The Dirichlet problem.

N.A.
13/2/07

Let Q2 be open in C and f: Q — C. f is holomorphic in § if any (hence, all)
of the following properties hold:

(i) f has a complex derivative at any point z € {2,

(ii) u = Re(f) and v = I'm(f) satisfy Cauchy-Riemann’s equations:

Uy = Uy
Uy = —Vg
If we think of f : R? — R? as a function between Euclidean planes, the

CR equations say that the Jacobian of f has the particular form

a —b

Jf(x,y) = (b a)’ with a = ug;, b= v,.

Note that the set of such matrices is isomorphic, as ring, to C.

As a consequence of CR’s equations we have that f'(z) = 0, f(2).

(iii) f satisfies Morera’s Theorem.For any regular loop ~ contained in Q we

have that
/ f(z)dz =0.
¥

(iv) f satisfies Cauchy’s formula.If D is a smoothly bounded region in 2,
D C Q and z € D, then

fo - [ 1©

2 Jop 2 —C

dc.

Here, 0D is anti-clockwise oriented.

(v) If the closed disce D(zg, ) is contained in 2, then there is a sequence {a, }
of complex numbers, depending on zy only, such that

flz) = Z an(z — 2z0)".
n=0

The series converges totally uniformly in D(zq, 7).



We will sometimes use the following facts.

(i) Inverse Mapping Theorem.If f : Q — C is holomorphic and f'(z) # 0,
then there are open neighborhoods U of zp in  and V of f(zg) in f(Q
s.t. f:U — V is a bijection with holomorphic inverse.

(ii) Open Mapping Theorem.If f : Q — C is holomorphic and €2 is connected,
then either f is constant or f(U) is open for all U open in .

Let Q C C be open and let u € C?(Q). u is harmonic if Au =0 in Q.
Proposition 1 Let 2 be open in C.

(i) If f = w + iv is holomorphic in Q and Q is connected, then u,v are
harmonic in Q. If fi = u + vy is another function holomorphic in )
having real part u, then v — vy is constant.

(%) If u is harmonic in Q and ) is connected and simply connected, then there
exists [ holomorphic in Q s.t. Re(f) = u.

(i4i) If u is harmonic in , then u € C°.

() If f: Q1 — Qo is holomorphic, where Q1 and Qs are open, and u is
harmonic in Qo, then wo f is harmonic in Q.

Proof. (i) The harmonicity of u and v follows from CR’s equations. If f; =
u+iv; is another holomorphic function with the same real part, f—f; = i(v—v1)
can not be open, hence it is constant.

(ii) By Laplace’ equation, the form w = —uydx + u,dy is closed, then exact,
hence there is v such that v, = —u, and v, = u,. f = u+ iv satisfies CR’s
equations.

(iii) The composition of holomorphic functions is holomorphic. =
From Cauchy’s formula we deduce the Mean Value Property of harmonic
functions.

Theorem 2 Let D(zp,r) C Q and let u be harmonic in . Then,

u(z0) = /7T u(zo + rew)d—e. (1)

o 2

Proof. Let f = w + iv be holomorphic in an open, simply connected set
containing the disc’s closure. Cauchy’s formula gives

fe) = o Oy
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MVP holds for f, hence for its real and imaginary parts. m

1This property is peculiarly two-dimensional.



Exercise 3 Let z € D(0,1) =D C Q and let u be harmonic in Q. Show that

™ —2’2
uz) = [ ety AL 2)

o |1 —ze—]2 2

Suggestion: use the fact that the maps ¢(z) = a € D, are biholomorphims

of D onto itself.

1 az’

Theorem 4 (Maximum principle.) Let u be harmonic in a connected set €

in C.
(i) If u has a local mazimum in §Q, then u is constant in Q.

(ii) If u extends continuously to Q? and

lim u(z) <0

z—(
for all € 092, then u <0 in w.

Proof. (i) Suppose that zj is point of local maximum for u. By MVP (Exercise)
u = u(zp) on a disc centered ao zyp. For any z € ), consider an open, simply
connected set D in 2 containing both z and zg and let f = u+iv be holomorphic
in D. Then, v is constant in a disc centered at zgp, so f is constant in that disc,
hence f is constant in D: f(z) = f(20).

(ii) u attains a global maximum in Q by Weierstrass’ Theorem. If the max-
imum is in 2, then u is constant in €2, otheriwise the maximum is attained on
0. In both cases, ©u < 0in 2. m

An important harmonic function is h : D — R,

1— |22 1+z
h = :R .
=1z e(lz)

Observe that 2 > 0 in D and that h(¢{) = 0 for ¢ € 9D — {1}. The holomorphic

function f(z) = %-‘,—z is a holomorphic, 1 — 1 map of D onto the right half plane

{w: Re(w) > 0}. In fact,

f(e?) =icot(h/2).
For f € C(S), define P[f] : D — R,

™ 722
PG = [ reneng = [ e Bt @)

\1 11— ze=02 21
We can view P[f] as a convolution. Define P, : S — R,

1|22

PoE™) = T

Then, P[f] = P,  f.
We denote by h>° (D) the space of the bounded harmonic functions on D.

2In these notes, the closure of a set is considered in the extended plane C* = C U {co}.



Theorem 5 After setting P[f]|s = f, we have that f + P[f] is an isometry of
C(S) onto h** (D) N C(D).

In particular, P[f](z) — f(e'®) as z — €!® in D.

Proof. Step 1. P[f] is harmonic in D. Since z +— P,(e'’) is harmonic in
D3, the result follows by differentiating under the integral.

Step 2. P[f](z) — f(e!*) as z — €!® in D. Hence, P[f] is continuous in D.

Lemma 6 (i) [ P.(e"?)% =1.
(ii) For some C >0, [7_|P,(e")|2£ < C for all z € D.
(i4i) For all 6 > 0 s.t. f\Gfa\>5 | P, gia (ei9)|% —0asr— 1.

Proof of the lemma.. (i) implies (ii) because P, > 0; (i) follows from MVP.
About (iii), if z = re’®, on the interval of integration:
1—r 1—r

WY < —
P~ e Sao e Y

uniformly as r — 1. m
It suffices to prove the limit when a = 0. Let z = re*’. Fix € > 0 and choose
§>0s.t. [f(e) = f(e™)] < e when |§ — | < 6. For 8| <4,

PG~ SO £ [PUIC)— Fe)] 1) — F(0)
= | e - g e

i o1t i do

< [ P IS L';%

v P [£(e%) ~ ()] 52+
l0—B|<s T

Choose now rg s.t.

| Pty <
10-8]>6 2

when r > rg. Then, the last expression in the chain of inequalities is
< el flleo + C)-

Let now € — 0.

Step 3. The fact that ||P[f]llcc = ||f|loo €asily follows from the maximum
principle.

Step 4. f+— P|[f]is onto. Let h € h>*(D)NC(D) and let ¢ be the boundary
function of h. Then, h— P[] is harmonic in D, continuous in D and has vanishing
boundary values. By the maximum principle, it must be identically zero.

|

3In fact,

. 1-— |z|2 1+e 10z
0\ _ —
P-(e") = |1 —e—i0z2 = fe 1—eifz )~



Let D = D(z0,p) = {2z : |z — 20| < p} be a disc in C. After a rescaling,
the Poisson extension of a function f which is continuous on dD(zg, p) is (z =
2o + re’®)

" oDy i do

P.fl= | PP(e”)f(z0+re?) o,

o 27

where 2| 2
i P~ — 12— %0

P(e") = ——1
ERNPEr

Exercise 7 (The Dirichlet problem in the right half plane.) Let R?2 =
{z € C: Re(z) > 0} be the right half plane and iR, the imaginary axis, be its
boundary in C.

(i) Show that (a) the function h(z +iy) = L v,z s harmonic in R? (e.g.,
look for holomorphic f s.t. Re(f)="h); (b) h >0 and for x > 0,

I
*/ ey = 1;
TJ) 6o T8ty
(c) if § > 0 is fized, then
1 x

lim — ———dy =0.
e=0 T Jqjezay 22+ Y2

x

(ii) Let f:R — R be a function in C(R) N L*(R).Define its Poisson integral
P[f]:R2 - R
to be

+oo
Pila+in =1 [ fo-0 v

Show that (a) P[f] is harmonic in R2 ; (b) lim, o P[f](z +iy) = 0; (c)
limy—o PLf)(z +i9) = £() for y € R: (@) | Fllow — [P/

(#ii) If u is any function which is harmonic in Ri, continuous on @ and such
that lim, o u(z) = 0, then u = Plul;r].

Recall that Cp(R) is the space of continuous functions vanishing outside a com-
pact interval. You have proved the following theorem.

Theorem 8 The map f — P[f] is an isometry of Co(R) onto h>(RZ) N
Co(R3).

Recall the definition of Poisson extension:

P = [ renpeng = [ e 1"Z'2 @
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We can also consider the Poisson extension of a function f € LP(S), 1 < p < oc.
In fact, (4) is defined even for a Borel, bounded measure p:

Pl = [ P 2. )



For a function w which is measurable on circles centered at the origin in C, and

for 0 < p < o0, let
™ I
My(u,r) = {/ |u(re 0)|p277.] .

—1T

Also, let _
Myo(u,r) = sup |u(re')).
oc[—m,m)
Lemma 9 Let f € LP(S), 1 < p < o0, and let p be a bounded, Borel measure
on S. Then, r — M,(P[f],r) increases with r and
sup My (PLS1, ) = Jim My (L)1) < [

Proof. By definition, P.[f] = P[f](r-) = P« f. If 0 < 7 < r9 < 1, then
P, [f] = P, jr, * Pr,[f], hence, using Young’s inequality first, then the L' norm
of P,., and again Young’s inequality,

MP(P[fLTl) = ||PT1[f]||L”(S) = HPm/rg *P’I"Q[f]”LP(S)
< NPy el @) |1 Pra [ £l Lo s)
< NP [flllzesy = Mp(P(f], r2)
< | fllee-

Harmonic H? spaces. Let 1 < p < co. Let u be harmonic in . We say that
u belongs to the harmonic Hardy space hP(D) if

|l () = sup My (u,r) < oo.
r<l

Observe first that if p < ¢, then h9 C hP, since, by Jensen’s (or Holder’s)
inequality,
Mp(r,u) < My(r,u).

By Lemma 9, if f € LP(S), then P[f] € h?(D).

Corollary 10 Let u:ID — C be a harmonic function. Then M,(u,r) increases
with r.

Proof. Let 0 <7y <72 <1 and fix ro < R < 1. Let ug(z) = u(rz), a function
which is harmonic in D and continuous in D. By Theorem 5, upr is the Poisson
integral of its boundary values, ugr = Plug|s]. Then, by Lemma 9,

My(u, Rr) = Mp(ur,m1) < My(ug,r2) = Mp(u, Rra).

Given 0 < p; < p2 < 1, we can always find R, r; and 79 as above, such that
pPj = R’/‘j. | ]

Theorem 11 If 1 < p < oo, then the Poisson extension operator f — P[f]
maps LP(S) isometrically onto h?(D), and it maps M(S) isometrically onto
h'(D).

Moreover, lim,_.1 P[f](r-) = f holds in LP(S)-norm if 1 < p < oo or if
feC®) andp =o00. If f € M(S) or f € L>(S), then lim,_; P[f](r-) = f
holds in the weak* topology.



Proof. Let f. = P[f](r).
Step (i). If f € LP(S), then f, — f in LP(S).

Lemma 12 Let T} be translation by t inS: T, f(e*) = f(e*=). If1 < p < oo,
then
}lbin%)Thf = f in LP(S).

Proof of the Lemma.. By translation invariance of the measure on S, T} is
an isometry of LP, for all 1 < p < co.
Fix € > 0 and choose g € C(S) s.t. ||f —gllzr <e.

I Tnf = fllee < NTh(f = Dllee + 1 Thg — gllee +1f — gl
< 2e+ HThg — gHLp.

By uniform continuity of g, [Thg(e®) — g(e'*)| < € if |h| < §(e) is small enough.
Integrating, ||Thg — ¢||» < € and this finishes the proof. m

Exercise 13 Lemma 12 fails for L>(S), but it holds on C(S). Moreover, it
holds for f € L>®(S) if and only if f is a.e. equal to a continuous function.

We now write, for § > 0 to be fixed,

eit _ eit — eiy ei(t—y) _ eit — )
fr(e®) = f(e) (ﬂﬁgﬁﬂggf“ J(F(e 1) = f(e))dy = T+ 11

Now,

1l = ‘/IygéPr(ew)(Tyf(el)—f(el ))dy

IN

/ Pr(e™)|Ty f(e') — f(e™)|dy.
ly|<é
By Minkowsky’s inequality in its integral form,
Ml < [ PAMITS ~ fllrdy <
ly|<s

if 0 is chosen small enough to have | T, f — f|/zr < € when |y| < 4.
In order to estimate the secon term, let P? = P,x(=s,5)c- Then,

(LI < [FENP e+ f] % P,
and by Young’s inequality,
1Ilze < 201 2r 1P 12 — 0 as 7 — 1

for each § > 0 fixed, by properties of the Poisson kernel.
When p = oo and f € C(S), the convergence result was proved when dis-
cussing the Dirichlet problem.

Step (ii). The correspondence f +— P[f] isometrically maps L?(S) onto h?(S)
(if 1 < p < 00) and M(S) onto h'(S).



Consider the case 1 < p < oo first. Let u € h?(ID) and consider the functions
up = u(r-). As M,(u,r) increases with r, we have that {u,} is bounded in
LP. By the Banach-Alaoglu Theorem, there is a subsequence u,., which weak-*
converges to some f € LP. Since P, is a C'"*° function,

) . i ) oy, dB
Piflire®) = fPAe) = [ f)P(0) 2
™ N
_ 1i - 70 Pr i(t—0)\
B -

= lim u,, * P.(e") = lim u(rrje’)
—00 j—o00

J .
= u(re”).

About norms, by Step (i),

[ullpe = Tim Jfur[[re = lim [ fr;]lze = [|fllze-
J*)OO jHOO

Recall that above f,. = P[f](r-), by definition. A similar argument works for
u € ht, since LY(S) C M(S) = C(S)*, the inclusion being isometric, by Riesz’
Representation Theorem. Here are some details. Let u € h'. By Banach-
Alaoglu, there is a sequence u,; converging to some p € M(S) in the weak”
topology. The same argument as above implies that u = P[u].*

To prove that p — P[u] is an isometry, observe first that, by a property of

weak* convergence,
el ar(sy < liminf [Ju, [|pe = |lul[pe.
jHOO

5

In the other direction, by Young’s inequality for measures®, we have

lullp, = lim fluy |20 = Hm (g, |22
j—o0 j—o0

= lim [lp* Pl
Jj—o0

IN

i [l ae ) 1P Il 2

IN

HM||M(S)~

We are left with p = oo. If € L*(S), then ||[|P[f]|lL> < || fllze(s). To prove
that the map f — P[f] is in fact an isometry of L> onto h™, use the argument
above and the fact that L>° = (L')*.

Step (iii). We are left with the statements about weak* convergence. Con-
sider the case of p € M(S). Let g € C(S). By symmetry (hence, formal
self-adjointness) of P,

[ sterptioens = [ pleen B~ [ gen B a1,

—T —T

—T

since P[g|(r-) — ¢ uniformly as r — 1. Thus, P[u|(r-) — p weak* as r — 1.

4Exercise.
5

s fllpr < AN llellnes)-



A similar argument with the appropriate duality pairing works for the case
of f € L*°. Tt is easy to see that one has convergence in norm if and only if
feC(s).

]

A reference for the material of this chapter is [Ricci]. To see what happens
when one replaces D by R™, see [Steinl]. A wide generalization of the above is
beautifully explained in [Stein2].

References

[Ricci] Fulvio Ricci, Hardy spaces in one complex variable.Lecture notes,
http://homepage.sns.it/fricci/corsi.html.

[Steinl] Stein, Elias M. Singular integrals and differentiability properties of
functions. Princeton Mathematical Series, No. 30 Princeton University
Press, Princeton, N.J. 1970 xiv+290 pp.

[Stein2] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonal-
ity, and oscillatory integrals. With the assistance of Timothy S. Mur-
phy.Princeton Mathematical Series, 43. Monographs in Harmonic Analy-
sis, ITI. Princeton University Press, Princeton, NJ, 1993. xiv+695 pp.



