
BILINEAR FORMS ON THE DIRICHLET SPACE

1. Introduction

For 1 < r <∞, let dAr(z) :=
(

1− |z|2
)r−2

dA(z). The Dirichlet space Dr is the
collection of functions that are analytic on the unit disc D such that the following
norm is finite,

‖f‖rDr
:= |f(0)|r +

∫
D
|f ′(z)|r dAr(z)

For s > −1 we define two different linear operators that will act on the space
Lp(D; dAp). We first have

Ps(f)(z) := cs

∫
D

(
1− |w|2

)s
(1− zw)2+s

f(w)dA(w).

We will also need a variant of this operator, but where we taken the absolute value
of the kernel. We set

Ps(f)(z) := cs

∫
D

(
1− |w|2

)s
|1− zw|2+s

f(w)dA(w).

It is well known that for s > −1 these operators are bounded on Lp(D; dAp).
Now define a bilinear form Tb on the space of polynomials P on the disk by

Tb (f, g) ≡ 〈fg, b〉D2
, f, g ∈ P,

where 〈·, ·〉D2
is the inner product for the Dirichlet space D = D2 given by

〈f, g〉D = f (0) g (0) +
∫

D
f ′ (z) g′ (z)dA(z).

We can no longer assert that the norm ‖Hb‖D of the Hankel operator Hb from D
to D− is the same as the norm ‖Tb‖D of the bilinear form Tb on Dp×Dq, since the
inner product for the Dirichlet space involves derivatives. For a positive measure
µ on the disk, let ‖µ‖D−Carleson be the (possibly infinite) norm of the inclusion
P ⊂ L2 (µ) with inner product 〈·, ·〉D on P. It is shown in Rochberg and Wu [6]
that ‖Hb‖D ≈ |b (0)|+ ‖µb‖D−Carleson. Here we show the same for Tb.

Theorem 1. Let b be holomorphic on the unit disc D. Then Tb extends to a
bounded bilinear form on Dp×Dq if and only if for r = p, q the measure dµb,r (z) ≡
|b′ (z)|r dAr(z) is a Carleson measure for the Dirichlet space Dr. Moreover,

‖Tb‖ ≈ |b (0)|+ ‖µb,p‖Dp−Carleson + ‖µb,q‖Dq−Carleson .
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2. Proof of the theorem

Suppose first that for r = p, q, µb,r is a Dr-Carleson measure. For f, g ∈ P we
have

|Tb (f, g)| =
∣∣∣∣f (0) g (0) b (0) +

∫
D

(f ′ (z) g (z) + f (z) g′ (z)) b′ (z)dA(z)
∣∣∣∣

≤ |f (0) g (0) b (0)|+
∫

D
|f ′ (z) g (z) b′ (z)| dA(z) +

∫
D
|f (z) g′ (z) b′ (z)| dA(z)

≤ |f (0) g (0) b (0)|+
(∫

D
|f ′ (z)|p dAp(z)

) 1
p
(∫

D
|g (z)|q dµb,q (z)

) 1
q

+
(∫

D
|g′ (z)|q dAq(z)

) 1
q
(∫

D
|f (z)|p dµb,p (z)

) 1
p

≤ C
(
|b (0)|+ ‖µb,p‖Dp−Carleson + ‖µb,q‖Dq−Carleson

)
‖f‖Dp

‖g‖Dq
.

Thus Tb has a bounded extension to Dp ×Dq with

‖Tb‖ ≤ C
(
|b (0)|+ ‖µb,p‖Dp−Carleson + ‖µb,q‖Dq−Carleson

)
.

Conversely, suppose that Tb extends to a bounded bilinear form on Dp × Dq.
Then with g = 1 we obtain

|〈f, b〉D| = |Tb (f, 1)| ≤ ‖Tb‖ ‖f‖Dp
‖1‖Dq

for all polynomials f ∈ P, which shows that b ∈ Dq and

(2.1) ‖b‖Dq
≤ C ‖Tb‖ .

Repeating this argument, but interchanging the roles of p and q, we also see
that,

(2.2) ‖b‖Dp
≤ C ‖Tb‖ .

Also, note that letting f = g = 1 we see that

(2.3) |b(0)| ≤ ‖Tb‖ .
We next observe that is suffices to prove only one of the measures is Carleson

for the appropriate space. Suppose that we have shown ‖µb,p‖Dp−Carleson . ‖Tb‖.
Then, it is easy to see that the bilinear form Fb : Dp ×Dq → C given by

Fb(f, g) := Tb(f, g)−
∫

D
b′(z)f(z)g′(z)dA(z)−b(0)f(0)g(0) =

∫
D
b′(z)f ′(z)g(z)dA(z)

is also bounded with norm controlled by

‖Fb‖ ≤ 2 ‖Tb‖+ ‖µb,p‖Dp−Carleson

. ‖Tb‖
with the last line following from the supposition that we already knew the estimate
for the norm of the Dp-Carleson measure µb,p was controlled by ‖Tb‖. But, it is
also easy to see that

‖Fb‖ ≈ ‖µb,q‖Dq−Carleson

and so we can conclude that ‖µb,q‖Dq−Carleson . ‖Tb‖. Thus, it suffices to show
that one of the measures µb,q or µb,p is Carleson for the appropriate space with
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Carleson measure controlled by ‖Tb‖, the other follows from the above argument.
Additionally, because of this, we can suppose that p < 2 < q, and we only need to
show that µb,q is Dq-Carleson.

2.1. Sketch of Proof. Let {Ij} be a finite collection of disjoint intervals in T and
let ∪jT (Ij) denote the Carleson tents in D. We will chose the collection of intervals
{Ij} later to extremize a capacity problem.

Set βq(z) := |b′(z)|q−2
(

1− |z|2
)q−2

. Define the following function

fq(z) :=
∫

D

(
1− |ξ|2

)s
ξ
(
1− ξz

)1+s b′(ξ)βq(ξ)χ∪jT (Ij)(ξ)dA(ξ)

Then fq ∈ Dp since one can show that |f(0)| . ‖Tb‖q−1 and(∫
D

∣∣f ′q(z)∣∣p dAp(z))1/p

.

(∫
D
|b′(z)|q dAq(z)

)1/p

≤ ‖Tb‖q−1
,

so ‖fq‖Dp
. ‖Tb‖q−1

<∞. Also, observe that for G = ∪jT (Ij) and G̃ denoting an

“enlargement” of the set G (done in such a way that capq G̃ ≈ capq G) we have

f ′q(z) = Ps (b′βqχG) (z)

= b′(z)βq(z)χG)(z) + Ps (b′βqχG) (z)− b′(z)βq(z)χG(z)

= b′(z)βq(z)χG(z) + Ps (b′βqχG) (z)− Ps (b′) (z)βq(z)χG)(z)

= b′(z)βq(z)χG(z) + Ps (b′βqχG) (z)χ eG(z) + Ps (b′βqχG) (z)χ eGc(z)

−Ps
(
b′χ eG) (z)βq(z)χG(z)− Ps

(
b′χ eGc

)
(z)βq(z)χG(z)

= b′(z)βq(z)χG(z) + Ps (b′βqχG) (z)χ eGc(z)− Ps
(
b′χ eGc

)
(z)βq(z)χG(z)

−Ps
(
b′βqχ eG\G

)
(z)χ eG(z) + Ps

(
b′χ eG) (z)βq(z)χ eG\G(z) + [Ps, βq] (b′χ eG)χ eG(z)

:= b′(z)βq(z)χG(z) + Eq(b′)(z).

Thus, f ′q(z) is b′(z)βq(z) localized to the set ∪jT (Ij), up to an error given by a
sum of commutator type terms. Adding and subtracting common terms one can
see that the commutator term can be decomposed into parts localized to the set
∪jT (Ij) and its complement. Namely,

Eq(b′)(z) = Ps (b′βqχG) (z)χ eGc(z)− Ps
(
b′χ eGc

)
(z)βq(z)χG(z)

−Ps
(
b′βqχ eG\G

)
(z)χ eG(z) + Ps

(
b′χ eG) (z)βq(z)χ eG\G(z)

+ [Ps, βq] (b′χ eG)χ eG(z)

Note that when q = 2 the last commutator above vanishes since β2(z) ≡ 1.
Let ϕ be an extremal for the capacity of the set of intervals. We use the dyadic

tree on the unit disc to construct this function. We then set g := ϕ2. If we
substitute these functions into the bilinear form Tb, we find
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Tb(fq, g) = b(0)f(0)g(0) +
∫

D
b′(z)

(
fq(z)g′(z) + f ′q(z)g(z)

)
dA(z)

= b(0)f(0)g(0) +
∫

D
b′(z)b′(z)βq(z)χ∪jT (Ij)(z)g(z)dA(z)

+
∫

D
b′(z)Eq(b′)(z)g(z)dA(z) +

∫
D
b′(z)fq(z)g′(z)dA(z)

= (1) + (2) + (3) + (4).

We need to estimate each of the terms (1), (2), (3), (4), and |Tb(fq, g)|. We will
prove either these terms can be estimated by ‖Tb‖q capq (∪jIj) or

εµb,q (∪jT (Ij)) + C(ε) ‖Tb‖q capq
(
∪Nj=1Ij

)
where ε > 0 is a small number that can be chosen at the end.

With these estimates, we conclude the proof as follows. First, observe that

µb,q
(
∪Nj=1T (Ij)

)
= (2)− C ‖Tb‖q capq (∪jIj)
= Tb(fq, g)− (1)− (3)− (4)− C ‖Tb‖q capq

(
∪Nj=1Ij

)
.

Then, taking absolute values and using the estimates we claim, we see that

µb,q
(
∪Nj=1T (Ij)

)
≤ |Tb(fq, g)|+ |(1)|+ |(3)|+ |(4)|+ C ‖Tb‖q capq

(
∪Nj=1Ij

)
≤ εCµb,q

(
∪Nj=1T (Ij)

)
+ C(ε) ‖Tb‖q capq

(
∪Nj=1Ij

)
.

Choosing ε sufficiently small, we see

µb,q
(
∪Nj=1T (Ij)

)
. ‖Tb‖q capq

(
∪Nj=1Ij

)
,

and so µb,q is a Dq-Carleson measure. This would then prove the Theorem.

2.2. Term (1): Notice that term (1) is trivial. We have that |b(0)| ≤ ‖Tb‖, |f(0)| .
‖Tb‖q−1 and |g(0)| . capq

(
∪Nj=1Ij

)
, so

|(1)| . ‖Tb‖q capq
(
∪Nj=1Ij

)
.

2.3. Term (2): Next, note that term (2) is also easy to handle. By the definition
of βq(z) we have

(2) =
∫

D
|b′(z)|q

(
1− |z|2

)q−2

χ∪jT (Ij)(z)g(z)dA(z)

But, by construction we have that g(z) = 1+C capq
(
∪Nj=1Ij

)
on the set ∪jT (Ij),

and so we have

(2) = µb,q (∪jT (Ij)) + C capq
(
∪Nj=1Ij

) ∫
D
|b′(z)|q dAq(z)

= µb,q (∪jT (Ij)) + C ‖b‖qDq
capq

(
∪Nj=1Ij

)
= µb,q (∪jT (Ij)) +O

(
‖Tb‖q capq

(
∪Nj=1Ij

))
,

which is the estimate that we seek.
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2.4. Term (3): Recall that we are letting G = ∪Nj=1Ij and G̃ is denoting an en-
largement of the set G done in such a way so that the capq(G̃) ≈ capq(G). Using
the decomposition of Eq(b′) we see that term (3) decomposes as

(3) =
∫

D
b′(z)Eq(b′)(z)g(z)dA(z)

=
∫

D
b′(z)Ps (b′βqχG) (z)χ eGc(z)g(z)dA(z)

−
∫

D
b′(z)Ps

(
b′χ eGc

)
(z)βq(z)χG(z)g(z)dA(z)

−
∫

D
b′(z)Ps

(
b′βqχ eG\G

)
(z)χ eG(z)g(z)dA(z)

+
∫

D
b′(z)Ps

(
b′χ eG) (z)βq(z)χ eG\G(z)g(z)dA(z)

+
∫

D
b′(z) [Ps, βq] (b′χ eG)χ eG(z)g(z)dA(z)

:= (3A) + (3B) + (3C) + (3D) + (3E).

We handle each of these terms separately.

2.4.1. The Term (3A): This is the easiest of the terms in (3). Note that by Hölder’s
inequality we arrive at

|(3A)| :=
∣∣∣∣∫

D
b′(z)Ps (b′βqχG) (z)g(z)χ eGc(z)dA(z)

∣∣∣∣
≤

∫
eGc

|b′(z)| |g(z)| |Ps (b′βqχG) (z)| dA(z)

≤
(∫

eGc

|b′(z)|q |g(z)|q dAq(z)
)1/q (∫

D
|Ps (b′βqχG) (z)|p dAp(z)

)1/p

. ‖b‖1+
q
p

Dq
capq

(
∪Nj=1Ij

)
. ‖Tb‖q capq

(
∪Nj=1Ij

)
.

With the second to last line following from the fact that for z ∈ G̃c we have
|g(z)| . capq (∪jIj). We also used the fact that Ps is a bounded operator and
similar computations to demonstrate that fq ∈ Dp.

2.4.2. The Term (3B): We need an estimate of

(3B) :=
∫

D
b′(z)Ps

(
b′χ eGc

)
(z)βq(z)g(z)χG(z)dA(z).
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We first observe that, using the inequality ab ≤ ap

p + bq

q , we find

|(3B)| ≤
∫

D

∣∣∣b′(z)Ps (b′χ eGc

)
(z)βq(z)g(z)

∣∣∣χG(z)dA(z)

≤ ε

∫
D
|b′(z)|p βq(z)pχG(z)dAp(z)

+C(ε)
∫

D

∣∣Ps (b′χ eGc

)
(z)
∣∣q |g(z)|q χG(z)dAq(z)

≤ εµb,q (∪jT (Ij)) + C(ε)
∫

D
Ps

(
|b′|χ eGc

)
(z)q |g(z)|q χG(z)dAq(z).

The functions Ps

(
|b′|χ eGc

)
and |g|χG in the last integral have “disjoint” sup-

ports. Using this observation and a Schur-type argument, we claim the last in-
tegral is controlled by C ‖Tb‖q capq (∪jIj). With this estimate, term (3B) is then
controlled by

|(3B)| ≤ εµb,q (∪jT (Ij)) + C ‖Tb‖q capq (∪jIj) ,

which is what we needed to show.

2.4.3. The Term (3C): We next need to handle the following term:

(3C) :=
∫

D
b′(z)Ps

(
b′βqχ eG\G

)
(z)χ eG(z)g(z)dA(z)

Using Hölder’s Inequality we find that

|(3C)| ≤
(∫

D
|b′(z)|q |g(z)|q dAq(z)

)1/q (∫
D

∣∣∣Ps (b′βqχ eG\G
)

(z)
∣∣∣p dAp(z))1/p

.

(∫
D
|b′(z)|q |g(z)|q dAq(z)

)1/q (∫
D

∣∣∣b′(z)βq(z)χ eG\G(z)
∣∣∣p dAp(z))1/p

=
(∫

D
|b′(z)|q |g(z)|q dAq(z)

)1/q (
µb,q

(
G̃ \G

))1/p

.

We can arrange the enlargement G̃ so that we additionally have the property

µb,q

(
G̃ \G

)
≤ εµb,q (G) .

Also, using the arguments related to term (4) we have that∫
D
|b′(z)|q |g(z)|q dAq(z) ≤ ε

(
µb,q (∪jIj) + C ‖Tb‖q capq (∪jIj)

)
.

Using these estimates and the inequality that ab ≤ ap

p + bq

q , we have

|(3C)| ≤ Cεµb,q (∪jIj) + C ‖Tb‖q capq (∪jIj) ,

which is the estimate that we seek.
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2.4.4. The Term (3D): We now handle the term

(3D) :=
∫

D
b′(z)Ps

(
b′χ eG) (z)βq(z)χ eG\G(z)g(z)dA(z).

This is one of the easier that we have to estimate. Using Hölder’s Inequality we
see that

|(3D)| ≤

(∫
eG\G |b

′(z)βq(z)|
p
dAp(z)

)1/p(∫
D

∣∣Ps (b′χ eG) (z)
∣∣q χ eG\G(z)dAq(z)

)1/q

. (εµb,q (G))1/p
(∫

D
|b′(z)|q χ eG(z)dAq(z)

)1/q

≤ (εµb,q (G))1/p ((1 + ε)µb,q (G))1/q = ε1/p(1 + ε)1/qµb,q (G) .

But, this is an acceptable term since for ε chosen sufficiently small, we can hide
this term back on the left hand side of the main estimate.

2.4.5. The Term (3E): Here we consider the term which vanishes when q = 2:

(2.4) (3E) ≡
∫

D
b′(z) [Ps, βq]

(
b′χ eG) (z)g(z)χ eG(z)dA(z).

We wish to obtain an estimate for the commutator [Ps, βq] that is better than the
estimates for the operators Psβq and βqPs individually. Computing, we see

b′(z)χ eG(z) [Ps, βq]
(
b′χ eG) (z) =

(
Ps
(
βq
(
b′χ eG)) (z)− βq (z) Ps

(
b′χ eG) (z)

)
b′(z)χ eG(z)

= cs

∫
D

(
1− |w|2

)s
(1− zw)s+2 {βq (w)− βq (z)} b′(w)b′(z)χ eG(w)dA(w)χ eG(z).

=
[
Ps, βqb′

]
(b′χ eG)(z)χ eG(z) +

[
Ps, b′

]
(βqb′χ eG)(z)χ eG(z).

Key to the rest of the argument is the following Lemma. Define the following
norm on functions (not necessarily analytic) by

‖γ‖B := sup
z∈D

(1− |z|2)|∇γ(z)|.

Note that if γ is analytic then we have ‖γ‖B = ‖b‖B, where B(D) is the Bloch
space.

Lemma 1. For 1 < p <∞ we have that

[Ps, γ] : Lp(D, dAp)→ Lp(D, dAp)

with ‖[Ps, γ]‖Lp(dAp)→Lp(dAp) . ‖γ‖B.
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Assume Lemma 1 for the moment. With this we can conclude the estimate of
(3E). To do this, we proceed as follows.

|(3E)| ≤
∫

D
|g(z)|

∣∣[Ps, βqb′ ] (b′χ eG)(z)
∣∣χ eG(z)dA(z) +

∫
D
|g(z)|

∣∣[Ps, b′ ] (βqb′χ eG)(z)
∣∣χ eG(z)dA(z)

≤
(∫

D
|g(z)|q dAq(z)

)1/q (∫
D

∣∣[Ps, βqb′ ] (b′χ eG)(z)
∣∣p dAp(z))1/p

+
(∫

D
|g(z)|q dAq(z)

)1/q (∫
D

∣∣[Ps, b′ ] (βqb′χ eG)(z)
∣∣p dAp(z))1/p

≤ C ‖g‖Dq

[∥∥βqb′∥∥B

(∫
D
|b′(z)|p χ eG(z)dAp(z)

)1/p

+
∥∥b′∥∥

B

(∫
D
|βq(z)b′(z)|

p
χ eG(z)dAp(z)

)1/p
]

≤ C capq (G)
[
‖b‖q−1
B ‖b‖Dp

+ ‖b‖B ‖b‖
q−1
Dq

]
≤ C capq (G) ‖Tb‖q .

This is the estimate that we seek. In the course of the proof above, we used
that dAp is a Dp-Carleson measure. This follows from the observation that for any
compact subset E of the boundary T we have∫

T (E)

dAp(z) . capq (E) ,

which is the geometric characterization of the Dp-Carleson measures.
We now wish to estimate the difference

βq (w)− βq (z) =
∣∣∣(1− |w|2

)
b′(w)

∣∣∣q−2

−
∣∣∣(1− |z|2

)
b′(z)

∣∣∣q−2

,

and since q > 2, we first consider the difference(
1− |z|2

)
b′ (z)−

(
1− |w|2

)
b′ (w) = Db (z)−Db (w) ,

where Db (z) =
(

1− |z|2
)
b′ (z) is the invariant derivative.

Let γ (t) be the Bergman geodesic joining w to z, i.e. γ : [0, 1] → D with
γ (0) = w and γ (1) = z. Also, let β (z, w) is the length between the points z
and w measured in the Bergman or Poincaré metric in the unit disk. Then the
fundamental theorem of calculus and the chain rule give

Db (z)−Db (w) =
∫ 1

0

d

dt
Db (γ (t)) dt

=
∫ 1

0

∇ (Db) (γ (t)) γ′ (t) dt.

For a function h : D→ C define

Qh(z) := sup
{
|w∇h(z)|

〈B(z)w,w〉1/2
: w ∈ C \ {0}

}
.

Here B(z) is the matrix that gives rise to the Bergman metric at the point z.
Continuing from above we have the following, upon taking absolute values we find,
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|Db (z)−Db (w)| =
∣∣∣∣∫ 1

0

∇ (Db) (γ (t)) γ′ (t) dt
∣∣∣∣

≤
∫ 1

0

|∇ (Db) (γ (t)) γ′ (t)| dt

≤
∫ 1

0

QDb (γ(t)) 〈B(γ(t))γ′(t), γ′(t)〉1/2dt

≤ β(z, w) sup
ξ∈D

QDb(ξ).

The last line we have used the definition of the length β(z, w). Next, one observes
that Qh(z) = |Dh(z)|. This follows from the proof of the equivalences of (a), (b)
and (e) in Theorem 3.1 of [7] (one can note that the analyticity plays no role in
these equivalences). With this observation, we have the following,

|Db (z)−Db (w)| ≤ β(z, w) sup
ξ∈D
|D(Db)(ξ)| .

Let B denote the Bloch space on the unit disc D. This is the set of all analytic
functions on D such that

‖f‖B := sup
z∈D

(
1− |z|2

)
|f ′(z)| .

Using the standard definition of the Bloch space and the equivalent norm,

‖f‖B ≈ sup
z∈D

(
1− |z|2

)N ∣∣∣f (N)(z)
∣∣∣

one sees that
sup
z∈D
|D (Db) (z)| . ‖b‖B .

Since q > 2, and Dq ⊂ B we then have the following estimate holding,

|βq(z)− βq(w)| . β(z, w) ‖b‖q−2
B . β(z, w) ‖b‖q−2

Dq
.

We now substitute this estimate into the definition of the commutator and find
the following:

∣∣[Ps, βq] (b′χ eG) (z)
∣∣ ≤ cs ‖b‖q−2

Dq

∫
D

(
1− |w|2

)s
|1− zw|s+2 |b

′(w)|χ eG(w)β(z, w)dA(w)

=: cs ‖b‖q−2
Dq

Ps

(
β(z, ·) |b′|χ eG) (z)

Using Exercise 21 on page 79 of [7] we have the following Lemma at our disposal,

Lemma 2. Let −1 < s and suppose 1 < p <∞. Then the operator

Ssf(z) :=
∫

D

β(z, w)
(

1− |w|2
)s

|1− zw|2+s
f(w)dA(w)

is bounded on Lp(D; dAp).
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Then, one notes that Ps

(
β(z, ·) |b′|χ eG) (z) = Ss

(
|b′|χ eG) (z) and we will use

this Lemma to handle the second term.
We further substitute this estimate back into (3E) given by (2.4). We thus see

the following,

|(3E)| ≤
∫

D
|b′(z)|

∣∣[Ps, βq] (b′χ eG) (z)
∣∣ |g(z)|χ eG(z)dA(z)

. ‖b‖q−2
Dq

∫
D
|b′(z)| |g(z)|Ss

(
|b′|χ eG) (z)χ eG(z)dA(z)

≤
(∫

D

)1/r (∫
D

)1/s(∫
D

)1/t

≤ ‖b‖q−2
Dq

(∫
D
|b′(z)|q |g(z)|q χ eG(z)dAq(z)

)1/q (∫
D

(
Ss

(
|b′|χ eG) (z)

)p
χ eG(z)dAp(z)

)1/p

Using estimate of the Dp and Dq norm of b by the norm of the bilinear form Tb,
we arrive at

|(3E)| ≤ ‖b‖q−2
Dq

(∫
D
|b′(z)|q |g(z)|q χ eG(z)dAq(z)

)1/q (∫
D

(
Ss

(
|b′|χ eG) (z)

)p
χ eG(z)dAp(z)

)1/p

. ‖Tb‖q−2

(∫
D
|b′(z)|q |g(z)|q χ eG(z)dAq(z)

)1/q (∫
D
|b′(z)|p χ eG(z)dAp(z)

)1/p

≤ ‖Tb‖q−2 ‖b‖Dp

(∫
D
|b′(z)|q |g(z)|q χ eG(z)dAq(z)

)1/q

. ‖Tb‖q−1

(∫
D
|b′(z)|q |g(z)|q χ eG(z)dAq(z)

)1/q

.

We are left showing that this last integral can be estimated by the norm of the
bilinear form Tb and the capacity of the collection of intervals.

2.5. Term (4): This is one of the more challenging terms to handle. We first
observe that by Hölder’s inequality, we have that

|(4)| :=
∣∣∣∣∫

D
b′(z)fq(z)g′(z)dA(z)dA(z)

∣∣∣∣
≤ 2

∫
D
|b′(z)| |fq(z)| |ϕ(z)| |ϕ′(z)| dA(z)

≤ ε

∫
D
|b′(z)|q |ϕ(z)|q dAq(z) + C(ε)

∫
D
|ϕ′(z)|p |fq(z)|p dAp(z)

:= (4A) + (4B).

Now, consider term (4A). We will use the properties of the extremal function ϕ
to estimate this integral. We split the integral into three separate regions.

(4A) = ε

{∫
∪jT (Ij)

+
∫
∪jT (Ĩj)\∪jT (Ij)

+
∫

(∪jT (Ĩj))c

}
|b′(z)|q |ϕ(z)|q dAq(z)

But, using the properties of the function ϕ, and that the collection of intervals
{Ij} was extremeal we arrive at

(4A) ≤ ε
(
µb,q (∪jIj) + C ‖Tb‖q capq (∪jIj)

)
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As for term (4B), we again note that the functions ϕ and fq have disjoint sup-
ports. Applying the Schur argument, we can conclude that

(4B) ≤ ‖Tb‖q capq (∪jIj)
All together, we have

|(4)| . εµb,q (∪jIj) + ‖Tb‖q capq (∪jIj)

2.6. The Term |Tb(fq, g)|:
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