BILINEAR FORMS ON THE DIRICHLET SPACE

1. Introduction

For $1<r<\infty$, let $d A_{r}(z):=\left(1-|z|^{2}\right)^{r-2} d A(z)$. The Dirichlet space \mathcal{D}_{r} is the collection of functions that are analytic on the unit disc \mathbb{D} such that the following norm is finite,

$$
\|f\|_{\mathcal{D}_{r}}^{r}:=|f(0)|^{r}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{r} d A_{r}(z)
$$

For $s>-1$ we define two different linear operators that will act on the space $L^{p}\left(\mathbb{D} ; d A_{p}\right)$. We first have

$$
\mathbb{P}_{s}(f)(z):=c_{s} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{s}}{(1-z \bar{w})^{2+s}} f(w) d A(w)
$$

We will also need a variant of this operator, but where we taken the absolute value of the kernel. We set

$$
\mathfrak{P}_{s}(f)(z):=c_{s} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{s}}{|1-z \bar{w}|^{2+s}} f(w) d A(w)
$$

It is well known that for $s>-1$ these operators are bounded on $L^{p}\left(\mathbb{D} ; d A_{p}\right)$.
Now define a bilinear form T_{b} on the space of polynomials \mathcal{P} on the disk by

$$
T_{b}(f, g) \equiv\langle f g, b\rangle_{\mathcal{D}_{2}}, \quad f, g \in \mathcal{P}
$$

where $\langle\cdot, \cdot\rangle_{\mathcal{D}_{2}}$ is the inner product for the Dirichlet space $\mathcal{D}=\mathcal{D}_{2}$ given by

$$
\langle f, g\rangle_{\mathcal{D}}=f(0) \overline{g(0)}+\int_{\mathbb{D}} f^{\prime}(z) \overline{g^{\prime}(z)} d A(z)
$$

We can no longer assert that the norm $\left\|H_{b}\right\|_{\mathcal{D}}$ of the Hankel operator H_{b} from \mathcal{D} to \mathcal{D}_{-}is the same as the norm $\left\|T_{b}\right\|_{\mathcal{D}}$ of the bilinear form T_{b} on $\mathcal{D}_{p} \times \mathcal{D}_{q}$, since the inner product for the Dirichlet space involves derivatives. For a positive measure μ on the disk, let $\|\mu\|_{\mathcal{D} \text {-Carleson }}$ be the (possibly infinite) norm of the inclusion $\mathcal{P} \subset L^{2}(\mu)$ with inner product $\langle\cdot, \cdot\rangle_{\mathcal{D}}$ on \mathcal{P}. It is shown in Rochberg and $\mathrm{Wu}[6]$ that $\left\|H_{b}\right\|_{\mathcal{D}} \approx|b(0)|+\left\|\mu_{b}\right\|_{\mathcal{D}-\text { Carleson }}$. Here we show the same for T_{b}.

Theorem 1. Let b be holomorphic on the unit disc \mathbb{D}. Then T_{b} extends to a bounded bilinear form on $\mathcal{D}_{p} \times \mathcal{D}_{q}$ if and only if for $r=p, q$ the measure $d \mu_{b, r}(z) \equiv$ $\left|b^{\prime}(z)\right|^{r} d A_{r}(z)$ is a Carleson measure for the Dirichlet space \mathcal{D}_{r}. Moreover,

$$
\left\|T_{b}\right\| \approx|b(0)|+\left\|\mu_{b, p}\right\|_{\mathcal{D}_{p}-\text { Carleson }}+\left\|\mu_{b, q}\right\|_{\mathcal{D}_{q}-\text { Carleson }} .
$$

2. Proof of the theorem

Suppose first that for $r=p, q, \mu_{b, r}$ is a \mathcal{D}_{r}-Carleson measure. For $f, g \in \mathcal{P}$ we have

$$
\begin{aligned}
\left|T_{b}(f, g)\right|= & \left|f(0) g(0) \overline{b(0)}+\int_{\mathbb{D}}\left(f^{\prime}(z) g(z)+f(z) g^{\prime}(z)\right) \overline{b^{\prime}(z)} d A(z)\right| \\
\leq & |f(0) g(0) b(0)|+\int_{\mathbb{D}}\left|f^{\prime}(z) g(z) b^{\prime}(z)\right| d A(z)+\int_{\mathbb{D}}\left|f(z) g^{\prime}(z) b^{\prime}(z)\right| d A(z) \\
\leq & |f(0) g(0) b(0)|+\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p} d A_{p}(z)\right)^{\frac{1}{p}}\left(\int_{\mathbb{D}}|g(z)|^{q} d \mu_{b, q}(z)\right)^{\frac{1}{q}} \\
& +\left(\int_{\mathbb{D}}\left|g^{\prime}(z)\right|^{q} d A_{q}(z)\right)^{\frac{1}{q}}\left(\int_{\mathbb{D}}|f(z)|^{p} d \mu_{b, p}(z)\right)^{\frac{1}{p}} \\
\leq & C\left(|b(0)|+\left\|\mu_{b, p}\right\|_{\mathcal{D}_{p}-\text { Carleson }}+\left\|\mu_{b, q}\right\|_{\mathcal{D}_{q}-\text { Carleson }}\right)\|f\|_{\mathcal{D}_{p}}\|g\|_{\mathcal{D}_{q}} .
\end{aligned}
$$

Thus T_{b} has a bounded extension to $\mathcal{D}_{p} \times \mathcal{D}_{q}$ with

$$
\left\|T_{b}\right\| \leq C\left(|b(0)|+\left\|\mu_{b, p}\right\|_{\mathcal{D}_{p}-\text { Carleson }}+\left\|\mu_{b, q}\right\|_{\mathcal{D}_{q}-\text { Carleson }}\right)
$$

Conversely, suppose that T_{b} extends to a bounded bilinear form on $\mathcal{D}_{p} \times \mathcal{D}_{q}$. Then with $g=1$ we obtain

$$
\left|\langle f, b\rangle_{\mathcal{D}}\right|=\left|T_{b}(f, 1)\right| \leq\left\|T_{b}\right\|\|f\|_{\mathcal{D}_{p}}\|1\|_{\mathcal{D}_{q}}
$$

for all polynomials $f \in \mathcal{P}$, which shows that $b \in \mathcal{D}_{q}$ and

$$
\begin{equation*}
\|b\|_{\mathcal{D}_{q}} \leq C\left\|T_{b}\right\| \tag{2.1}
\end{equation*}
$$

Repeating this argument, but interchanging the roles of p and q, we also see that,

$$
\begin{equation*}
\|b\|_{\mathcal{D}_{p}} \leq C\left\|T_{b}\right\| \tag{2.2}
\end{equation*}
$$

Also, note that letting $f=g=1$ we see that

$$
\begin{equation*}
|b(0)| \leq\left\|T_{b}\right\| \tag{2.3}
\end{equation*}
$$

We next observe that is suffices to prove only one of the measures is Carleson for the appropriate space. Suppose that we have shown $\left\|\mu_{b, p}\right\|_{\mathcal{D}_{p}-\text { Carleson }} \lesssim\left\|T_{b}\right\|$. Then, it is easy to see that the bilinear form $F_{b}: \mathcal{D}_{p} \times \mathcal{D}_{q} \rightarrow \mathbb{C}$ given by
$F_{b}(f, g):=T_{b}(f, g)-\int_{\mathbb{D}} \overline{b^{\prime}(z)} f(z) g^{\prime}(z) d A(z)-\overline{b(0)} f(0) g(0)=\int_{\mathbb{D}} \overline{b^{\prime}(z)} f^{\prime}(z) g(z) d A(z)$
is also bounded with norm controlled by

$$
\begin{aligned}
\left\|F_{b}\right\| & \leq 2\left\|T_{b}\right\|+\left\|\mu_{b, p}\right\|_{\mathcal{D}_{p}-\text { Carleson }} \\
& \lesssim\left\|T_{b}\right\|
\end{aligned}
$$

with the last line following from the supposition that we already knew the estimate for the norm of the \mathcal{D}_{p}-Carleson measure $\mu_{b, p}$ was controlled by $\left\|T_{b}\right\|$. But, it is also easy to see that

$$
\left\|F_{b}\right\| \approx\left\|\mu_{b, q}\right\|_{\mathcal{D}_{q}-\text { Carleson }}
$$

and so we can conclude that $\left\|\mu_{b, q}\right\|_{\mathcal{D}_{q}-\text { Carleson }} \lesssim\left\|T_{b}\right\|$. Thus, it suffices to show that one of the measures $\mu_{b, q}$ or $\mu_{b, p}$ is Carleson for the appropriate space with

Carleson measure controlled by $\left\|T_{b}\right\|$, the other follows from the above argument. Additionally, because of this, we can suppose that $p<2<q$, and we only need to show that $\mu_{b, q}$ is \mathcal{D}_{q}-Carleson.
2.1. Sketch of Proof. Let $\left\{I_{j}\right\}$ be a finite collection of disjoint intervals in \mathbb{T} and let $\cup_{j} T\left(I_{j}\right)$ denote the Carleson tents in \mathbb{D}. We will chose the collection of intervals $\left\{I_{j}\right\}$ later to extremize a capacity problem.

Set $\beta_{q}(z):=\left|b^{\prime}(z)\right|^{q-2}\left(1-|z|^{2}\right)^{q-2}$. Define the following function

$$
f_{q}(z):=\int_{\mathbb{D}} \frac{\left(1-|\xi|^{2}\right)^{s}}{\bar{\xi}(1-\bar{\xi} z)^{1+s}} b^{\prime}(\xi) \beta_{q}(\xi) \chi_{\cup_{j} T\left(I_{j}\right)}(\xi) d A(\xi)
$$

Then $f_{q} \in \mathcal{D}_{p}$ since one can show that $|f(0)| \lesssim\left\|T_{b}\right\|^{q-1}$ and

$$
\left(\int_{\mathbb{D}}\left|f_{q}^{\prime}(z)\right|^{p} d A_{p}(z)\right)^{1 / p} \lesssim\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q} d A_{q}(z)\right)^{1 / p} \leq\left\|T_{b}\right\|^{q-1}
$$

so $\left\|f_{q}\right\|_{\mathcal{D}_{p}} \lesssim\left\|T_{b}\right\|^{q-1}<\infty$. Also, observe that for $G=\cup_{j} T\left(I_{j}\right)$ and \widetilde{G} denoting an "enlargement" of the set G (done in such a way that $\operatorname{cap}_{q} \widetilde{G} \approx \operatorname{cap}_{q} G$) we have

$$
\begin{aligned}
f_{q}^{\prime}(z)= & \mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z) \\
= & b^{\prime}(z) \beta_{q}(z) \chi_{G)}(z)+\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z)-b^{\prime}(z) \beta_{q}(z) \chi_{G}(z) \\
= & b^{\prime}(z) \beta_{q}(z) \chi_{G}(z)+\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z)-\mathbb{P}_{s}\left(b^{\prime}\right)(z) \beta_{q}(z) \chi_{G)}(z) \\
= & b^{\prime}(z) \beta_{q}(z) \chi_{G}(z)+\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z) \chi_{\widetilde{G}}(z)+\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z) \chi_{\widetilde{G}^{c}}(z) \\
& -\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) \beta_{q}(z) \chi_{G}(z)-\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}^{c}}\right)(z) \beta_{q}(z) \chi_{G}(z) \\
= & b^{\prime}(z) \beta_{q}(z) \chi_{G}(z)+\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z) \chi_{\widetilde{G}^{c}}(z)-\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}^{c}}\right)(z) \beta_{q}(z) \chi_{G}(z) \\
& -\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{\widetilde{G} \backslash G}\right)(z) \chi_{\widetilde{G}}(z)+\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) \beta_{q}(z) \chi_{\widetilde{G} \backslash G}(z)+\left[\mathbb{P}_{s}, \beta_{q}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right) \chi_{\widetilde{G}}(z) \\
:= & b^{\prime}(z) \beta_{q}(z) \chi_{G}(z)+E_{q}\left(b^{\prime}\right)(z) .
\end{aligned}
$$

Thus, $f_{q}^{\prime}(z)$ is $b^{\prime}(z) \beta_{q}(z)$ localized to the set $\cup_{j} T\left(I_{j}\right)$, up to an error given by a sum of commutator type terms. Adding and subtracting common terms one can see that the commutator term can be decomposed into parts localized to the set $\cup_{j} T\left(I_{j}\right)$ and its complement. Namely,

$$
\begin{aligned}
E_{q}\left(b^{\prime}\right)(z)= & \mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z) \chi_{\widetilde{G}^{c}}(z)-\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}^{c}}\right)(z) \beta_{q}(z) \chi_{G}(z) \\
& -\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{\widetilde{G} \backslash G}\right)(z) \chi_{\widetilde{G}}(z)+\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) \beta_{q}(z) \chi_{\widetilde{G} \backslash G}(z) \\
& +\left[\mathbb{P}_{s}, \beta_{q}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right) \chi_{\widetilde{G}}(z)
\end{aligned}
$$

Note that when $q=2$ the last commutator above vanishes since $\beta_{2}(z) \equiv 1$.
Let φ be an extremal for the capacity of the set of intervals. We use the dyadic tree on the unit disc to construct this function. We then set $g:=\varphi^{2}$. If we substitute these functions into the bilinear form T_{b}, we find

$$
\begin{aligned}
T_{b}\left(f_{q}, g\right)= & \overline{b(0)} f(0) g(0)+\int_{\mathbb{D}} \overline{b^{\prime}(z)}\left(f_{q}(z) g^{\prime}(z)+f_{q}^{\prime}(z) g(z)\right) d A(z) \\
= & \overline{b(0)} f(0) g(0)+\int_{\mathbb{D}} \overline{b^{\prime}(z)} b^{\prime}(z) \beta_{q}(z) \chi_{\cup_{j} T\left(I_{j}\right)}(z) g(z) d A(z) \\
& +\int_{\mathbb{D}} \overline{b^{\prime}(z)} E_{q}\left(b^{\prime}\right)(z) g(z) d A(z)+\int_{\mathbb{D}} \overline{b^{\prime}(z)} f_{q}(z) g^{\prime}(z) d A(z) \\
= & (1)+(2)+(3)+(4)
\end{aligned}
$$

We need to estimate each of the terms (1), (2), (3), (4), and $\left|T_{b}\left(f_{q}, g\right)\right|$. We will prove either these terms can be estimated by $\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)$ or

$$
\epsilon \mu_{b, q}\left(\cup_{j} T\left(I_{j}\right)\right)+C(\epsilon)\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right)
$$

where $\epsilon>0$ is a small number that can be chosen at the end.
With these estimates, we conclude the proof as follows. First, observe that

$$
\begin{aligned}
\mu_{b, q}\left(\cup_{j=1}^{N} T\left(I_{j}\right)\right) & =(2)-C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right) \\
& =T_{b}\left(f_{q}, g\right)-(1)-(3)-(4)-C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right) .
\end{aligned}
$$

Then, taking absolute values and using the estimates we claim, we see that

$$
\begin{aligned}
\mu_{b, q}\left(\cup_{j=1}^{N} T\left(I_{j}\right)\right) & \leq\left|T_{b}\left(f_{q}, g\right)\right|+|(1)|+|(3)|+|(4)|+C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right) \\
& \leq \epsilon C \mu_{b, q}\left(\cup_{j=1}^{N} T\left(I_{j}\right)\right)+C(\epsilon)\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right)
\end{aligned}
$$

Choosing ϵ sufficiently small, we see

$$
\mu_{b, q}\left(\cup_{j=1}^{N} T\left(I_{j}\right)\right) \lesssim\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right)
$$

and so $\mu_{b, q}$ is a \mathcal{D}_{q}-Carleson measure. This would then prove the Theorem.
2.2. Term (1): Notice that term (1) is trivial. We have that $|b(0)| \leq\left\|T_{b}\right\|,|f(0)| \lesssim$ $\left\|T_{b}\right\|^{q-1}$ and $|g(0)| \lesssim \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right)$, so

$$
|(1)| \lesssim\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right) .
$$

2.3. Term (2): Next, note that term (2) is also easy to handle. By the definition of $\beta_{q}(z)$ we have

$$
(2)=\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2} \chi_{\cup_{j} T\left(I_{j}\right)}(z) g(z) d A(z)
$$

But, by construction we have that $g(z)=1+C \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right)$ on the set $\cup_{j} T\left(I_{j}\right)$, and so we have

$$
\begin{aligned}
(2) & =\mu_{b, q}\left(\cup_{j} T\left(I_{j}\right)\right)+C \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right) \int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q} d A_{q}(z) \\
& =\mu_{b, q}\left(\cup_{j} T\left(I_{j}\right)\right)+C\|b\|_{\mathcal{D}_{q}}^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right) \\
& =\mu_{b, q}\left(\cup_{j} T\left(I_{j}\right)\right)+O\left(\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right)\right),
\end{aligned}
$$

which is the estimate that we seek.
2.4. Term (3): Recall that we are letting $G=\cup_{j=1}^{N} I_{j}$ and \widetilde{G} is denoting an enlargement of the set G done in such a way so that the $\operatorname{cap}_{q}(\widetilde{G}) \approx \operatorname{cap}_{q}(G)$. Using the decomposition of $E_{q}\left(b^{\prime}\right)$ we see that term (3) decomposes as

$$
\begin{aligned}
(3) & =\int_{\mathbb{D}} \overline{b^{\prime}(z)} E_{q}\left(b^{\prime}\right)(z) g(z) d A(z) \\
& =\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z) \chi_{\widetilde{G}^{c}}(z) g(z) d A(z) \\
& -\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}^{c}}\right)(z) \beta_{q}(z) \chi_{G}(z) g(z) d A(z) \\
& -\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{\widetilde{G} \backslash G}\right)(z) \chi_{\widetilde{G}}(z) g(z) d A(z) \\
& +\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) \beta_{q}(z) \chi_{\widetilde{G} \backslash G}(z) g(z) d A(z) \\
& +\int_{\mathbb{D}} \overline{b^{\prime}(z)}\left[\mathbb{P}_{s}, \beta_{q}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right) \chi_{\widetilde{G}}(z) g(z) d A(z) \\
& :=\left(3_{A}\right)+\left(3_{B}\right)+\left(3_{C}\right)+\left(3_{D}\right)+\left(3_{E}\right) .
\end{aligned}
$$

We handle each of these terms separately.
2.4.1. The Term $\left(3_{A}\right)$: This is the easiest of the terms in (3). Note that by Hölder's inequality we arrive at

$$
\begin{aligned}
\left|\left(3_{A}\right)\right| & :=\left|\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z) g(z) \chi_{\widetilde{G}^{c}}(z) d A(z)\right| \\
& \leq \int_{\widetilde{G}^{c}}\left|b^{\prime}(z)\right||g(z)|\left|\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z)\right| d A(z) \\
& \leq\left(\int_{\widetilde{G}^{c}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left|\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{G}\right)(z)\right|^{p} d A_{p}(z)\right)^{1 / p} \\
& \lesssim\|b\|_{\mathcal{D}_{q}}^{1+\frac{q}{p}} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right) \\
& \lesssim\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j=1}^{N} I_{j}\right)
\end{aligned}
$$

With the second to last line following from the fact that for $z \in \widetilde{G}^{c}$ we have $|g(z)| \lesssim \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)$. We also used the fact that \mathbb{P}_{s} is a bounded operator and similar computations to demonstrate that $f_{q} \in \mathcal{D}_{p}$.
2.4.2. The Term $\left(3_{B}\right)$: We need an estimate of

$$
\left(3_{B}\right):=\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}^{c}}\right)(z) \beta_{q}(z) g(z) \chi_{G}(z) d A(z)
$$

We first observe that, using the inequality $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$, we find

$$
\begin{aligned}
\left|\left(3_{B}\right)\right| \leq & \int_{\mathbb{D}}\left|\overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}^{c}}\right)(z) \beta_{q}(z) g(z)\right| \chi_{G}(z) d A(z) \\
\leq & \epsilon \int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{p} \beta_{q}(z)^{p} \chi_{G}(z) d A_{p}(z) \\
& +C(\epsilon) \int_{\mathbb{D}}\left|\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}^{c}}\right)(z)\right|^{q}|g(z)|^{q} \chi_{G}(z) d A_{q}(z) \\
\leq & \epsilon \mu_{b, q}\left(\cup_{j} T\left(I_{j}\right)\right)+C(\epsilon) \int_{\mathbb{D}} \mathfrak{P}_{s}\left(\left|b^{\prime}\right| \chi_{\widetilde{G}^{c}}\right)(z)^{q}|g(z)|^{q} \chi_{G}(z) d A_{q}(z)
\end{aligned}
$$

The functions $\mathfrak{P}_{s}\left(\left|b^{\prime}\right| \chi_{\widetilde{G}^{c}}\right)$ and $|g| \chi_{G}$ in the last integral have "disjoint" supports. Using this observation and a Schur-type argument, we claim the last integral is controlled by $C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)$. With this estimate, term $\left(3_{B}\right)$ is then controlled by

$$
\left|\left(3_{B}\right)\right| \leq \epsilon \mu_{b, q}\left(\cup_{j} T\left(I_{j}\right)\right)+C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)
$$

which is what we needed to show.
2.4.3. The Term $\left(3_{C}\right)$: We next need to handle the following term:

$$
\left(3_{C}\right):=\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{\widetilde{G} \backslash G}\right)(z) \chi_{\widetilde{G}}(z) g(z) d A(z)
$$

Using Hölder's Inequality we find that

$$
\begin{aligned}
\left|\left(3_{C}\right)\right| & \leq\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left|\mathbb{P}_{s}\left(b^{\prime} \beta_{q} \chi_{\widetilde{G} \backslash G}\right)(z)\right|^{p} d A_{p}(z)\right)^{1 / p} \\
& \lesssim\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left|b^{\prime}(z) \beta_{q}(z) \chi_{\widetilde{G} \backslash G}(z)\right|^{p} d A_{p}(z)\right)^{1 / p} \\
& =\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} d A_{q}(z)\right)^{1 / q}\left(\mu_{b, q}(\widetilde{G} \backslash G)\right)^{1 / p}
\end{aligned}
$$

We can arrange the enlargement \widetilde{G} so that we additionally have the property

$$
\mu_{b, q}(\widetilde{G} \backslash G) \leq \epsilon \mu_{b, q}(G)
$$

Also, using the arguments related to term (4) we have that

$$
\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} d A_{q}(z) \leq \epsilon\left(\mu_{b, q}\left(\cup_{j} I_{j}\right)+C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)\right)
$$

Using these estimates and the inequality that $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$, we have

$$
\left|\left(3_{C}\right)\right| \leq C \epsilon \mu_{b, q}\left(\cup_{j} I_{j}\right)+C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)
$$

which is the estimate that we seek.
2.4.4. The Term $\left(3_{D}\right)$: We now handle the term

$$
\left(3_{D}\right):=\int_{\mathbb{D}} \overline{b^{\prime}(z)} \mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) \beta_{q}(z) \chi_{\widetilde{G} \backslash G}(z) g(z) d A(z)
$$

This is one of the easier that we have to estimate. Using Hölder's Inequality we see that

$$
\begin{aligned}
\left|\left(3_{D}\right)\right| & \leq\left(\int_{\widetilde{G} \backslash G}\left|b^{\prime}(z) \beta_{q}(z)\right|^{p} d A_{p}(z)\right)^{1 / p}\left(\int_{\mathbb{D}}\left|\mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}}\right)(z)\right|^{q} \chi_{\widetilde{G} \backslash G}(z) d A_{q}(z)\right)^{1 / q} \\
& \lesssim\left(\epsilon \mu_{b, q}(G)\right)^{1 / p}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q} \chi_{\widetilde{G}}(z) d A_{q}(z)\right)^{1 / q} \\
& \leq\left(\epsilon \mu_{b, q}(G)\right)^{1 / p}\left((1+\epsilon) \mu_{b, q}(G)\right)^{1 / q}=\epsilon^{1 / p}(1+\epsilon)^{1 / q} \mu_{b, q}(G)
\end{aligned}
$$

But, this is an acceptable term since for ϵ chosen sufficiently small, we can hide this term back on the left hand side of the main estimate.
2.4.5. The Term $\left(3_{E}\right)$: Here we consider the term which vanishes when $q=2$:

$$
\begin{equation*}
\left(3_{E}\right) \equiv \int_{\mathbb{D}} \overline{b^{\prime}(z)}\left[\mathbb{P}_{s}, \beta_{q}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) g(z) \chi_{\widetilde{G}}(z) d A(z) \tag{2.4}
\end{equation*}
$$

We wish to obtain an estimate for the commutator $\left[\mathbb{P}_{s}, \beta_{q}\right]$ that is better than the estimates for the operators $\mathbb{P}_{s} \beta_{q}$ and $\beta_{q} \mathbb{P}_{s}$ individually. Computing, we see

$$
\begin{aligned}
\overline{b^{\prime}(z)} \chi_{\widetilde{G}}(z)\left[\mathbb{P}_{s}, \beta_{q}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) & =\left(\mathbb{P}_{s}\left(\beta_{q}\left(b^{\prime} \chi_{\widetilde{G}}\right)\right)(z)-\beta_{q}(z) \mathbb{P}_{s}\left(b^{\prime} \chi_{\widetilde{G}}\right)(z)\right) \overline{b^{\prime}(z)} \chi_{\widetilde{G}}(z) \\
& =c_{s} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{s}}{(1-z \bar{w})^{s+2}}\left\{\beta_{q}(w)-\beta_{q}(z)\right\} b^{\prime}(w) \overline{b^{\prime}(z)} \chi_{\widetilde{G}}(w) d A(w) \chi_{\widetilde{G}}(z) \\
& =\left[\mathbb{P}_{s}, \beta_{q} \overline{b^{\prime}}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right)(z) \chi_{\widetilde{G}}(z)+\left[\mathbb{P}_{s}, \overline{b^{\prime}}\right]\left(\beta_{q} b^{\prime} \chi_{\widetilde{G}}\right)(z) \chi_{\widetilde{G}}(z)
\end{aligned}
$$

Key to the rest of the argument is the following Lemma. Define the following norm on functions (not necessarily analytic) by

$$
\|\gamma\|_{\mathfrak{B}}:=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)|\nabla \gamma(z)|
$$

Note that if γ is analytic then we have $\|\gamma\|_{\mathfrak{B}}=\|b\|_{\mathcal{B}}$, where $\mathcal{B}(\mathbb{D})$ is the Bloch space.

Lemma 1. For $1<p<\infty$ we have that

$$
\left[\mathbb{P}_{s}, \gamma\right]: L^{p}\left(\mathbb{D}, d A_{p}\right) \rightarrow L^{p}\left(\mathbb{D}, d A_{p}\right)
$$

with $\left\|\left[\mathbb{P}_{s}, \gamma\right]\right\|_{L^{p}\left(d A_{p}\right) \rightarrow L^{p}\left(d A_{p}\right)} \lesssim\|\gamma\|_{\mathfrak{B}}$.

Assume Lemma 1 for the moment. With this we can conclude the estimate of $\left(3_{E}\right)$. To do this, we proceed as follows.

$$
\begin{aligned}
\left|\left(3_{E}\right)\right| \leq & \int_{\mathbb{D}}|g(z)|\left|\left[\mathbb{P}_{s}, \beta_{q} \overline{b^{\prime}}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right)(z)\right| \chi_{\widetilde{G}}(z) d A(z)+\int_{\mathbb{D}}|g(z)|\left|\left[\mathbb{P}_{s}, \overline{b^{\prime}}\right]\left(\beta_{q} b^{\prime} \chi_{\widetilde{G}}\right)(z)\right| \chi_{\widetilde{G}}(z) d A(z) \\
\leq & \left(\int_{\mathbb{D}}|g(z)|^{q} d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left|\left[\mathbb{P}_{s}, \beta_{q} \overline{b^{\prime}}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right)(z)\right|^{p} d A_{p}(z)\right)^{1 / p} \\
& +\left(\int_{\mathbb{D}}|g(z)|^{q} d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left|\left[\mathbb{P}_{s}, \overline{b^{\prime}}\right]\left(\beta_{q} b^{\prime} \chi_{\widetilde{G}}\right)(z)\right|^{p} d A_{p}(z)\right)^{1 / p} \\
\leq & C\|g\|_{\mathcal{D}_{q}}\left[\left\|\beta_{q} \overline{\bar{b}^{\prime}}\right\|_{\mathfrak{B}}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{p} \chi_{\widetilde{G}}(z) d A_{p}(z)\right)^{1 / p}+\left\|\overline{b^{\prime}}\right\|_{\mathfrak{B}}\left(\int_{\mathbb{D}}\left|\beta_{q}(z) b^{\prime}(z)\right|^{p} \chi_{\widetilde{G}}(z) d A_{p}(z)\right)^{1 / p}\right] \\
\leq & C \operatorname{cap}_{q}(G)\left[\|b\|_{\mathcal{B}}^{q-1}\|b\|_{\mathcal{D}_{p}}+\|b\|_{\mathcal{B}}\|b\|_{\mathcal{D}_{q}}^{q-1}\right] \\
\leq & C \operatorname{cap}_{q}(G)\left\|T_{b}\right\|^{q} .
\end{aligned}
$$

This is the estimate that we seek. In the course of the proof above, we used that $d A_{p}$ is a \mathcal{D}_{p}-Carleson measure. This follows from the observation that for any compact subset E of the boundary \mathbb{T} we have

$$
\int_{T(E)} d A_{p}(z) \lesssim \operatorname{cap}_{q}(E)
$$

which is the geometric characterization of the \mathcal{D}_{p}-Carleson measures.
We now wish to estimate the difference

$$
\beta_{q}(w)-\beta_{q}(z)=\left|\left(1-|w|^{2}\right) b^{\prime}(w)\right|^{q-2}-\left|\left(1-|z|^{2}\right) b^{\prime}(z)\right|^{q-2}
$$

and since $q>2$, we first consider the difference

$$
\left(1-|z|^{2}\right) b^{\prime}(z)-\left(1-|w|^{2}\right) b^{\prime}(w)=\mathfrak{D} b(z)-\mathfrak{D} b(w)
$$

where $\mathfrak{D} b(z)=\left(1-|z|^{2}\right) b^{\prime}(z)$ is the invariant derivative.
Let $\gamma(t)$ be the Bergman geodesic joining w to z, i.e. $\gamma:[0,1] \rightarrow \mathbb{D}$ with $\gamma(0)=w$ and $\gamma(1)=z$. Also, let $\beta(z, w)$ is the length between the points z and w measured in the Bergman or Poincare metric in the unit disk. Then the fundamental theorem of calculus and the chain rule give

$$
\begin{aligned}
\mathfrak{D} b(z)-\mathfrak{D} b(w) & =\int_{0}^{1} \frac{d}{d t} \mathfrak{D} b(\gamma(t)) d t \\
& =\int_{0}^{1} \nabla(\mathfrak{D} b)(\gamma(t)) \gamma^{\prime}(t) d t
\end{aligned}
$$

For a function $h: \mathbb{D} \rightarrow \mathbb{C}$ define

$$
Q_{h}(z):=\sup \left\{\frac{|w \nabla h(z)|}{\langle B(z) w, w\rangle^{1 / 2}}: w \in \mathbb{C} \backslash\{0\}\right\}
$$

Here $B(z)$ is the matrix that gives rise to the Bergman metric at the point z. Continuing from above we have the following, upon taking absolute values we find,

$$
\begin{aligned}
|\mathfrak{D} b(z)-\mathfrak{D} b(w)| & =\left|\int_{0}^{1} \nabla(\mathfrak{D} b)(\gamma(t)) \gamma^{\prime}(t) d t\right| \\
& \leq \int_{0}^{1}\left|\nabla(\mathfrak{D} b)(\gamma(t)) \gamma^{\prime}(t)\right| d t \\
& \leq \int_{0}^{1} Q_{\mathfrak{D} b}(\gamma(t))\left\langle B(\gamma(t)) \gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle^{1 / 2} d t \\
& \leq \beta(z, w) \sup _{\xi \in \mathbb{D}} Q_{\mathfrak{D} b}(\xi) .
\end{aligned}
$$

The last line we have used the definition of the length $\beta(z, w)$. Next, one observes that $Q_{h}(z)=|\mathfrak{D} h(z)|$. This follows from the proof of the equivalences of (a), (b) and (e) in Theorem 3.1 of [7] (one can note that the analyticity plays no role in these equivalences). With this observation, we have the following,

$$
|\mathfrak{D} b(z)-\mathfrak{D} b(w)| \leq \beta(z, w) \sup _{\xi \in \mathbb{D}}|\mathfrak{D}(\mathfrak{D} b)(\xi)| .
$$

Let \mathcal{B} denote the Bloch space on the unit disc \mathbb{D}. This is the set of all analytic functions on \mathbb{D} such that

$$
\|f\|_{\mathcal{B}}:=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|
$$

Using the standard definition of the Bloch space and the equivalent norm,

$$
\|f\|_{\mathcal{B}} \approx \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{N}\left|f^{(N)}(z)\right|
$$

one sees that

$$
\sup _{z \in \mathbb{D}}|\mathfrak{D}(\mathfrak{D} b)(z)| \lesssim\|b\|_{\mathcal{B}}
$$

Since $q>2$, and $\mathcal{D}_{q} \subset \mathcal{B}$ we then have the following estimate holding,

$$
\left|\beta_{q}(z)-\beta_{q}(w)\right| \lesssim \beta(z, w)\|b\|_{\mathcal{B}}^{q-2} \lesssim \beta(z, w)\|b\|_{\mathcal{D}_{q}}^{q-2}
$$

We now substitute this estimate into the definition of the commutator and find the following:

$$
\begin{aligned}
\left|\left[\mathbb{P}_{s}, \beta_{q}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right)(z)\right| & \leq c_{s}\|b\|_{\mathcal{D}_{q}}^{q-2} \int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{s}}{|1-z \bar{w}|^{s+2}}\left|b^{\prime}(w)\right| \chi_{\widetilde{G}}(w) \beta(z, w) d A(w) \\
& =: \quad c_{s}\|b\|_{\mathcal{D}_{q}}^{q-2} \mathfrak{P}_{s}\left(\beta(z, \cdot)\left|b^{\prime}\right| \chi_{\widetilde{G}}\right)(z)
\end{aligned}
$$

Using Exercise 21 on page 79 of [7] we have the following Lemma at our disposal,
Lemma 2. Let $-1<s$ and suppose $1<p<\infty$. Then the operator

$$
\mathfrak{S}_{s} f(z):=\int_{\mathbb{D}} \frac{\beta(z, w)\left(1-|w|^{2}\right)^{s}}{|1-z \bar{w}|^{2+s}} f(w) d A(w)
$$

is bounded on $L^{p}\left(\mathbb{D} ; d A_{p}\right)$.

Then, one notes that $\mathfrak{P}_{s}\left(\beta(z, \cdot)\left|b^{\prime}\right| \chi_{\widetilde{G}}\right)(z)=\mathfrak{S}_{s}\left(\left|b^{\prime}\right| \chi_{\widetilde{G}}\right)(z)$ and we will use this Lemma to handle the second term.

We further substitute this estimate back into $\left(3_{E}\right)$ given by (2.4). We thus see the following,

$$
\begin{aligned}
\left|\left(3_{E}\right)\right| & \leq \int_{\mathbb{D}}\left|b^{\prime}(z)\right|\left|\left[\mathbb{P}_{s}, \beta_{q}\right]\left(b^{\prime} \chi_{\widetilde{G}}\right)(z)\right||g(z)| \chi_{\widetilde{G}}(z) d A(z) \\
& \lesssim\|b\|_{\mathcal{D}_{q}}^{q-2} \int_{\mathbb{D}}\left|b^{\prime}(z)\right||g(z)| \mathfrak{S}_{s}\left(\left|b^{\prime}\right| \chi_{\widetilde{G}}\right)(z) \chi_{\widetilde{G}}(z) d A(z) \\
& \leq\left(\int_{\mathbb{D}}\right)^{1 / r}\left(\int_{\mathbb{D}}\right)^{1 / s}\left(\int_{\mathbb{D}}\right)^{1 / t} \\
& \leq\|b\|_{\mathcal{D}_{q}}^{q-2}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} \chi_{\widetilde{G}}(z) d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left(\mathfrak{S}_{s}\left(\left|b^{\prime}\right| \chi_{\widetilde{G}}\right)(z)\right)^{p} \chi_{\widetilde{G}}(z) d A_{p}(z)\right)^{1 / p}
\end{aligned}
$$

Using estimate of the \mathcal{D}_{p} and \mathcal{D}_{q} norm of b by the norm of the bilinear form T_{b}, we arrive at

$$
\begin{aligned}
\left|\left(3_{E}\right)\right| & \leq\|b\|_{\mathcal{D}_{q}}^{q-2}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} \chi_{\widetilde{G}}(z) d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left(\mathfrak{S}_{s}\left(\left|b^{\prime}\right| \chi_{\widetilde{G}}\right)(z)\right)^{p} \chi_{\widetilde{G}}(z) d A_{p}(z)\right)^{1 / p} \\
& \lesssim\left\|T_{b}\right\|^{q-2}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} \chi_{\widetilde{G}}(z) d A_{q}(z)\right)^{1 / q}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{p} \chi_{\widetilde{G}}(z) d A_{p}(z)\right)^{1 / p} \\
& \leq\left\|T_{b}\right\|^{q-2}\|b\|_{\mathcal{D}_{p}}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} \chi_{\widetilde{G}}(z) d A_{q}(z)\right)^{1 / q} \\
& \lesssim\left\|T_{b}\right\|^{q-1}\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|g(z)|^{q} \chi_{\widetilde{G}}(z) d A_{q}(z)\right)^{1 / q}
\end{aligned}
$$

We are left showing that this last integral can be estimated by the norm of the bilinear form T_{b} and the capacity of the collection of intervals.
2.5. Term (4): This is one of the more challenging terms to handle. We first observe that by Hölder's inequality, we have that

$$
\begin{aligned}
|(4)| & :=\left|\int_{\mathbb{D}} \overline{b^{\prime}(z)} f_{q}(z) g^{\prime}(z) d A(z) d A(z)\right| \\
& \leq 2 \int_{\mathbb{D}}\left|b^{\prime}(z)\right|\left|f_{q}(z)\right||\varphi(z)|\left|\varphi^{\prime}(z)\right| d A(z) \\
& \leq \epsilon \int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{q}|\varphi(z)|^{q} d A_{q}(z)+C(\epsilon) \int_{\mathbb{D}}\left|\varphi^{\prime}(z)\right|^{p}\left|f_{q}(z)\right|^{p} d A_{p}(z) \\
& :=\left(4_{A}\right)+\left(4_{B}\right) .
\end{aligned}
$$

Now, consider term $\left(4_{A}\right)$. We will use the properties of the extremal function φ to estimate this integral. We split the integral into three separate regions.

$$
\left(4_{A}\right)=\epsilon\left\{\int_{\cup_{j} T\left(I_{j}\right)}+\int_{\cup_{j} T\left(\tilde{I}_{j}\right) \backslash \cup_{j} T\left(I_{j}\right)}+\int_{\left(\cup_{j} T\left(\tilde{I}_{j}\right)\right)^{c}}\right\}\left|b^{\prime}(z)\right|^{q}|\varphi(z)|^{q} d A_{q}(z)
$$

But, using the properties of the function φ, and that the collection of intervals $\left\{I_{j}\right\}$ was extremeal we arrive at

$$
\left(4_{A}\right) \leq \epsilon\left(\mu_{b, q}\left(\cup_{j} I_{j}\right)+C\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)\right)
$$

As for term $\left(4_{B}\right)$, we again note that the functions φ and f_{q} have disjoint supports. Applying the Schur argument, we can conclude that

$$
\left(4_{B}\right) \leq\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)
$$

All together, we have

$$
|(4)| \lesssim \epsilon \mu_{b, q}\left(\cup_{j} I_{j}\right)+\left\|T_{b}\right\|^{q} \operatorname{cap}_{q}\left(\cup_{j} I_{j}\right)
$$

2.6. The Term $\left|T_{b}\left(f_{q}, g\right)\right|$:

References

[1] N. Arcozzi, R. Rochberg and E. SaWyer, Carleson measures for analytic Besov spaces, Rev. Mat. Iberoamericana 18 (2002), 443-510.
[2] N. Arcozzi, R. Rochberg and E. Sawyer, Carleson measures and interpolating sequences for Besov spaces on complex balls, Mem. A. M. S. 859, 2006.
[3] N. Arcozzi, R. Rochberg and E. Sawyer, Onto interpolating sequences for the Dirichlet space, manuscript, 2007.
[4] B. Böe, Interpolating sequences for Besov spaces, J. Functional Analysis, 192 (2002), 319-341.
[5] C. J. Bishop, Interpolating sequences for the Dirichlet space and its multipliers, preprint (1994).
[6] R. Rochberg and Z. Wu, A new characterization of Dirichlet type spaces and applications, Ill. J. Math. 37 (1993), 101-122.
[7] K. ZHU, Spaces of holomorphic functions in the unit ball, Springer-Verlag 2004.

