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A Stefano, con nostalgia.

Abstract. We prove a global Inverse Map Theorem for a map f

from the Heisenberg group into itself, provided the Pansu differential

of f is continuous, non singular and satisfies some growth conditions

at infinity. An estimate for the Lipschitz constant (with respect to

the Carnot–Carathéodory distance in H) of a continuously Pansu

differentiable map is included. This gives a characterization of (con-

tinuously Pansu differentiable) globally biLipscitz deformations of H

in term of a pointwise estimate of their differential.

1. Introduction

In recent years there has been some interest in studying those maps

between Carnot groups which alter in a controlled way some geo-

metric quantity: quasi-conformal maps, biLipschitz maps. See e.g.

[10], [13], [6], [3], [5]. Many results have been proved in the case of

the Heisenberg group H, the simplest nontrivial example of Carnot

group. In this setting the theory is quite rich. Moreover, the Heisen-

berg group is especially interesting among Carnot group because of

its applications, for instance to analysis in several complex variables.
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In this note, we give a characterization of the biLipschitz maps

among the Pansu continuosly differentiable maps of the Heisenberg

group H into itself.

To start the discussion, recall that a standard way to ensure that

a given C1 map f : R
n → R

n is globally biLipschitz in the Euclidean

sense is that its differential Df satisfies the pointwise condition

L−1 ≤ |Df(x)(y)| ≤ L, x, y ∈ R
n, (1)

In this case, as a consequence of the Inverse map Theorem, the map

is a local C1 diffeomorphism. Moreover as a consequence of a global

Inverse Map Theorem, which goes back (at least) to Hadamard [8]

and Lévy [11] (see [14, Theorem 1.22] for a proof), the map f is

a global C1 diffeomorphism. The mean value theorem provides the

estimate

L−1 ≤
|f(x) − f(y)|

|x − y|
≤ L, ∀x, y ∈ R

n.

This note is devoted to the extension of this result to the Heisen-

berg group. For simplicity of notation, we only consider the first

Heisenberg group H = R
3 with its Lie group operation (P,Q) 7→ P ·Q,

P,Q ∈ H. With our choice of coordinates,

(x, y, t) · (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2(x′y − xy′)).

Let d be the Carnot distance in H and denote by Df(P ) : H → H

the Pansu differential, at a point P ∈ H, of a map f : H → H. For a

complete overview of notation and terminology, see §2.

A map f from H into itself is L-biLipschitz, L ≥ 1, if

1

L
≤

d(f(P ), f(Q))

d(P,Q)
≤ L

whenever P and Q are distinct points in H.

We say that a map f : H → H is Pansu continuously differentiable,

briefly C1
H
, if it is Pansu differentiable at any P ∈ H, Df(P ) is a

morphism of H and it is a continuos map of P . More precisely, it acts

on vectors as multiplication times a 3 × 3 matrix Df(P ),

Df(P ) =

(

Jf(P ) 0

0 det(Jf(P ))

)

,

for a suitable 2×2 matrix Jf(P ) with continuous entries. We mention

that a version of the Inverse Map Theorem has been proved in this

setting by Magnani [12].
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Here we prove the following result

Theorem 1. Let f : H → H be C1
H

function. If there is L ≥ 1 such

that

L−1|z| ≤ |Jf(P )z| ≤ L|z|, ∀ z ∈ R
2,

then f is globally L−biLipschitz.

Concerning the converse statement, observe that a version of Ra-

demacher theorem in Carnot groups has been proved by Pansu [13].

We obtain Theorem 1 as a consequence of a global inverse map

Theorem of Hadamard type, see Theorem 2. The proof is based on

a classical “lifting of homotopies” argument, which is adapted to our

setting in Lemma 3.

Another aspect we discuss here is the estimate of the Lipschitz

constant of a C1
H

map, see Theorem 3. Although the proof is not

deep, it requires some care.

As in the Euclidean case, in Theorem 1 we draw a conclusion

on global metric properties of f from a (uniform) assumption on its

infinitesimal behavior. The motivation for considering this problem

came to us from [2], where it is proved that isometries of H are stable

in the family of biLipschitz maps.

Although the definition of biLipschitz map makes perfect sense in

all metric spaces, it is difficult to verify in practice whether a given

map has this property. Theorem 1 provides a tool for checking (ac-

tually characterize) this property in the class of differentiable maps.

Finally we observe that there are at least two other ways to con-

struct Lipschitz maps of H. The first is through a technique due to

Korányi and Reimann [10]. The other, through the “lifting” of suit-

able plane maps is due to Capogna and Tang, see [4], [5]. See also the

discussion in [2].

2. Preliminaries

Let H = R
3 be the Heisenberg group, with group law

(x, y, t) · (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2(x′y − xy′)), (2)

for any (x, y, t), (x′, y′, t′) ∈ R
3. Observe that the inverse element of

(x, y, t) with respect to law (2) is (x, y, t)−1 = (−x,−y,−t).
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The Carnot Carathéodory distance in H can be defined as follows.

Consider on H the left invariant vector fields X = ∂x + 2y∂t and

Y = ∂y − 2x∂t. A path γ : [0, T ] → H is said to be be horizontal if γ

is absolutely continuous and there are a, b measurable functions such

that γ̇(s) = a(s)Xγ(s) + b(s)Yγ(s), for a.e. s ∈ [0, T ]. The length of γ

is

length(γ) :=

∫ T

0

√

a2(s) + b2(s)dt. (3)

Given (z; t), (z′; t′) ∈ H, the control distance d((z; t), (z ′; t′)) is the

infimum of the length among all horizontal paths connecting (z; t)

and (z′; t′). The distance is left invariant with respect to the Lie group

structure (2). Balls are denoted by B(P, r) = {Q ∈ H : d(Q,P ) < r}.

A natural dilation structure of H, which makes the vector fields

X and Y homogeneous of degree 1 is defined by

δλ(z; t) = (λz;λ2t), λ > 0, (z; t) ∈ H.

All maps of the form

(z; t) 7→ (Az; (det A)t),

where A ∈ O(2), are isometries.

A map f : H → H is L−biLipschitz if

L−1 ≤
d
(

f(P ), f(Q)
)

d
(

P,Q
) ≤ L, ∀P,Q ∈ H. (4)

The definition of differentiability for a map f : H → H has been

given by Pansu in the following terms. The differential Df(P ) of a

map f : H → H at a point P ∈ H is

Df(P )(Q) := lim
σ→0

δσ−1

{

f(P )−1 · f(P · δσQ)
}

,

where the limit must be uniform in Q belonging to compact sets

of H ' R
3. Pansu proved that the differential of a biLipschitz map

exists almost everywhere and it is a dilation preserving morphism of

the group (H, ·) into itself. Since any such morphism must have the

form (u, v, w) 7→ (αu+βv, γu+δv, (αδ−βγ)w), for suitable constants

α, β, γ, δ ∈ R, it can be identified with the matrix A =

(

α β

γ δ

)

and

written as (u, v, w) 7→
(

A
(u
v

)

; det(A)w
)

. Given a point P where the
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differential of f exists and it is a group morphism, we denote by

Jf(P ) its associated 2 × 2 matrix, so that

Df(P )





u

v

w



 =

(

Jf(P )
(u
v

)

det(Jf)(P )w

)

. (5)

The way Jf is associated to f is the following. f , as a map of R
3 into

itself, can be written f = (ζ; τ) = (ξ, η, τ), where ζ maps into R
2.

Then,

Jf =

(

Xξ Y ξ

Xη Y η

)

.

Recall also the following fact. Let γ : [0, T ] → H be a L−Lipschitz

path, i.e. d(γ(s), γ(s′)) ≤ L|s − s′| for any s, s′ ∈ [0, T ]. Then, γ is

trivially locally Lipschitz continuous from R to R
3 with the Euclidean

metric. Then its tangent vector γ̇ exists a.e. By [13, Proposition 4.1],

the ODE γ̇ = aX(γ) + bY (γ) holds almost everywhere for suitable

functions a, b and

lim
ε→0

δε−1

(

γ(s)−1 · γ(s + ε)
)

= (a(s), b(s), 0)

for almost every s. If we define the metric length of γ as

lengthd(γ) := sup

n−1
∑

j=0

d
(

γ(sj), γ(sj+1)
)

< ∞,

then [1, Theorem 4.4.1] gives

lengthd(γ) =

∫ T

0

√

a2 + b2. (6)

This means that the length defined in (3) agrees with lengthd.

3. A global Inverse Map Theorem

Theorem 1 will be proved as a consequence of the following Hadamard-

type Theorem (Theorem 2) and of an estimate of the Lipschitz con-

stant of a function f ∈ C1
H

in term of sup |Jf | (Theorem 3).

Theorem 2. Let f be a C1
H

map. Assume that Jf is nonsingular at

any point and, for a suitable constant C0, the estimate supH |(Jf)−1| ≤

C0 holds. Then f : H → H is a global C1
H

diffeomorphism.
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In the statement of the theorem, |A| = max
v2

1
+v2

2
=1

|Av| denotes the norm

of a 2 × 2 matrix A.

Theorem 3. Let f ∈ C1
H
, with supH |Jf | = L < ∞. Then

d(f(P ), f(Q)) ≤ Ld(P,Q), P,Q ∈ H.

First we recall a version of the Inverse Function Theorem proved

by Magnani [12]

Theorem 4. Let f : H → H be a C1
H

map. Assume det Jf(P ) 6= 0 at

any P ∈ H. Then, for any P ∈ H, there are U and V neighborhoods of

P and f(P ) such that f : U → V is a homeomorphism, f−1 : V → U

is a continuously differentiable map in Pansu sense and formula

Df(P )Df−1(f(P )) = I, P ∈ U,

holds.

The following Lemma 1 will give the proof of Theorem 3.

Lemma 1. Let f ∈ C1
H
. Let γ : [0, T ] → H be a geodesic. Let

sup
s∈[0,T ]

|Jf(γ(s))| = L. Then, for any [α, β] ⊂ [0, T ],

length(f ◦ γ)|[α,β] ≤ L length(γ[α,β]). (7)

As a consequence, f ◦γ is a Lipschitz path with Lipschitz constant L.

Proof. We prove that, given any geodesic γ : [0, T ] → H, the path

f ◦ γ = f(γ) satisfies for any s ∈ (0, T ) the ODE

d

ds
(f ◦ γ)(s) = a′(s)X((f ◦ γ)(s)) + b′(s)Y ((f ◦ γ)(s)),

where
(

a′(s)

b′(s)

)

= Jf(γ(s))

(

a(s)

b(s)

)

(8)

and (a(s), b(s)) is the horizontal speed of γ at s, i.e. γ̇(s) = a(s)X(γ(s))+

b(s)Y (γ(s)). Observe that a′ and b′ are continuous functions.

We may consider (see e.g. [2]) a geodesic of the form

γφ(s) =

(

1 − cos(φs)

φ
,
sin(φs)

φ
, 2

φs − sin(φs)

φ2

)

= (x(s), y(s), t(s)).

(9)
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Then, letting γ(s)−1 · γ(s + ε) = Qε, we have, after a direct compu-

tation

Qε =

(

cos(φs) − cos(φs + φε)

φ
,
sin(φs + φε) − sin(φs)

φ
,

2

φ2

(

φε − sin(φε)

)

.

Therefore,

lim
ε→0

δ1/εQε = (sin(φs), cos(φs), 0) = (ẋ(s), ẏ(s), 0)

= (a(s), b(s), 0), ∀ s,
(10)

if a and b are defined in such a way that γ satisfies d
dsγ(s) = a(s)X(γ(s))+

b(s)Y (γ(s)) for all s. The case φ = 0 is trivial.

Our aim is to show that f ◦ γ is a horizontal path. We need to

compute

d

ds
(f ◦ γ)(s) = lim

ε→0

(ζ(γ(s + ε)) − ζ(γ(s))

ε
,
τ(γ(s + ε)) − τ(γ(s))

ε

)

,

where we introduced the notation f = (ζ, τ) = (ξ, η, τ) for the com-

ponents of f . Since γ(s + ε) = γ(s) · Qε and δ1/εQε → (a(s), b(s), 0),

by Pansu differentiability we have,

lim
ε→0

ζ(γ(s + ε)) − ζ(γ(s))

ε
=

(

a′(s)

b′(s)

)

, ∀s ∈ [0, T ].

Here

(

a′(s)

b′(s)

)

= Jf(γ(s))

(

a(s)

b(s)

)

. In particular, at any s,

ξ(γ(s) · Qε) = ξ(γ(s)) + a′(s)ε + o(ε) and

η(γ(s) · Qε) = η(γ(s)) + b′(s)ε + o(ε),
(11)

as ε → 0.

Next we compute

lim
ε→0

τ(γ(s + ε)) − τ(γ(s))

ε
.

Since f is Pansu differentiable, by definition we know that, for any

P,Q ∈ H,

lim
ε→0

δε−1

{

f(P )−1 · f(P · δεQ)
}

= Df(P )(Q) = (Jf(P )(Q′),det(Jf)(P )Q′′),
(12)

where (Q′;Q′′) = Q. The limit must be by definition uniform when

Q belongs to a compact set. Note that Qε = γ(s)−1 · γ(s + ε) =
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δε(δ1/εQε), where, by (10), δ1/εQε belongs to a compact set. By the

uniformity of the limit in (12), we get

lim
ε→0

δε−1

{

f(γ(s))−1 · f(γ(s) · Qε)
}

= Df(γ(s))(a(s), b(s), 0)

= (a′(s), b′(s), 0).

Looking at the last component, we have

lim
ε→0

1

ε2

(

τ(γ(s) · Qε) − τ(γ(s))

+ 2ξ(γ(s))η(γ(s) · Qε) − 2η(γ(s))ξ(γ(s) · Qε)
)

= 0.

Thus, by (11)

τ(γ(s + ε)) − τ(γ(s))

= −2ξ(γ(s))η(γ(s + ε)) + 2η(γ(s))ξ(γ(s + ε)) + o(ε2)

= [−2b′(s)ξ(γ(s)) + 2a′(s)η(γ(s))]ε + o(ε).

Therefore we have proved that the usual tangent vector to f(γ) exists

everywhere and it belongs to the horizontal space. More precisely,

d

ds
(ξ(γ(s)), η(γ(s)), τ(γ(s)))

=
(

a′(s), b′(s), 2a′(s)η(γ(s)) − 2b′(s)ξ(γ(s))
)

= a′(s)X(f(γ(s))) + b′(s)Y (f(γ(s))).

The map f(γ) satisfy for any s ∈ [0, T ] the equation d
dsf(γ(s)) =

a′(s)X(f(γ(s))) + b′(s)Y (f(γ(s))). Since the solution of the Cauchy

problem

Γ̇ = a′X(Γ ) + b′Y (Γ ), in [0, T ], Γ (0) = P,

with given P ∈ H and a′ and b′ continuous functions is unique, we

may assert that f(γ) is a C1 path. Equation (8) ensures estimate (7)

in any subinterval [α, β] ⊂ [0, T ]. The lemma is proved. ut

Lemma 1 provides immediately a proof of Theorem 3.

Proof of Theorem 3. Take P,Q ∈ H. Let γ : [0, d(P,Q)] → H be a

geodesic such that γ(0) = P , γ(d(P,Q)) = Q. Then, lengthf(γ) ≤

Ld(P,Q). Therefore d(f(P ), f(Q)) ≤ Ld(P,Q). ut

Next we show that Lemma 1 holds for any Lipschitz path γ.
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Lemma 2. Let f ∈ C1
H
. Denote L = supH |Jf |. Assume L < ∞. Let

γ : [0, T ] → R be a Lipschitz path. Then, for any [α, β] ⊂ [0, T ],

length((f ◦ γ)|[α,β]) ≤ L length(γ|[α,β]). (13)

In particular f(γ) is Lipschitz and Lipf(γ) ≤ L Lip(γ).

It can be checked that in the right–hand side of (13) L can be

changed with maxs∈[α,β] |Jf(γ(s))|.

Proof. Take γ : [0, T ] → H, Lipschitz. Take [α, β] ⊂ [0, T ]. In order to

estimate the length of f ◦ γ, consider a partition α = s0 < s1 < · · · <

sn = β. By definition of length,

length(γ|[α,β]) >
∑

j

d(γ(sj), γ(sj+1)). (14)

Let γj : [0, d(γ(sj), γ(sj+1))] → H be a unit speed geodesic connecting

γ(sj) and γ(sj+1). Then d(γ(sj), γ(sj+1)) = length(γj). We know by

Lemma 1 that length(f(γj)) ≤ Llength(γj). Moreover, length(f(γj)) ≥

d(f(γ(sj+1)), f(γ(sj))). Then

∑

j

d(f(γ(sj+1)), f(γ(sj))) ≤
∑

j

length(f(γj))

≤ L
∑

j

length(γj)

= L
∑

j

d(γ(sj), γ(sj+1))

≤ L length(γ|[α,β]).

Since this holds for any partition {sj}, we conclude that

length(f(γ)|[α,β]) ≤ Llength(γ|[α,β]),

as desired. ut

Theorem 2 will be proved with the help of the following lemma.

Lemma 3 (Lifting of horizontal homotopies). Let f ∈ C 1
H
. As-

sume that Jf is nonsingular at any point and, for a suitable constant

C0, the estimate supH |(Jf)−1| ≤ C0 holds. Let q : [0, 1] × [0, 1] such

that

(a) (λ, t) 7→ q(λ, t) is continuous;



10 Nicola Arcozzi, Daniele Morbidelli

(b) there is L0 > 0 such that t 7→ q(λ, t) is Lipschitz continuous of

Lipschitz constant ≤ L0 for any λ ∈ [0, 1];

(c) there are endpoints P0, P1 ∈ H such that q(λ, 0) = P0 and q(λ, 1) =

P1 for any λ ∈ [0, 1].

Assume also that f(A) = P0 for some A ∈ H. Then there is p =

p(λ, t) satisfying (a) and (b) and such that f(p(λ, t)) = q(λ, t) on

[0, 1] × [0, 1].

Proof. The proof follows a rather standard argument, see e.g. [14].

We briefly show how to adapt it to our setting. By continuity there

is ε > 0 such that q(λ, t) is close to P0 for all λ ∈ [0, 1] and t ∈ [0, ε].

Then the map p(λ, t) can be easily defined by the local Inverse Map

Theorem as p(λ, t) = f−1(q(λ, t)), where f−1 is an inverse of f near

A, f−1(P0) = A. Put

ā = sup
{

a > 0 : ∃ p : [0, 1] × [0, a[ → H continuous and such that

f(p(λ, t)) = q(λ, t) ∀(λ, t) ∈ [0, 1] × [0, a[
}

.

Assume by contradiction that ā < 1. Observe that the path t 7→

p(λ, t) is a Lipschitz path, by Lemma 2 applied to some local inverse

of f . Indeed, take s < τ < ā. Then, for any λ ∈ [0, 1],

d
(

p(λ, s), p(λ, τ)
)

≤ length
(

p(λ, ·)
∣

∣

[s,τ ]

)

≤ C0length
(

q(λ, ·)
∣

∣

[s,τ ]

)

≤ C0L0|s − τ |,

Since s 7→ p(λ, s) is uniformly C0L0 Lipschitz continuous, as λ ∈

[0, 1], the map p(λ, t) extends continuosly on the closed rectangle

[0, 1]× [0, ā]. Equation f(p(λ, s)) = q(λ, s) holds there. Therefore, by

the local Inverse Map Theorem we can extend up to [0, 1]× [0, ā + ε],

for some small positive ε. Thus we reached a contradiction and we

conclude that it must be ā = 1. ut

We are now in a position to prove Theorem 2.

Proof of Theorem 2.

Step 1. f is onto. Indeed, assume f(0) = 0. Let Q ∈ H. We look

for P ∈ H such that f(P ) = Q. Take a geodesic γ : [0, 1] → H,

γ(0) = 0, γ(1) = Q. Put q(λ, s) = γ(s), λ ∈ [0, 1]. Then lift the map

q. There is p such that f(p(λ, s)) = q(λ, s) on [0, 1]2. Then, letting

P = p(0, 1), Step 1 is proved.
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Step 2. f is one-to-one. Assume f(P ) = f(0) = 0 for some P 6= 0.

Then let η(1, s), s ∈ [0, 1] be a geodesic between 0 and P . Define then

γ(λ, s) = δλ

(

f(η(1, s))
)

, (λ, s) ∈ [0, 1] × [0, 1].

Then γ(λ, s) is a horizontal homotopy and by Lemma 3 there is η(λ, s)

such that

f(η(λ, s)) = γ(λ, s), (λ, s) ∈ [0, 1] × [0, 1].

Then

f(η(λ, 1)) = γ(λ, 1) = δλf(η(1, 1)) = δλf(P ) = δλ(0) = 0,

for any λ ∈ [0, 1]. Thus, since f is a local homeomorphism, the map

λ 7→ η(λ, 1) is constant on [0, 1], i.e.

η(λ, 1) = η(1, 1) = P, for any λ ∈ [0, 1]. (15)

Analogously η(λ, 0) = η(1, 0) = 0 for any λ ∈ [0, 1].

Observe that for any small λ the path s 7→ η(λ, s), s ∈ [0, 1], is

uniquely determined by the Inverse Function Theorem, i.e.

η(λ, s) = g(γ(λ, s)),

where g denoets the local inverse of f near 0, g(0) = 0. Thus, for

small λ,

η(λ, 1) = g(γ(λ, 1)) = g(δλf(η(1, 1))) = g(δλf(P )) = g(0) = 0,

by the definition of γ. We have found that η(λ, 1) = 0 for all small λ.

But this is incompatible with (15). ut
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