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Abstract

The Grushin plane is a right quotient of the Heisenberg group.
Heisenberg geodesics’ projections are solutions of an isoperimetric
problem in the Grushin plane.

1 Introduction

It is a known fact that there is a correspondence between isoperi-
metric problems in Riemannian surfaces and sub-Riemannian geome-
tries in three-dimensional manifolds. The most significant example
is the isoperimetric problem in the plane, corresponding to the sub-
Riemannian geometry of the Heisenberg group H.

We briefly recall this connection following the exposition in [Mont].
Consider, on the Euclidean plane, the one-form α = 1

2(xdy − ydx),
which satisfies dα = dx ∧ dy and which vanishes on straight lines
through the origin. By Stokes’ Theorem, the signed area enclosed by
a curve γ is

∫
γ α. Let c : [a, b] → R2 be a curve. For each s in [a, b],

let γs be the union of the curve c restricted to [a, s], of the segment
of straight line joining c(s) with the origin O and of the segment of
straight line joining O with c(a). Let C : [a, b] → R3 be the curve
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C(s) = (c(s),
∫
γs

α). The third coordinate of C(s) is the signed area
enclosed by γs. The curve C = (x, y, t) satisfies the O.D.E.

dt =
1
2
(xdy − ydx).

A path C in three-dimensional space which is obtained in this way
is called a horizontal lift of the curve c. More generally, a horizontal
curve is any curve C = (x, y, t) which satisfies the O.D.E. above. A
notion of length for horizontal curves C = (x, y, t) is defined by setting

ΛH(C) =
∫

C

√
dx2 + dy2,

i.e. the length ΛH(C) of C is the Euclidean length of C’s projection
onto the (x, y)-plane. Given points P and Q in R3, we define their
Carnot-Charathéodory distance dH(P,Q) as the infimum of ΛH(C) as
C ranges over the set C(P,Q) of the horizontal curves joining P and
Q. It is easy to see that C(P,Q) is not empty (alternatively, this is
a special case of the non-elementary Chow’s Theorem [Mont]). The
Heisenberg group, as metric space, is (R3, dH). In this context, we
write H = R3.

More geometrically, given a horizontal curve C between two points
in H, P = (x1, y1, t1) and Q = (x2, y2, t2), and considering its projec-
tion c on the (x, y)-plane, we have that (i) ΛH(C) = ΛEuc(c) is the
Euclidean length of c and (ii) A = t2 − t1 is the signed area enclosed
between c and the straight segment between (x2, y2) and (x1, y1). A
length minimizing horizontal curve Γ between P and Q, a geodesic of
(H, dH), is then the horizontal lift of a plane curve γ between (x1, y1)
and (x2, y2) such that (i) γ, together with the segment between (x2, y2)
and (x1, y1), encloses an area A and (ii) γ has minimal Euclidean
length among the curves with property (i). This is (a signed version
of) the classical Dido problem in the plane, and it is well known that
its unique solution γ is an arc of a circle. Hence, the geodesics in
(H, dH) are horizontal lifts of circular arcs.

As an algebraic object, the Heisenberg group H is the Lie group
R3 ≡ C× R endowed with the product

(z, t) · (w, s) = (z + w, t + s− 1/2Im(zw)).

The metric dH on H is left invariant: dH(A · P,A · Q) = dH(P,Q),
whenever P, Q, A ∈ H. When no confusion arises, we drop the dot
”·” in the product. In Section 2 we give a less euristic definition of dH.
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The Grushin plane G is the plane R2 with coordinates (u, v), en-
dowed, outside the critical line u = 0, with the Riemannian metric

ds2 = du2 +
dv2

u2
.

The metric can be extended continuously across the critical line to
a metric dG on R2. We write G = R2, when the latter is endowed
with the metric dG. We refer the reader to [FL] for a presentation of
G. In Section 2 we will recall some elementary properties of Grushin
geometry.

It is known that the Grushin plane G, as metric space, is a quotient
of the Heisenberg group, hence, in principle, there is a relationship be-
tween the sub-Riemannian geometry in H and a specific isoperimetric
problem in G. In this note, we investigate more closely this relation-
ship. Indeed, we consider the following two Dido-type problems (see
Theorem 3).
Isoperimetric Problem A Consider ξ = (a, 0) η = (b, 0) in G,
0 < a ≤ b. Given 0 < A < +∞, find a bounded open set Ω in G
having as boundary an absolutely continuous curve γ from ξ to η and
the straight line from η to ξ, such that

(1) ∫
Ω

dudv

u2
= A,

(2) γ has minimal length with respect to the Grushin geometry.

Isoperimetric Problem B Consider ξ = (a, 0) η = (b, 0) in G,
0 < a ≤ b. Given 0 < A < +∞, find an absolutely continuous curve
γ from ξ to η and the straight line from η to ξ, for which

(1)

−
∫

γ

dv

u
= A,

(2) γ has minimal length with respect to the Grushin geometry.

Problem A is a bona fide isoperimetric problem, while Problem
B is an ”isoperimetric problem for signed areas”, which is directly
related to the geodesics in H. On a formal level the two problems are
equivalent by Gauss-Green formula and we are interested in verifying
to what extent they admit the same solution.

The solution of problems A and B emphasizes the relationship
between H and G. We can view G as a quotient of H, in the following
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sense. Consider the one-parameter subgroup S = {(τ, 0, 0) : τ ∈ R} ⊂
H. Consider X = S�H = {SP : P ∈ H}, the class of the right cosets
of S, endowed with the quotient metric

dX(SP,SQ) = inf
H,K∈S

dH(HP, KQ). (1)

By left invariance, dX(SP,SQ) = infH∈S dH(HP, Q).
In Theorem 1 below we show that X is isometric to G. The isom-

etry can be realized as follows. We consider the function Φ : H → G,

(u, v) = Φ(x, y, t) := (y, t− xy

2
).

Let P = (x, y, t), the function Φ identifies each coset SP = {(τ, 0, 0)(x, y, t) :
τ ∈ R} = {(τ +x, y, t+1/2τy) : τ ∈ R} with (0, u, v) = SP ∩{x = 0},
its intersection with the plane x = 0 in H.

The relationship between H and G was already pointed out by
Rotschild and Stein ([RS]), who observed that, adding a dummy vari-
able, two vector fields spanning the horizontal space of a Grushin
plane could be seen as the vector fields spanning the horizontal space
of the Heisenberg group. In their paper [RS], they developed this ob-
servation as far as proving that any family of vector fields satisfying
Hörmander’s condition, by adding new variables and using an ap-
proximation similar to the Euclidean approximation of differentiable
manifolds, locally leads to a nilpotent Lie group. This enabled them
to use geometric and analytic tools from Lie group theory in the study
of general Hörmander’s vector fields.

The isoperimetric problems A and B are different from the isoperi-
metric problem in the Grushin plane recently solved by Monti and
Morbidelli in [MM]. Generalizing the results in [Beck], they solve the
isoperimetric problem for a class of Grushin-like structures. Let α ≥ 0.
For smooth domains Ω in the (u, v)-plane, the problem they consider
is that of minimizing the functional∫

∂Ω
(v̇2(t) + u2α(t)u̇2(t))1/2dt

over the domains such that
∫
Ω dudv = A is fixed. The isoperimetric

problem we have considered does not belong to this family.
The relationship between H and G is explained in Theorem 1 be-

low. The isoperimetric Problem B is solved in Corollary 2, and the
isoperimetric Problem A is solved in Theorem 3.
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2 Heisenberg and Grushin

Among the left-invariant metrics on H, we consider the Carnot-Chara-
théodory metric on H. Let z = x+iy. Consider the left invariant vector
fields

X =
∂

∂x
− 1/2y

∂

∂t
; Y =

∂

∂y
+ 1/2x

∂

∂t
.

The vector fields X and Y do not commute. Indeed, [X, Y ] = ∂
∂t . This

fact is central to the theory of Carnot groups, of which the Heisenberg
group is the simplest nontrivial example.

An absolutely continuous curve (in the Euclidean sense) γ : I → H
is horizontal if γ̇(s) = a(s)Xγ(s) + b(s)Yγ(s) ∈ Span{Xγ(s), Yγ(s)} for
almost all s ∈ I. The space HP H = Span{XP , YP } is called the
horizontal space at P . The H-length of γ, ΛH(γ), is the Euclidean
length of γ’s vertical projection onto the z-plane,

ΛH(γ) =
∫

I

√
a2(ξ) + b2(ξ)dξ.

Let P and Q be two points in H. The Carnot-Charathéodory distance
between P and Q, dH(P,Q), is the infimum of the H-lengths of the
horizontal curves joining P and Q. Since the notion of horizontal
curve and of H−length are left invariant, the Carnot-Charathéodory
distance is left invariant. Equivalently, dH is the distance associated
with the Carnot-Charathéodory metric making {XP , YP } into an or-
thonormal basis for HP H, for all P ∈ H.

The Grushin plane G is endowed with the vector fields

U = ∂u and V = −u∂v.

The Grushin metric outside the critical line u = 0 is the Riemannian
metric ds2 making U and V into a orthonormal basis for the tangent
space,

ds2 = du2 +
dv2

u2
.

The metric can be extended across the critical line u = 0 as a Carnot-
Charathèodory metric, since [U, V ] = −∂v 6= 0. As already mentioned
in the Introduction, by means of the length element ds2 one can com-
pute the G-length ΛG(γ) of a horizontal curve γ : J → G,

ΛG(γ) =
∫

J

√
u̇2(ξ) +

v̇2(ξ)
u2(ξ)

dξ.
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A curve is horizontal if it is absolutely continuous in the Euclidean
sense and it has locally finite length with respect to the metric ds2.
In the usual way, the notion of G−length leads to the geodesic metric
dG.

The following Theorem explains the metric and algebraic relation-
ship between H and G.

Theorem 1 Let S be a one-parameter subgroup of H. If S = Z is
the center of H, then S�H is isometric to the Euclidean plane R2. If
S is any other one-parameter subgroup, then S�H is isometric to G.

The center Z of H is the real line trough the origin generated by the
vector field ∂

∂t .
Proof. The case S = Z is trivial, the isometry being f : (z, t) 7→ z.
The case S 6= Z can be reduced to S = {S(τ) = (τ, 0, 0) : τ ∈ R}.
Since the latter case is the one we are interested in, we omit the
details of the reduction. Let S · P ∈ S�H be a right translate of
S. The subgroup S has a unique intersection with the plane {x = 0}
in H. Then, we can identify S�H with R2, the identification being
ϕ : S · (0, u, v) 7→ (u, v).

The map Ψ : R3 → H,

Ψ : (τ, u, v) 7→ S(τ)(0, u, v) = (τ, u, v + 1/2τu) = (x, y, t), (2)

is an analytic change of variables in H. We introduce new coordinates
[·] in H: (x, y, t) = Ψ(τ, u, v) =: [τ, u, v]. The natural projection
π : H → S�H becomes ϕ ◦ π : [τ, u, v] 7→ (u, v). Recall from the
Introduction that X is S�H, endowed with the quotient distance (1).

The theorem is proved if the following holds.
Claim The map ϕ : X → G is a surjective isometry.

In the new variables, the vector fields X and Y become

X = ∂τ − u∂v , Y = ∂u . (3)

Their push-forward by π are

ϕ∗π∗X = −u∂v = V , ϕ∗π∗Y = ∂u = U .

By (1), to prove that dX(S · P,S · Q) = dG(ϕ(S · P ), ϕ(S · Q)),
for any S · P,S ·Q ∈ S�H, it is enough to show that any horizontal
curve in G has a horizontal lift in H. Indeed, let γ : [0, 1] → G be an
horizontal curve. The curve γ̃ : [0, 1] → H, is a horizontal lift of γ if it
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is a horizontal curve and ϕ◦π(γ̃) = γ. From the definition of intrinsic
length, ΛH(γ̃) = ΛG(γ), and the equality of Carnot-Charathèodory
distances follows immediately.

We are only left with the proof of the existence of the lift. Let
γ(s) = (u(s), v(s)) be a horizontal curve in G, s ∈ [0, 1]. Define
γ̃(s) := [τ(s), u(s), v(s)] and

τ(s) = τ0 −
∫ s

0

v̇(ξ)
u(ξ)

dξ, (4)

with τ0 arbitrary. Since γ is horizontal,

ΛG(γ) =
∫ 1

0

(
u̇(ξ)2 +

(
v̇(ξ)
u(ξ)

)2
)1/2

dξ

is finite, hence the integral in (4) is well defined. Differentiating (4),
and recalling (3), we obtain that

˙̃γ = u̇Y − v̇

u
X,

belongs to the horizontal space at [τ, u, v] almost everywhere.
The critical line of G, {u = 0}, corresponds to the class of the cosets

SP which lie in some horizontal plane. Indeed, a line τ 7→ S(τ)P =
(τ, u, v + 1/2τu) = (x, y, t) is horizontal if dS(τ)P

dτ (τ) ∈ HS(τ)P H. On
the other hand,

dS(τ)P
dτ

(τ) = ∂x + 1/2y∂t,

which is a horizontal vector exactly when u = y = 0. Hence, the union
of the critical lines of the form SP , SP being a critical point in G, is
the plane y = 0 in H.

Corollary 2 Let (a, 0) and (b, 0) be two points in G, as in Problem
B. Let Γ be the geodesic from [0, a, 0] to [A, b, 0] in H. The solution of
Problem B is the curve ϕ ◦ π(Γ).

Theorem 3 Consider now two points in G, ξ = (a, 0) and η = (b, 0),
0 < a ≤ b. Let 0 < A < +∞ and Γ be the geodesic from [0, a, 0] to
[A, b, 0] in H. Suppose that A is such that Γ does not intersect the
plane [τ, 0, v]

Then, the solution of Problem A is the curve ϕ ◦ π(Γ).
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Remark that there exist bounded open sets Ω in G, such that
A =

∫
Ω

dudv
u2 = +∞ and ∂Ω is a horizontal curve having finite G-

length. Indeed, let a = b. For any ε > 0 we can find Ω for which
A = +∞ and ΛG(∂Ω) = 2a + ε and one cannot have ε = 0. It suffices
to consider the product of intervals Ω = [−η, a] × [0, η2], where η is
the positive solution to η2 + aη − aε = 0.

Remark 4 Let a = b = 1 in Theorem 3. The assumptions of The-
orem 3 are satisfied for A ∈ (0, A0], where A0 is the unique positive
number with the following property. There is a circle c0 = ∂D0 in the
(x, y)-plane such that: (i) c0 passes through (0, 0) and (0, A0); (ii) c0

is tangent to the line y = −1; (iii) the area of D0 ∩{(x, y) : y < 0} is
A0.

The proof of Theorem 3 mainly consists in an application of the Gauss-
Green formula. First, we need two lemmata.

Lemma 5 Let Ω be a bounded open set in G, having as boundary
an horizontal curve γ = ∂Ω and let ε > 0. Let Ωε = Ω ∩ {|u| > ε}
and lε = ∂Ωε \ ∂Ω , which is the union of open intervals in the lines
{u = ±ε}. If

∫
Ω

dudv
u2 < ∞ then

lim
ε→0

ΛG(lε) = 0. (5)

Proof. First we recall that, by definition of horizontal curve, we have
ΛG(∂Ω) < ∞. By the dominated convergence theorem,

lim
ε→0

ΛG(∂Ω ∩ {|u| < ε}) = ΛG(∂Ω ∩ {|u| = 0}) = 0.

The last equality depends on the fact that, for horizontal curves γ =

(u, v), we have ΛG(γ) =
∫ √

u̇2 + v̇2

u2 dσ. Hence, it must be γ̇ = 0, a.e.
on {u = 0}. The lemma is proved if

ΛG(lε) ≤ ΛG(∂Ω ∩ {|u| < ε}). (6)

Consider l+ε = lε ∩ {u = ε} and Ω+ = Ω ∩ {u > 0}. For each η ∈ l+ε ,
consider the half line sη originating from η and moving to u = 0,
parallel to the u-axis. Notice that sη ∩ ∂Ω ∩ {u > 0} 6= ∅, a.e. η ∈ l+ε ,
since otherwise Ω+ would be such that

∫
Ω

dudv
u2 = ∞; let F+

ε := {η ∈
l+ε : sη ∩ ∂Ω ∩ {u > 0} 6= ∅}. Let

Ψ : ∂Ω ∩ {0 < u < ε} → l+ε
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The set ∂Ω ∩ {0 < u < ε} = ∪j ∂Ωj is the countable union of open
arcs γj : (αj , βj) → ∂Ωj , j ∈ N. The map Ψ decreases the ΛG-length:∑

j

∫ βj

αj

√
u̇2 + v̇2

u2 dσ ≥
∑

j

∫ βj

αj

√
v̇2

ε2
dσ ≥ ΛG(l+ε −F ); hence (6) holds.

Lemma 6 Let Ω be a bounded open set in G having as (oriented)
boundary the horizontal closed curve γ starting from ξ = (a, 0) in
G − {u = 0} and let 0 <

∫
Ω

dudv
u2 < +∞. Then, the Gauss-Green

formula holds on γ for the 1-form dv
u ,∫

γ

dv

u
= −

∫
Ω

dudv

u2
. (7)

Proof. Let lε and Ωε as in lemma 5. Then,∫
∂Ωε

dv

u
= −

∫
Ωε

dudv

u2
.

The right hand side tends to −
∫
Ω

dudv
u2 as ε → 0. Equation (7) follows

by the dominated convergence theorem applied to
∫
γ∩{|u|>ε}

dv
u . In

fact, ∣∣∣∣∣
∫

γ∩{|u|>ε}

dv

u

∣∣∣∣∣ ≤ ΛG(γ ∩ {|u| > ε) ≤ ΛG(γ) < ∞

and, from (5),

ΛG(lε) =
∣∣∣∣∫

lε

dv

u

∣∣∣∣→ 0;

this proves the Lemma.
Proof of Theorem 3. We use the notation of Theorem 1. Consider
points E = [0, a, 0] and F = [A, b, 0] in H. Observe that ξ = ϕ ◦ π(E)
and η = ϕ◦π(F ). Since A > 0, the straight line joining E and F is not
a vertical line in H, hence there exists a unique minimizing geodesic
Γ in H between E and F (see [Mont] and [Monti]). Let

γ0 = ϕ ◦ π(Γ)

be its projection onto G. Since Γ does not intersect the plane [τ, 0, v],
then γ0 does not intersect the line u = 0 in G, hence it is a horizontal
curve from ξ to η.

Consider an open set Ω in G having as boundary the union of a
horizontal curve γ1 from ξ to η and the straight line returning from η
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to ξ, and such that A =
∫
Ω

dudv
u2 . Let Γ1 be the horizontal lift of γ1 to

H. By Lemma 6, Γ1 joins E and F in H:∫
γ1

dv

u
=
∫

∂Ω

dv

u
= −

∫
Ω

dudv

u2
= A.

Hence, ΛH(Γ1) ≥ ΛH(Γ), i.e., ΛG(γ1) ≥ ΛG(γ0).
The curve γ0, then, is the solution of Problem A provided it is the

oriented boundary of an open set in G. This amounts to showing that
γ0 does not have self-intersections, i.e. that ϕ ◦ π is injective on Γ.
This is done in Lemma 7 below.

Lemma 7 Let Γ be the minimizing geodesic in H between E = [0, a, 0]
and F = [A, b, 0]. With the notation of Theorem 1, the map ϕ ◦ π :
H → G is injective on Γ ∪ L′, where L′ is the straight line joining
[A, a, 0], [A, b, 0].

Proof. By symmetry we can always assume b ≥ a. The problem
is invariant under the intrinsic dilations of G, δh(u, v) = (hu, h2v),
hence we can consider the case a = 1, so that L′ be the segment
of horizontal straight line joining [A, b, 0] and [A, 1, 0] H. Lemma 7
reduces to showing that the map ϕ ◦ π : H → G is injective on Γ∪L′.

For (x, y, t) ∈ H, let L(x,y,t) be the left translation in H by (x, y, t):
L(x,y,t)(x1, y1, t1) := (x, y, t) · (x1, y1, t1).

We change the Heisenberg coordinates back to the usual ones by
(2) and we left-translate by [0, 1, 0] = (0, 1, 0) to the origin.

We have to show that the map

f = ϕ ◦ π ◦ L(0,1,0)

is injective on the curve Υ ∪ L, where

Υ = L(0,−1,0)Γ, L = L(0,−1,0)L′.

We denote by K the endpoint of Υ other than O, K = (A, b−1, A b+1
2 ).

If (x, y, t) = L(0,−1,0) ◦Ψ(τ, u, v), then

(x, y, t) =
(

τ, u− 1, v +
τ(u + 1)

2

)
.

Observe that, if f(P ) = f(Q), then P and Q have the same y-
coordinate. More precisely, f(P ) = f(Q) if and only if P and Q
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belong to the same element from the sheaf of straight lines projecting
H on G. The lines of the sheaf have the form

`(u,v) : τ 7→
(

τ, u− 1, v +
τ(u + 1)

2

)
. (8)

We have to consider two cases.
Case 1. The points P 6= Q belong to Υ. They have the same y-
coordinate and we assume that P is the one with smaller x-coordinate.
We show that f(P ) = f(Q) leads to a contradiction.

Let Σ be the curve obtained by joining the arc of Υ from O to
P , the segment [P,Q] and, finally, the arc of Υ between Q and K.
Consider now a new curve Ξ = Ξ1∪Ξ2∪Ξ3, where the Ξj ’s are defined
as follows. The curve Ξ1 is the arc of Υ from O to P . The curve Ξ2 is
the horizontal straight line having speed X(P ) = ∂x− y

2∂t = (1, 0,−y
2 ),

starting at Q and ending at Q̃, where Q and Q̃ belong to the same
vertical line. The curve Ξ3 is the vertical translation Υ̃ of the geodesic
Υ which starts at Q̃ and ends at K̃, the point of Υ̃ lying on the vertical
of K. A vertical translation of a curve in H is a curve obtained by a
left translation of an element of the center Z.

Denote by c the circular arc obtained as the orthogonal projection
of Υ onto the plane t = 0. Let D be region bounded by c and `, the
projection of L onto the t = 0 plane. Then, K̃ = (A, b− 1, B), where
B is the area of the portion of D lying above the line y = u− 1.

Since the difference of the t-coordinates between points in Υ and
Υ̃ is constant, then

t(Q)− t(Q̃) = A−B.

We have another way to compute this difference of areas. Let P ′

and Q′ be, respectively, the vertical projections of P and Q onto the
plane t = 0 and let p their Euclidean distance. We know the slope of
the straight lines joining P with Q and Q̃, respectively, hence we can
compute

t(Q)− t(Q̃) =
(

1 + u

2
− 1− u

2

)
p = up,

which gives, together with the previous equality,

up = A−B. (9)

We show now that this equation only holds in the trivial cases p = 0
or u = 1.
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From now on, we work on the Euclidean plane t = 0 in H. The u
coordinate gives the signed distance from the line m having equation
y = u − 1, to the line y = −1. The latter is mapped by f onto the
critical line u = 0 in G. The line m intercepts on c the chord [P ′, Q′],
having length p ≥ 0. Then, up is the signed area of the rectangle R
having as side [P ′, Q′] and having the opposite side on the line y = −1.
If u < 0, then, since A−B ≥ 0, equation (9) is impossible unless p = 0.
If u ≥ 0, A−B is the area between m and c.

We have two subcases, according to the segment [P ′, Q′] having y-
coordinate smaller or greater than the y-coordinate of c’s center. The
former case is readily seen to be impossible, since the circular segment
is strictly contained in the rectangle R.

Consider now the second case. Consider R0, a rectangle like R,
corresponding to the value u = 1 (i.e. one of the sides of R0 has
endpoints (0, 0) and (A, 0) and the area of R0 is A). Consider now the
following planar regions (see figure 1 below): E0 = D ∩ {(x, y) : 0 ≤
x ≤ A}; E1 = R0 \E0; E2 = D \E0; E3 = R \D; E4, the intersection
of the half-plane y ≤ u − 1 with E2 \ R; E5 = R ∩D; E6 = R0 ∩D.
Finally, let Aj be the Euclidean area of Ej .

Since

A1 + A0 ≥ A1 + A6 = A = A2 + A0

A3 + A5 = pu = A−B = A4 + A5,

we have A1 ≥ A2, A3 = A4. On the other hand, by inclusion,

A1 < A3 and A4 < A2,

which implies A1 < A2. Contradiction. Hence, pu > A−B.
Case 2. Suppose now that P ∈ υ, Q ∈ L and let P ′, Q′ be their
projections onto the t = 0 plane, respectively. P ′ and Q′ have the same
y-coordinate and the x-coordinate of P ′ is larger that that of Q′. Let
D be as in Case 1. The area of D is A. Let B be the area of the
portion of D lying below the line [OP ′], E be the area of the portion
of D lying between the line [OP ′] and [P ′Q′] and let C = A−B − E
be the area of the remaining part of D. Let Ξ1 and Ξ2 be defined as in
Case 1. Ξ1∪Ξ2 is horizontal, hence the t-coordinate of its endpoint Q̃
is B + E. On the other hand, the t-coordinate of Q is A = B + E + C
and that of P is B.

Let p > 0 be the Euclidean distance between Q′ and P ′. Similarly

12



to Case 1, we compute

0 < C = A−(B+E) = t(Q)−t(Q̃) =
(

1 + u

2
− 1− u

2

)
(−p) = −up < 0,

absurd.
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