
the point (u0, v0) with respect to the limiting circle. For C 6= 0, then, γC is a set
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of points having a fixed distance from the geodesic γ0 and γC is not a geodesic: a
fact which reminds us of early attempts to prove Euclid’s Fifth Postulate.

While the case of the ideal points seems to have been forgotten in contemporary
hyperbolic pop-culture, the case of the points at infinity has not. Suppose that
u2

1 + v2
1 = a2, rewrite (6) with ρ′ − ρ instead of ρ,.

(8)
a2 − u0u− v0v√
a2 − u2 − v2

=
√
a2 − u2

0 − v2
0 cosh

(
ρ′ − ρ
R

)
,

and let ρ′ →∞ and (u0, v0)→ (u1, v1) in such a way that

1
2

√
a2 − u2

0 − v2
0e
ρ′/R → a.

Then, the geodesic circle S((u0, v0), ρ′ − ρ) having equation (9) stabilizes to the
horocicle H((u1, v1), ρ) having equation

(9)
a2 − u1u− v1v√
a2 − u2 − v2

= ae−
ρ
R .

The distance between two concentric horocicles H((u1, v1), ρ0) and H((u1, v1), ρ1)
is clearly constant and has value |ρ1 − ρ0|. By a limiting argument, it is also easily
deduced that the horocycle H((u1, v1), ρ) is normal to all geodesics issuing from its
center (u1, v1); that is, to all geodesics converging to the point at infinity (u1, v1).

Beltrami has, this way a unifying interpretation in terms of generalized circles
having center in the Euclidean plane for three important different non-Euclidean
objects: the (usual) metric circle, the horocycle, the set of the points having a fixed
distance from a geodesic. (The reader will figure out without difficuty what the
corresponding objects are in Euclidean and in spherical geometry).

Another important feature of the Saggio, as said before, is that Beltrami “folds”
his pseudosphere onto surfaces of constant curvature in Euclidean space. His clever
construction, however, is easier if translated in the “conformal” Liouville-Beltrami
and Riemann-Beltrami-Poincaré models; hence, we will postpone it after we have
discussed the second article, Teoria fondamentale.

It seems evident that the projective nature of the model was perfectly clear to
Beltrami: (i) the metric is invariant under projective tansformations; (ii) impor-
tant geometric objects (the circles with ideal center, for instance) had to do with
projective concepts (the polar of a point with respect to a circle, to remain in the
example). Probably, Beltrami did not pursue this line of investigation because it
was not to his taste. Klein’s main contribution was that the Riemannian distance
produced by the metric had a projective interpretation (as the logarithm of a bi-
ratio; see [11] and [16] for extensive accounts of this), hence that the model could
be fully developed within synthetic geometry, without resorting to infinitesimal cal-
culus. The preference for synthetic arguments goes in a direction which is opposite
to the one taken by Riemann in the footsteps of Gauss, and by Beltrami in the foot-
steps of both. It has its own merits and it had a great influence in the discussion
on the fundation of mathematics, but, as far as geometry is concerned, the major
conceptual developments of the past century see synthetic geometry in an ancillary
position.
Anisotropy. Let us spend some words for some remarks on the metric (1) itself.
We will let a = 1, since the particular value of a has no importance for us. We can
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rewrite (1) as

ds2 = R2 du2 + dv2

1− u2 − v2
+R2 (udu+ vdv)2

(1− u2 − v2)2
.

In this form, it is easy to see that the infinitesimal discs centered at (r, 0) (this is no
loss of generality in view of rotational invariance) and having radius dr are ellipsis
having a semiaxis (1−r2)

R dr in the u direction and (1−r2)1/2
R dr in the v direction. In

fact, the metric at (r, 0) becomes

ds2 = R2 du
2 + dv2

1− r2
+R2 (rdu)2

(1− r2)2
= R2 du2

(1− r2)2
+R2 dv2

1− r2
.

This important eccentricity says that the metric is very far from being conformal to
the Euclidean metric in (u, v) coordinates (a metric ds2 ic conformal to the metric
du2 + dv2 if ds2 = f(u, v)(du2 + dv2) for some strictly positive function f(u, v)). It
is interesting that, in a foundational article published the year before, Delle vari-
abili complesse su una superficie curva, 1867 [4] p.318-373, Beltrami himself had
considered and solved the problem of finding conformal coordinates on a (Riemann-
ian) surface. It is possible that, at the time of writing the Saggio, Beltrami had
worked out conformal coordinates for the metric (1), possibly the ones associated
with the so-called Poincaré disc model. In fact, Beltrami ([5], p.378) says that “the
form of this expression [i.e, ds2 as in (1)], although less simple than other equivalent
forms which might be obtained by introducing different variabels, has the peculiar
advantage [...] that any linear equation in the u, v variables represents a geodesic
line and that, conversely, each geodesic line is represented by a linear equation”
[my translation]. Since at the time he sent the article to the journal he had already
read Riemann’s Habilitationschrift, however, Beltrami could also had found there
a disc model he had not thought about before.

3.2. The “conformal” models. When he learned of Riemann’s Habilitation-
schrift, Beltrami was in the position of developing a remark contained in it, that
the length element of an n-dimensional manifold having constant (Riemannian)
curvature α (α ∈ R) is

(10) ds2 =

∑
j dx

2
j

1 + α
4

∑
j x

2
j

.

More important than this, Riemann had given solid philosophical and scientific, as
well as geometric, foundations for a theory of manifolds in which Euclidean spaces
played no priviledge role (except for the infinitesimal structure of space, about
which, by the way, he had interesting questions and observations). To wit: (i)
geometry was the study of n-dimensional manifolds endowed with a length structure
(an idea which is still actual; see for instance [13]); (ii) the “geometricity” of a
space was not, then, less so because the space was not a subspace of Euclidean
three-space. Backed by this philosophy, which he however did not fully endorse in
the Teoria, Beltrami could present his “purely analytic” calculations as (almost)
sound geometry.

The starting point of the Teoria is a different way to write down the (n-dimensional)
length element ds2 in (1),

(11) ds = R

√
dx2 + dx2

1 + · · ·+ dx2
n

x
,
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subjected to the constraint

(12) x2 + x2
1 + · · ·+ x2

n = a2

([6], p.407). A formal calculation, in fact, shows that this is the same as the n-
dimensional version of (1), already cited in the Saggio:

(13) ds2 = R2

(
|dx|2

a2 − |x|2
− x · dx

(a2 − |x|2)2

)
,

with x = (x1, . . . , xn) and obvious vector notation. The interest of the new way
to write the metric is that the metric ds in (11) can be thought of as a metric
living in the “right“ half-space H+

n+1 = {(x, x1, . . . , xn) : x > 0}, restricted to the
half-sphere S+

n+1(a) given by the constraint. The space H+
n+1 with the metric (11)

is itself a model for the (n + 1)-dimensional non-Euclidean geometry, as we shall
see shortly.

We will use the notation Bn(a) = {(x1, . . . , xn) : x2
1 + · · ·+x2

n < a2}. With Bel-
trami, we take x to be a variable dependent on (x1, . . . , xn) in Bn(a). A variational
argument shows that the geodesics for the metric (11) are chords of the ball Bn(a),
as in the 2-dimensional case. This also garantees that the Riemannian manifold here
introduced is simply connected and that it has the property that there is exactly
one geodesic passing through any two given points. Next, Beltrami shows that his
metric is invariant under a (Euclidean) rotation around the center of Bn(a). This
would immediately follow from the expression (13) for (11), but Beltrami prefers
to point out that each of the following is invariant under such rotations: (i) the
metric (11) when thought of as a metric on H+

n+1 (here, the rotation acts on the
coordinates x1, . . . , xn and leaves x fixed); (ii) both sets H+

n+1 and Sn+1(a). He
then shows by a lengthy argument that metric isometries act transitively on Bn(a).
We skip here the argument and only give its conclusion ([6], p.416): the isometries
for (11) are those projective transformations of Euclidean n-space which map Bn(a)
onto itself.

Next, the metric (11) is written in polar coordinates x = rΛ = r(λ1, . . . , λn),
with 0 ≤ r < a and |Λ| = 1:

ds2 = R2 a2dr2

a2 − r2
+R2 !dΛ!2

(a2 − r2)2
.

Changing from r to ρ, the non-Euclidean distance from the origin, dρ = Radr/(a2−
r2), one obtains

(14) ds2 = dρ2 +R2 sinh2(ρ/R)|dΛ|2.

Introducing new coordinates by radially stretching the metric,

ξj = 2R tanh(ρ/2R)λj , j = 1, . . . , n,

and doing elementary calculations with hyperbolic functions, one finally obtains
that

(15) ds2 =

∑
j dξ

2
j

1−
P
j ξ

2
j

4R2

,

which is Riemann’s choice for the coordinates of the n-dimensional space of constant
curvature. From here, closely following Riemann’s exposition in [26], Beltrami
computes that the curvature of the space metrized by (15) (hence, the metric (11)
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itself) is −1/R2. In the two-dimensional case, (15) was independently rediscovered
by Poincaré in [25].

The third model is obtained by a fractional transformation of the coordinates
(x, x1, . . . , xn−1) in (11) (while keeping the constraint (12)):

(η, η1, . . . , ηn−1) =
(

Rx

a− xn
,
Rx1

a− xn
, . . .

Rxn−1

a− xn

)
.

In the new coordinates,

(16) ds2 = R2 dη
2 + dη2

1 + · · ·+ η2
n−1

η
.

In dimension two, as Beltrami notes, the metric had been computed by Liouville in
his Note IV to Monge’s Application de l’Analyse à la Géométrie ([22], p.600), at the
end of a discussion on Gauss’ Theorema Egregium. What is interesting, Beltrami
notes, is that the metric (16) is no other than the metric (11) in the ambient space
(without the constraint (12)), with one less dimension.

The original metric (11) (hence, the two-dimensional metric (1) of the Saggio)
might then so interpreted. Start with the (conformal) metric (11) on the right half-
space H+

n+1. The metric (11) restricted to the half n-dimensional sphere S+
n+1(a),

makes S+
n+1(a) in a model of n-dimensional pseudo-sphere. Beltrami proves so,

but we know that S+
n+1(a) contains the whole geodesic for (11) connecting any two

of its points (this is clear, once we know that the geodesics for (11) are arcs of
circles or straight lines, which are perpendicular to the boundary of H+

n+1). The
projective metric (1), and its n-dimensional generalizations, is the projection of the
the conformal metric (11) on the disc cut by Sn+1(a) on the boundary of H+

n+1.
A special feature of the metric (16) is that the horocycles Γk having center at

the point at infinity of H+
n+1 have equation η = k, for a positive constant k. It

is immediate, then, that the restriction of the pseudospherical metric to Γk is (a
rescaled version of) the Euclidean metric; a fact already noted by Bolyai in the
three-dimensional case.
Imbedding the psudosphere in Euclidean space. In his Saggio, Beltrami
found three surfaces in Euclidean space which carried his metric (1), by cleverly
folding the pseudosphere.8 One at least of these surfaces was previously known.
What Beltrami was interested in was finding ”real“ models for non-Euclidean ge-
ometry; i.e. surfaces of constant curvature in Euclidean space. This he did in the
Saggio, written before reading Riemann; at a time when Beltrami kept a rather
conservatve profile about ”reality” of geometric objects.

The construction of the three surfaces is easier to see, I believe, if carried out in
the conformal models of the later Teoria; I will then translate them in that context.
I will also let R = 1, leaving to the reader to figure out the elementary modifications

8 At ths point only I disagree with Gray’s account of Beltrami’s work. He writes, a p.208 in [19]:

”...but all Beltrami did was hint that the pseudosphere [the tractroid, in this paper’s terminology]
must be cut open before there is any chance of a map between it and the disc [Beltrami’s projective

model]“. In fact, Beltrami’s hint at p.390 follows his formula (12), which can be used to find (after
a cut) a surface of revolution in Euclidean space, what we call here S3. Formula (14) at p. 393

leads to our S2 and, finally, formula (17) at p.394 leads to the tractroid, our S1 below. The

tractrix, called by Beltrami linea dalle tangenti costanti (constant tangent curve) is explicitely
mentioned at p.395. I find it indicative of Beltrami virtuosism, that he managed to exhibit three

different surfaces of revolution by using the projective model, which is not especially amenable to

this sort of calculations.
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for different values of the curvature. The general frame adopted by Beltrami is the
following. The metric

ds2 = dρ2 +G(ρ)2dθ2

is the length element on a surface of revolution S, θ being the angular coordinate and
dρ being the length element on the generatrix of S, provided |G′(ρ)| ≤ 1, because
dG is the projection of dρ in the direction orthogonal to the axis of revolution.

We start from the horocycle construction, which also is the best known. Consider
the Liouville-Beltrami metric

(17) ds2 =
dx2 + dy2

y2
, y > 0.

Let dρ = dy/y (then, ρ is hyperbolic length on any geodesic x = const) and
consider 0 ≤ x ≤ 2π. We set ρ = log y (we will recover the other primitives using
an isometry). The metric ds2 becomes

(18) ds2 = dρ2 + e−2ρdx2.

The condition |dG| ≤ dρ becomes ρ ≥ 0; i.e. y ≥ 1. The surface of revolution S1

so obtained is the one often finds in articles and web pages concerning Beltrami’s
models. It is rather confusing the use of calling such surface “pseudosphere“, the
term Beltrami uses for the (simply connected) model he has for the non-Euclidean
plane. Being the generating curve of S1 a tractrix, the term tractroid, which is
sometimes used, is better (but ugly). The part of the pseudosphere which can be
mapped onto the surface S1 in a one-to-one way (but for a curve) is {(x, y) : y ≥
1, 0 ≤ x ≤ 2π}. The vertical sides x = 0, y ≥ 1 and x = 2π, y ≥ 1 are half-
geodesics which have to be glued together. The resulting surface in Euclidean space
looks like an exponentially thin thorn as y → +∞ and as a trumpet near y = 1.
At the aperture of the trumpet, the metric of S1 can not be carried by Euclidean
space anymore.

The Euclidean dilation (x, y) 7→ (λx, λy), λ > 0, is clearly an isometry for ds2 in
(17). By composing with these dilations, we find other regions in the pseudosphere
which can be mapped onto the surface S1; regions which might be otherwise be
found by choosing the primitives ρ = log(y/y0) with y0 > 0, as Beltrami did in the
Saggio. By isometry, however, the tractroid does not change with y0.

The contemporary way to think of S1 woud be to take a quotient of the pseudo-
sphere with the parameters x, y with respect to the action of the group of isometries
generated by (x, y) 7→ (x + 2π, y). The resulting Riemann surface, then, can be
embedded in Euclidean space for the part where y ≥ 1 as a tractroid, as we have
just seen.

We now give the correspondng construction with two geodesic circles having ideal
center playing the role that was above played by a horocycle. Again in the upper
plane model, consider the geodesic γ∞ having equation x = 0. The lines γm with
equation y = mx, m ∈ R, are then equidistant from γ0 (proof: the lines y = ±mx
are the envelope of a family of circles having constant hyperbolic radius and centers
on γ0). Writing x = r cos(θ), y = r sin(θ) in polar coordinates, the metric becomes

ds2 =
dθ2

sin2(θ)
+

dr2

r2 sin2(θ)
.

Let dθ/ sin(θ) = dρ, ρ = log(tan(θ/2)), and dr/r = dt, r = et. Then,

(19) ds2 = dρ2 + z(ρ)2dt2,
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where z(ρ) = 1/ sin(θ). It follows that |dz/dρ| = |1/ tan(θ)| ≤ 1 if and only
if |θ − π/2| ≤ π/4. Keeping in mind that we want the ”angle“ coordinate t in
[A,A+ 2π], we have that any Euclidean cicular sector

Ω = {(x, y) : y ≥ |x|, r0 ≤
√
x2 + y2 ≤ r0e2π},

with r0 > 0, is isometric to a surface of revolution S2 in Euclidean space. The two
arcs of circles (which are geodesics for the metric) are glued together (identifying
points lying on the same line y = mx). The segments of the lines y = ±x lying on
the boundary of Ω are apertures corresponding to the aperture of the trumpet in the
horocycle construction. While in S1 the aperture is a piece of horocycle, in this case
it is made by two pieces of circel having ideal center. Contrary to the case of the
surface S1, in this case we can construct a one-parameter family of non-isometric
surfaces S2(k) by integrating dr/r = kdt (k > 0), having then z(ρ) = 1/[k sin(θ)]:
as k grows larger, the interval of the allowable r’s becomes thinner, while the
circles with ideal center y = mx can range over a greater range of m’s. In this
case, reverting to k = 1, group of isometries generated by (x, y) 7→ (e2πx, e2πy)
(Euclidean dilations) is the one giving (an extension of) S2 as quotient.

Lastly, we consider the conformal disc model instead,

ds2 =
dx2 + dy2(
1− x2+y2

4

)2 =
dr2 + r2dθ2(

1− r2

4

)2 ,

in usual polar coordinates (r, θ). We set dρ = dr/(1−r2/4) (ρ is then non-Euclidean
distance from the origin), so that tanh(ρ/2) = r/2 and r/(1− r2/4) = sinh(ρ). The
metric then becomes

(20) ds2 = dρ2 + sinh2(ρ)dθ2.

Since (d/dρ) sinh(ρ) = cosh(θ) ≥ 1, (20) can not be the length element of a surface
of revolution S3 whose angular coordinate is θ. In fact, Beltrami points out that, if
such were the case, then S3 would have, by symmetry, equal principal curvatures at
the point corresponding to (x, y) = (0, 0); it could not then have negative curvature
there. The remedy is considering 0 ≤ θ ≤ 2πε only, with ε < 1, and letting t = θ/ε
be the angular coordinate. This way, the metric becomes ds2 = dρ2+ε2 sinh2(ρ)dt2,
which defines the metric for a surface of revolution Sε3 provided that cosh(ρ) ≤ 1/ε.
The surface Sε3 has a cusp at the point corresponding to the origin, where the total
angle is only 2πε. The aperture at its other hand is an arc of the geodesic circle
centered at the origin and having radius ρε = cosh−1(1/ε). It is intuitive (and can
be proved) that Sε3 converges to S1 as ε tends to zero. The isometry group producing
Sε3 as a quotient, in the case ε = 1/n (n ≥ 2 integer), is the one generated by a
rotation of an angle 2π/n.

In all the three types of surfaces we have seen, the gluing is done along geodesic
segments. The apertures due to the partial imbeddability in Euclidean space are
always arcs of generalized circles: a horocycle for S1; two circles with ideal center
for S2 and a metric circle for S3. In this case as well, we see the tri-partition of the
”projective“ generalized circles emerging very elegantly from Beltrami’s Saggio.
Anachronism (for the complex reader). If we replace the unit disc in the real
plane R2 by the unit ball BC2 = {(z, w) : |z|2 + |w|2 < 1} in the complex 2-space C2

and we replace real by complex variables, we might consider (1) as the restriction
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to the real disc BR2 = {(x, y) : x2 + u2 < 1} ⊂ BC2 of the metric

(21) dσ2 = R2 |dz|2 + |dw|2

1− |z|2 − |w|2
+R2 |zdz + wdw|2

(1− |z|2 − |w|2)2
.

People working several complex variables will immediately recognize dσ2 as the
Bergman metric on BC2 ; i.e. of the (essentially) unique bi-holomorphically invariant
Riemannian metric BC2 . Beltrami’s first model, then, can be interpreted as a totally
geodesic surface in Bergman’s complex ball. Easy considerations show that the
automorphism group of BC2 acts transitively on the tangent space of the real disc
BR2 = {(z, w, ) ∈ BC2 : z, w ∈ R}, hence that -by a theorem of Gauss, as noted
by Beltrami- the metric ds2 has constant curvature. It is easy to see that another
totally geodesic surface in BC2 can be obtained by letting w = 0 in. This gives the
metric

(22) dτ2 = R2 |dz|2

(1− |z|2)2

on the complex disc BC1 . The metric dτ2 makes the unit complex disc BC1 =
{z ∈ C : |z| < 1} into the Riemann-Beltrami-Poincaré disc model. Note that
the projective model BR2 has here curvature K = −1, while the conformal model
BC1 has curvature K = −4: the two surfaces in BC2 are not isometric. It is also
interesting to note that, if we pass to higher (complex) dimension, we still find this
way higher dimensional (real) projective models of non-Euclidean geometry, but we
always find two-dimensional only conformal disc models of it.

The bi-holomorphisms of the unit disc are exactly the projective tranformations
of the complex two-space, which map the unit ball into itself: in the light of Bel-
trami’s discussion of his projective model, this is almost obvious. Among these
transformations, the subgroup formed by the ones having real coefficients also map
the unit real disc BR2 onto itself, and exhaust the projective self maps of BR2 which
preserve orientation. This are the (sense preserving) isometries of the Beltrami-
Klein (projective) model. On the other hand, the projective self maps of BC2 fixing
the second coordinate w, which we can identify with projective transformations of
the projective line C ∪ {∞} (i.e. fractional linear tranformations) fixing the unit
disc in C, are the isometries of the Riemann-Beltrami-Poincaré (conformal) model.
They have the form

z 7→ eiλ
a− z
1− az

for fixed a in C, |a| < 1, and λ in R. It interesting that the two-dimensional
disc model and the (eventually) higher dimensional projective model studied by
Beltrami find a unification in the context of complex projective geometry.

The metric (21) has not constant curvature in the sense of Riemann (if it had,
we could not have found in it geodesic surfaces having different curvature), it is
not, then, by itself a model for non-Euclidean geometry. It is interesting to see
in one of its features how much it departs from having constant curvature. We
saw before that the projective metric (1) exhibits an extrinsic (hence, illusory),
but important anisotropy. The metric (21), which is defined similarly, exhibits a
similar anisotropy, which is not, this time, illusory at all. A way to see this is the
following. Consider the non-Euclidean plane in the Riemann-Beltrami-Poincaré
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three-dimensional model

ds2 =
dx2 + dy2 + dz2

(1− x2 − y2 − z2)2

considered before and the family of circles Γr = {(x, y, z) : x2 + y2 + z2 = r2},
0 < r < 1. The metric ds2 restricted to each Γr is a spherical metric and all the
metrics so obtained are just rescalings of each other. (Keeping track of the rescaling
factors, we can this way give spherical coordinates to the boundary at infinity of
the non-Euclidean space). The situation is much different with the metric (21). Its
restrictions to spheres centered at the origin (which are spheres for the Bergman
metric itself!) are not rescaled versions of each other: there is not a map Λ from
one of the spheres (S1) to another one (S2) such that the d2(Λ(A),Λ(B))/d1(A,B)
is constant (here, dj is the distance on Sj which comes from the restriction of
the Bergman metric). Moreover, if we normalize the metrics on the spheres of
(Bergman) radius ρ in order to that they stabilize to a metric on the boundary
at infinity as ρ → ∞, such metric turns out not to be a Riemannian metric. In
fact, it becomes what is called a sub-riemannian metric, in which, for instance, the
uniqueness of the geodesic through two points fails on any (arbitrary small) small
open set.9

Beltrami’s projective model coupled with complex variable opens the way for a
world which is outside (but in the limit of) Riemannian geometry.

3.3. What was Beltrami’s interpretation of his own work? I will try to
argue here that Beltrami had a model of non-Euclidean geometry, that this model
was geometrically rather ”real” and that he thought so. What is uncertain is
whether, at the time he wrote the Saggio, he claimed (or believed) that this model
was a faithful representation of non-Euclidean geometry; that is, if he thought
that a property which could be proved in his model was necessarily true in the
non-Euclidean (synthetic) theory of Bolyai and Lobachevsky. In his [27], M.J.
Scanlan argues otherwise. In particular, he mantains that Beltrami’s pseudosphere
is the imbedded tractroid S1 we have met before; rather, two of such surfaces glued
together, which would not be a model for non-Euclidean plane (try to see what
such union becomes on the Liouville-Beltrami model).

Beltrami begins, we have seen, by giving the metric (1), where (u, v) are co-
ordinates satisfing u2 + v2 < a2. The coordinates u, v are meant to bijecively
parametrize the points of a surface S. A tthis point, after all properties of the
metric (1) are proved, we surely have an analytic model: a class of objects verifying
the assumptions of non-Euclidean (hyperbolic geometry).

What is this surface and where does it live? Beltrami does not say, but it is clear
that the question has for him the greatest relevance. If the model has to geometric,
then the surface S has to be “real”. The strictest standard for “reality” is being a
surface in Euclidean three-space.

That Beltrami considers S a surface, not merely an anlytic fiction, becomes
evident at p.379, in a passage which might be confusing for the contemporary reader,

9The main reason for this is that, at the point (r, 0) in BC2 (0 < r < 1), infinitesimal balls

have two (real) large directions and two (real) small directions. Let z = x + iy: the x (normal)

direction is small exactly as in the Beltrami-Klein model. Due to the holomorphic coupling of the
variables in the metric (21), the (tangential) direction y is small as well. We have then two large

and one small tangential directions, causing an interesting degeneracy of the metric in the limit.



BELTRAMI’S MODELS OF NON-EUCLIDEAN GEOMETRY 19

who is accustomed to the abstract definition of manifolds (i.e.: set theory coupled
with analytic considerations). Beltrami considers the geometric disc x2 +y2 < a2 in
a Euclidean plane endowed with Cartesian coordinates x, y. Setting x = u and y = v
we have a map from the psudosphere S (parametrized by u and v) and a region
of the Euclidean plane. We have then two geometric objects (the pseudosphere,
a Euclidean disc), endowed with coordinate systems, and we use the equality of
the coordinates’ values to establishe a map between these two geometric objects.
The confusion for us is that we are not used anymore to consider Euclidean discs
geometrically, and equating the coordinates makes for us litte sense.

The surface S exists as an unquestionably “real object” if it lives in Euclidean
three space (otherwise, someone could object that it is more like an “analytic ob-
ject”, at least before Riemann’s paper). It lives there, however, not as we are
used to think of it nowadays, as an imbedded submanifold; but, rather, as a phys-
ical surface, which remains the same if moved without alteration of the mutual
metric relations within the surface; without taking into account self intersections.
This idea of surface in space is shortly explained in the introductory remarks to
[4] (p.318): Each couple of values for u, v determine a point of the surface, which
remains essentially distinct from that corresponding to a different couple of values.
The fact that, in same place in space, two points having different curvilinear coor-
dinates might coincide, does not matter unless we consider a given configuration of
the surface. That is to say: the contemporary imbedded surface is for Beltrami a
configuration of his own surface, and it is possible that parts of the surface overlap.
What Beltrami calls (real) surface, then, is the (equivalence) class of all “config-
urations” which are isometric; i.e. for which a parametrization u, v such that the
length element on the surface can be expresse by

ds2 = Edu2 + 2Fdudv +Gdv2

exists (the couple u, v ranging on a fixed set and E,F,G being given functions of
u and v). This definition of Riemannian surface is perfectly consistent with Gauss
theory and its motivations, and with physical intuition. Of course, in our highly
formalized mathematics this definition is hard to work with. Beltrami, however,
felt perfectly at ease with it.

Being such the definition, Beltrami does not find any problem when he has to
fold his pseudosphere. Rather, he might have problems when the imbedding can
not be locally done, due to the obstruction that |G′(ρ)| > 1 on his surfaces of
revolution. The tractroid in Euclidean space, for instance, can only model the part
of the pseudosphere which is internal to the horocycle bounding it (i.e., between
the horocycle and its point at infinity).

However, having freed the surface from its particular “configuration” in space, it
is possible to identify it with the range of the parameters u, v and with the length
element ds2: what we would call a patch of (abstract) surface with a Riemannian
metric. Namely, further extending the family of the possible “configurations” to
those in which the imbedding is just locally possible, we come to a definition of
Riemannian surface which is almost equivalent to the contemporary one. Beltrami
appears to be open to this possibility in the first few sentences of [4]: It is not useless
to remind that, when considering a surface as defined solely by its linear element
[i.e., ds2], one has to abstract from any concept or image which implies a concrete
determination of its shape which is related to external objects; e.g. [its position
with respect to] a system of orthogonal axis [in three space].A surface of this kind,



20 NICOLA ARCOZZI

which is intermediate between “real” and “purely analytic” is the pseudosphere
in his Saggio. In the Teoria, relying -at least as two-dimensional manifolds are
concerned- on Riemann’s authority, Beltrami does not even mention the problem
of finding a Euclidean spece where he can imbed his pseudospheres.

Let now get to the second problem: the relation between pseudospherical and
non-Euclidean geometry. Beltrami shows that, properly interpreted, terms and pos-
tulates of non-Euclidean geometry hold on the pseudosphere. Hence, all theorems
of non-Euclidean geometry hold on the pseudosphere10.

As a consequence, as Hoüel made explicit in [17], the Postulate of Parallels can
not be proved from the remaining ones (on this point, I desagree with Scanlan). In
fact, any proposition which can be proved by the remaining postulates would also
hold on the pseudosphere (no matter if it is real-geometric or purely-analytic), but
on the pseudosphere we have not uniqueness of parallels, so we have a contradiction.
Scanlan says that Beltrami and Hoüel did not have enough matematical logics
behind to fully justify this. In my opinion, on this point Scanlan is close to the
anachronisms he is castigating.

Let me use a metaphor. Suppose a child has realized that Odd and Even sat-
isfy, with respect to sum, the same relation that Minus and Plus signs satisfy with
respect to product. Lacking the idea of group isomorphism, she might be hesitant
in describing this discovery. Challenged to prove that an expression with one hun-
dred sums of Odds and Evens ends correspondingly to the corresponding expression
of one hundred products of Minuses and Pluses, she will probably compute some
shorter expresions and then she will use (as we sometimes do when teaching) the
non-rigorous expression “and so on”. Now, it is true that the higher level of formal-
ism provided by isomorphisms would give her a tool to extend this observation and
to be more fully aware of its meaning; but, in my opinion, the clever observation
of the child remains solid even in its näıf form.

Another point of interest is the following: was Beltrami convinced that the
pseudosphere had to the non-Euclidean plane the same relation that Cartesian co-
ordinates have to the Euclidean one? That is, as I was saying above: if a question
in non-Euclidean geometry is answered doing analytic calculations on the pseudo-
sphere, was Beltrami certain that the answer was the correct one in non-Euclidean
geometry as well? In the Saggio, there seems to be some hesitation on this point.
In fact, Beltrami proves a number of knowm results in non-Euclidean geometry, to
conclude (p.387 ): The preceeding results seem to us to fully show the correspon-
dence between non-Euclidean planimetry and pseudospherical geometry. But he is
not yet satisfied, and goes on: To verify the same thing from a differen viewpoint,
we also want to directly establish, by our analysis, the theorem about the sum of
the three angles of a triangle. These passages, hesitan as they are, seem to show
that Beltrami was personally convinced, but that, like the child of the metaphor,
he did not have the language to write it down convincingly. Beltrami certainly
knew that the pseudosphere and the non-Euclidean plane are isometric (he intro-
duced the coordinates u, v in non-Euclidean plane in place of Cartesian coordinates,
and using known metric properties of non-Euclidean triangles the isometry follows
rather easily) Then, all geometric quantities (angles, areas, lengths) which can be
expressed in terms of distances correspond. For carrying out this program in all
details, however, the mathematical technology available at the time was probaby

10 A similar remark is in Teoria, p. 427.
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not sufficient (defining the area of a generic figure through distance alone, for in-
stance, requires concepts like Hausdorff measure, which were developed only much
later). Notwithstanding, Beltrami seemed rather confident that he could answer
one by one all possible problems in non-Euclidean geometry by his model, even if
he did not have a general logical recipe to do so, but rather a method.

4. From the boundary to the interior: an example from signal
processing

In this section, I would like to give the reader a hint of what it means that, in
Beltrami’s models, the non-Eucean space can be usefully thought of as the “filling”
of the Euclidean space. I make no attempt to trace the history of this idea, which
is probably rather old. In the context of complex analysis, an idea with this flavor
it was first formalized by Georg Pick [24] (I have learned the details of this story
from a nice article by Robert Osserman [23]) by noting that the classical Schwarz
Lemma could be interpreted as saying that holomorphic functions from the unit disc
D in the complex plane to itself, decrease hyperbolic distance. Let me remind the
reader that Schwarz Lemma states that if f : D → D is holomorphic and f(0) = 0,
then |f(0)| ≤ |z| in D; equality occurring for some z 6= 0 if and only if for some λ
with |λ| = 1 one has f(z) = λz holds for all z in D. Changing variables by means
of a fractional tranformation of the unit disc, Pick showed that, if f : D → D is
holomorphic, then 2|df(z)|

(1−|f(z)|2) ≤
2|dz|

(1−|z|2) = ds, but ds is the length element in the
Riemann-Beltrami-Poincaré model (corresponding to curvature K = −1), proving
the remark. Lars Valerian Ahlfors [1] extended this observation to holomorphic
maps from D to Riemann surfaces S having curvature K ≤ −1. Bounded holo-
morphic functions can be reconstructed from their boundary values by means of an
integral reproducing formula, which is obviously invariant under rotations of D: it
was not a priori obvious that the underlying geometry was much richer. (tthe first
step in this direction had been taken by Poincaré in [25]).

It would be interesting, I think, knowing more about the history of how non-
Euclidean (hyperbolic) geometry came to be recognized as the geometry underlying
classes of objects arising in a Euclidean or spherical setting. Here, instead, I offer a
small sample of this relation, showing how non-Euclidean geometry naturally arises
from the problem of “looking at a signal at a given scale”. What I am going to
say is not at all original, perhaps except for the order in which the argument is
presented.

Suppose we want to analyze signals which can be modeled as functions in
L∞(R)∪L1(R) (Lebesgue spaces with respect to the Lebesgue measure in R; where
R could be thought of as time). Suppose that we have a device T = {Tt t > 0}
which looks at the signal at the scale t for each t > 0; i.e., dropping in an orderly
fashion the information at smaller scales, while keeping information at larger scales.
Here a short list of reasonable (not all independent) desiderata for the device.

(L) Linearity. Tt(af + bg) = aTtf + bTtg.
(T) Translation invariance. If

τaf(x) = f(x− a),

is (forward) translation in time, then

(23) τa ◦ Tt = Tt ◦ τa.
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The obvious meaning of the requirement is that the device acts uniformly
in time.

(D) Dilations. Let
δλf(x) = λ−1f(λ−1x)

be a dilation in time by a factor λ > 0 (normalized to keep invariant the
L1(R)-norm of the signal). Then,

(24) Tt ◦ δλ = δλ ◦ Tt/λ.
The meaning is: dilating a signal by λ an then looking it at the scale t > 0
is the same as looking at it at the scale t/λ, then dilating it by λ: in both
cases we loose the detail .

(S) Stability. We want the device T to give an output which can be put in
the same device. For instance,

‖Ttf‖Lp ≤ C(t)‖f‖Lp ,
for all p ∈ [1,∞].

(C) Continuity. As t goes 0, Ttf should be “close” to f . For instance,

lim
t→0+

Ttf = f in Lp(R), 1 ≤ p <∞, and in C0(R),

where C0(R) is the space of the continuous functions vanising at infinity.
(SG) Semigroup. Looking at the signal at the scale s, then at the scale t, we

loose all detail at scale t, then s. It is reasonable that, overall, we have lost
details at scale t+ s:

Tt ◦ Ts = Ts+t

(P) Positivity. f ≥ 0 =⇒ Ttf ≥ 0.
None of the requirements is arbitray, but we can indeed think of useful devices
which do not satisfy some of them.

It is easy to see that (L), (T), (D), (S), (C), (SG), (P) are satisfied by the
operators Tt = Pt, f 7→ Ptf , where

(25) Ptf(x) =
∫ +∞

−∞

1
π

t

y2 + t2
f(x− y)dy,

which is the Poisson integral of f . Using elementary arguments involving Fourier
tranforms, it can also be shown that such operators are essentially the only ones
satisfying all the requirements. More precisely, either Ttf = f for all t > 0 (but
this way we would not loose any detail!), or there is some k > 0 such that Tt = Pkt.

We now look at all of the scaled versions of a signal together:

u(x, t) = Ptf(x),

where u : H+
2 = R × [0,+∞) → R. It is easy to see that u is harmonic on H+

2 ,
∂xxu + ∂ttu = 0; but we ll not use this fact. We ask, now, how much can the
(scaled) signal change with respect to x or t. We consider a positive signal f ≥ 0.
The answer, we will see, can be interpreted in terms of non-Euclidean geometry.

Theorem 1. Harnack’s inequality. Let u(x, t) = Ptf(x), with f ≥ 0, f ∈ L1. If
(x, t), (x′, t′) ∈ R2

+ and

1/2 ≤ t′/t ≤ 2, |x− x′| ≤ max(t, t′),
then

u(x, t) ≤ Cu(x′, t′),
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where C is a universal constant.

The geometric meaning of Harnack’s inequality is this: u is essentially constant
(in multiplicative terms) on squares having the form

Q(x0, t0) = {(x, t) : |t− t0| ≤ t0/2, |x− x0| ≤ t0/2}.

It is immediate from (17), the expression of the non-Euclidean distance in the
Liouville-Beltrami model,

ds2 =
dx2 + dt2

t2

(with R = 1) that Q(t0, x0) is comparable with a disc having fixed hyperbolic ra-
dius; i.e. that there are positive constants c1 < c2 such that Dhyp((x0, t0), c1) ⊆
Q(x0, t0) ⊆ Dhyp((x0, t0), c2). As a consequence, if (x1, t1) and (X2, t2) lie a hyper-
bolic distance d apart, then u(x2, t2) ≤ Cdu(x1, t1). The usual proof of Harnack’s
inequality makes use of the harmonicity of u, which might be thought of as an
infinitesimal version of the mean value property on circles, which implies a Poisson
integral formula like (25), with discs contained in H+

2 instead of H+
2 itself. We have

preferred a different approach to show how the inequality directly follows for the
geometric requirements we have made.

Proof.

u(0, t) =
1
π

∫
R
f(y)

t

t2 + y2
dy

≈ 1
t

[∫
|y/t|≤1

f(y)dy +
∞∑
n=1

1
1 + 22n

∫
2n−1≤|y/t|≤2n

f(y)dy

]
≈ u(0, 2t).

For the next calculation, consider that, if |x/t| ≤ 1 e 2n−1 ≤ |(x− y)/t| ≤ 2n, then

(2n − 1)t ≤ |x− y| − |x| ≤ |y| ≤ |x− y|+ |x| ≤ (2n + 1)t.

u(x, t) ≈ 1
t

[∫
|(x−y)/t|≤1

f(y)dy +
∞∑
n=1

1
1 + 22n

∫
2n−1≤|(x−y)/t|≤2n

f(y)dy

]

.
1
t

[∫
|y/t|≤1

f(y)dy +
∞∑
n=1

1
1 + 22n

∫
2n−1≤|y/t|≤2n

f(y)dy

]
≈ u(0, t).

�

In order to better understand Harnack’s inequality and its proof, divide H+
2 in

dyadic squares:

Qn,j = {(x, t) :
1

2n+1
≤ t < 1

2n
,
j − 1

2n
≤ x ≤ 1

2n+1
}.

The inequality implies that u changes by at most a multiplicative constant when
we move from a square Q = Qn,j to a square Q′ = Qn′,j′ such that Q∩Q′ 6= ∅. Let
Q be the set of the dyadic squares and define a graph structure G on Q by saying
that there is an edge of the graph between the squares Q1 and Q2 if Q∩Q′ 6= ∅. We
can define a distance dG on the graph G by saying that dG(Q1, Q2) is the minimum
number of edges of the graph G one has to cross while going from Q1 to Q2. Let
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d be non-Euclidean distance (in the Liouville-Beltrami model). It is clear that, if
(xj , tj) lis in Qj , j = 1, 2, then

(26) d((x1, t1), (Q1, Q2)) + 1 ≈ dG(Q1, Q2) + 1 :

the graph and the hyperbolic distance are, in the large, comparable. This is the
main reason why Cannon et al ([14]) call the dyadic decomposition of the upper
half space the Fifth model of non-Euclidean (hyperbolic) geometry, after the three
models by Beltrami and the “Fourth“, commonly used model living in Minkovsky
space. In the language of the metric dG, Harnack’s inequality reads as

(27) | log u(x1, t1)− log u(x2, t2)| ≤ C ′dG(Q1, Q2) +K ′.

for some constants C ′ and K ′. More precisely, it could be proved that there is a
universal constant K > 0 such that

(28) | log u(x1, t1)− log u(x2, t2)| ≤ Kd((x1, t1), (x2, t2)).

and that, for given (x1, t1), (x2, t2), the constant on the right of (28) is best possible
for Harnak’s inequality. The proof is in the books and xploits the harmonicity of
u and a version of the Poisson integral on circles. Also, Harnack’s inequality hold
as well for positive harmonic functions u, which do not arise as Poisson integrals
of positive, integrable functions on the real line. Both (28) and (27) can be read
as Lipschitz conditions for | log u| in terms of the discretized, or of the continuous
hyperbolic distance.

The example above reflects the modern view that “geometry” has not to be
related to “real space”. Such view was endorsed by Riemann, but it found a coherent
and rather complete logical and mathematical framework only much later, with
the work of Peano and Hilbert on the axiomatization of mathematical theories.
Although Beltrami seems to have felt safer on the old ground of reality, his models
are nonetheless an essential step in the direction of the contemporary, freer way to
think and use geometry.
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de l’É.N.S. Ire série 6 (1869), 347-375-288.



BELTRAMI’S MODELS OF NON-EUCLIDEAN GEOMETRY 25

[7] , Osservazione sulla nota del prof. L. Schlaefli alla memoria del sig. Bel-
trami “Sugli spazi di curvatura costante”., Ann. Mat. Pura Appl. V (Unknown
Month 1871), 194-198.

[8] , Teorema di geometria pseudosferica., Giorn. Mat. X (1872), 53.
[9] , Sulla superficie di rotazione che serve di tipo alle superficie pseudos-

feriche., Giorn. Mat. X (1872), 147-159.
[10] , Un precursore italiano di Legendre e di Lobatschewsky., Rendiconti

della R. Accad. dei Lincei V (1889), no. I semestre, 441-448.
[11] Roberto Bonola, La geometria non-euclidea, Zanichelli, Bologna, 1906.
[12] Carl B. Boyer, The History of the Calculus and Its Conceptual Development,

Dover Publications, Inc., New York, 1959.
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