Notation: \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) is the unit disc in \(\mathbb{C} \). Its boundary is the unit circle \(S = \{ z \in \mathbb{C} : |z| = 1 \} \). \(H(\mathbb{D}) \) is the space of the holomorphic functions on \(\mathbb{D} \); \(h(\mathbb{D}) \) is the space of the harmonic functions on \(\mathbb{D} \). The spaces \(\ell^2(\mathbb{N}) \), \(\ell^2(\mathbb{Z}) \) are the \(\ell^2 \)-spaces of \(\mathbb{C} \)-valued sequences with indices in \(\mathbb{N}, \mathbb{Z} \), respectively:

\[
a = \{a_n\}, \quad b = \{b_n\} : \langle a, b \rangle_{\ell^2} = \sum_n a_n b_n.
\]

The basic structure is induced by the inclusion \(\mathbb{N} \hookrightarrow \mathbb{Z} \):

\[
\ell^2(\mathbb{Z}) = \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{Z} - \mathbb{N}); \quad \ell^2(\mathbb{Z} - \mathbb{N}) \xrightarrow{\pi_-} \ell^2(\mathbb{Z}) \xrightarrow{\pi_+} \ell^2(\mathbb{N}) .
\]

For \(E \subseteq \mathbb{Z} \), let \(\chi_E(n) = \begin{cases} 1, & \text{if } n \in E \\ 0, & \text{if } n \notin E \end{cases} \). Then, \(\pi_+ a = \chi_{\mathbb{N}} \cdot a \) (pointwise multiplication), and \(\pi_- a = \chi_{\mathbb{Z} - \mathbb{N}} \cdot a \).

Definition 1 Let \(m = \{m_n : n \in \mathbb{Z}\} \) be a sequence in \(\mathbb{C} \) and let

\[M_m : a \mapsto ma = \{m_n a_n\} \]

be the corresponding multiplication operator. We say that \(m \) is a multiplier of \(\ell^2(\mathbb{Z}) \) when \(M_m \) is a bounded operator on \(\ell^2(\mathbb{Z}) \).

Exercise 2 Show that \(m \) is a multiplier if and only if \(m \in \ell^\infty(\mathbb{Z}) \) and that
\[|||M_m|||_{(\ell^2, \ell^2)} = ||m||_{\ell^\infty}. \]

Definition 3 Let \(a = \{a_n : n \in \mathbb{Z}\} \) be a sequence in \(\mathbb{C} \). The \(z \)-transform of \(a \) is the formal series

\[
Z[a](z) = \sum_{n \geq 0} a_n z^n + \sum_{n > 0} a_{-n} z^{-n} = \sum_{n \in \mathbb{Z}} a_n r^{|n|} e^{in\theta} ,
\]

where \(z = re^{i\theta} \in \mathbb{D} \).

Remark 4

(i) If \(a \in \ell^\infty(\mathbb{Z}) \), then the series defining \(Z[a] \) converges locally totally (hence, locally uniformly) in \(\mathbb{D} \) and \(Z[a] \) is harmonic in \(\mathbb{D} \).

(ii) If \(a \in \ell^\infty(\mathbb{N}) \), then \(Z[a] \) is holomorphic in \(\mathbb{D} \).
Definition 5 The analytic Hardy space $H^2(\mathbb{D})$ (what we will simply call the Hardy space) is the image of $\ell^2(\mathbb{N})$ under Z:

$$H^2(\mathbb{D}) = \{ Z[a] : a \in \ell^2(\mathbb{N}) \}.$$

The harmonic Hardy space is

$$h^2(\mathbb{D}) = \{ Z[a] : a \in \ell^2(\mathbb{Z}) \}.$$

The product structure of $\ell^2(\mathbb{Z})$ transfers to $h^2(\mathbb{D})$ in an obvious way, and so does the Hilbert inner product.

Recall that the series $f(z) = \sum_{n \geq 0} a_n z^n$ converges for $z \in \mathbb{D}$ iff $\limsup_{n \to \infty} |a_n|^{1/n} \leq 1$.

Lemma 6 Let $f \in H(\mathbb{D})$, $f(z) = \sum_{n \geq 0} a_n z^n$. Then,

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} / \int_{-\pi}^{\pi} |f(e^{i\theta})|^2 \frac{d\theta}{2\pi} \text{ as } r \nearrow 1.$$

Proof. $\int_{-\pi}^{\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} = \sum_n |a_n|^2 r^{2n} / \sum_n |a_n|^2 = \|f\|_{H^2}^2$ as $r \nearrow 1$.

Hence,

$$\|f\|_{H^2}^2 = \sup_{r \in [0,1)} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} = \lim_{r \to 1^-} \int_{-\pi}^{\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi}.$$

Connection with Fourier series. Consider on \mathbb{S} the normalized circular measure. For $E \subset \mathbb{S}$,

$$|E| = \int_{-\pi}^{\pi} \chi_E(e^{i\theta}) \frac{d\theta}{2\pi}.$$

Accordingly, $L^p(\mathbb{S}) \triangleq L^p(\mathbb{S}, \frac{d\theta}{2\pi})$.

For $f \in L^1(\mathbb{S})$ and $n \in \mathbb{Z}$, define the n^{th} Fourier coefficient of f to be

$$\mathcal{F}f(n) = \hat{f}(n) = \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} \frac{d\theta}{2\pi}.$$

The Fourier transform $f \mapsto \hat{f}$ is an isometry from $L^2(\mathbb{S})$ to $\ell^2(\mathbb{Z})$. The Fourier inversion formula tells us that f can be synthetized from \hat{f}:

$$f(e^{i\theta}) = \sum_n \hat{f}(n) e^{in\theta}.$$

Here, the convergence of the series is in $L^2(\mathbb{S})$:

$$\left\| f(e^{i\theta}) - \sum_{|n| \leq N} \hat{f}(n) e^{in\theta} \right\|_{L^2(\mathbb{S}, \frac{d\theta}{2\pi})} \xrightarrow{N \to \infty} 0.$$

The fact that, for $f \in L^2(\mathbb{S})$, the series actually converges a.e. is a very deep theorem by L. Carleson.
We have now two functions associated with \(a \in \ell^2(\mathbb{Z}) \):

\[
\mathcal{F}^{-1}a(e^{i\theta}) = \sum_n a_n e^{in\theta},
\]

\[
Z[f](re^{i\theta}) = \sum_n a_n r^{|n|} e^{in\theta}.
\]

The series \(\mathcal{F}^{-1}a \) converges in \(L^2(S) \) and we also have convergence of (circular slices of) \(Z[f] \) to the “boundary values” \(\mathcal{F}^{-1}a \):

\[
\| \sum_n a_n e^{in\theta} - \sum_n a_n r^{|n|} e^{in\theta} \|_{L^2(S)}^2 = \sum_n |a_n|^2 (1 - r^{|n|})^2 \|
\]

\[
\| \sum_n a_n (1 - r^{|n|}) e^{in\theta} \|_{L^2(S)}^2 = \sum_n |a_n|^2 (1 - r^{|n|})^2 \|	o 0 \text{ as } r \to 0,
\]

by dominated convergence applied to series.

The operator \(P = Z \circ \mathcal{F}^{-1} \) is called the Poisson extension operator:

\[
P[f](re^{i\theta}) = \sum_n \hat{f}(n) r^{|n|} e^{in\theta}.
\]

So far, we know that \(P \) maps \(L^2(S) \) onto \(h^2(\mathbb{D}) \), isometrically. We use the symbol \(H^2(S) \) to denote the boundary values of functions in \(H^2(\mathbb{D}) \).

Problem 7 (Boundary values). Do we have pointwise convergence of the Poisson extension to the boundary values? More precisely, is it true that, if \(f \in h^2(\mathbb{D}) \),

\[
P[f](re^{i\theta}) \to f(e^{i\theta}) \text{ as } r \to 1, \; \theta - \text{a.e.}?
\]

We will see that such is the case further on.

Proposition 8 For a function \(f \in L^2(S) \) and for \(r \in [0,1) \), define \(P_r[f](e^{i\theta}) \defeq P[f](re^{i\theta}) \). Then,

(1) \(P_r \) is bounded on \(L^2(S) \).

(2) \(P_r f \to f \) in \(L^2(S) \) as \(r \to 1 \).

(3) \(P_r \) sends real valued functions to real valued functions.

(4) \(P_r \circ P_s = P_{rs} \).

Proof. We proved (2) above, (1) and (4) are obvious. (2) will be proved when we introduce convolutions. \(\blacksquare \)

Exercise 9 Property (2) says that \(P_r \to Id \) in the strong topology. It is not true that \(P_r \to Id \) in the operator norm. In fact, convergence in operator norm is equivalent to the \(\ell^2 \) inequality

\[
\sum_n |a_n|^2 (1 - r^{|n|})^2 \leq C(r) \sum_n |a_n|^2,
\]

with \(C(r) \to 0 \) as \(r \to 1 \). This fails, as one can see by choosing the right sequence of \(a_k = \{a_{k,n}, n \in \mathbb{Z}\} \).
A version of the H^2-norm which only depends on the interior values of f.

Proposition 10 Let $f \in H(D)$ be holomorphic in the unit disc. Then,

$$\|f\|^2_{H^2(D)} = |f(0)|^2 + \int_D |f'(z)|^2 \log |z|^{-2} \frac{dA(z)}{\pi},$$ \hspace{1cm} (1)

where dA is the Lebesgue measure on D, $dA(x + iy) = dx dy$.

Corollary 11

$$\|f\|^2_{H^2(D)} \approx |f(0)|^2 + \int_D |f'(z)|^2 (1 - |z|^2) dA(z).$$ \hspace{1cm} (2)

Proof. As $R \to 1$,

$$\int_{|z| \leq R} |f'(z)|^2 \log |z|^{-2} \frac{dA(z)}{\pi} \rightarrow |f(0)|^2 + \int_{|z| \leq 1} |f'(z)|^2 \log |z|^{-2} \frac{dA(z)}{\pi}.$$ \hspace{1cm} (3)

On the other hand, using polar coordinates $z = re^{i\theta}$ and the orthogonality of the imaginary exponentials,

$$|f(0)|^2 + \int_{|z| \leq R} |f'(z)|^2 \log |z|^{-2} \frac{dA(z)}{\pi} = |a_0|^2 + \sum_{n \geq 1} |a_n|^2 2n^2 \int_0^R r^{2n-2} \log(r^2) r dr$$

and an integration by parts yields

$$2n^2 \int_0^R r^{2n-2} \log(r^2) r dr = n \log \frac{R}{t} \bigg|_0^R + \int_0^R t^{n-1} dt \to 1, \text{ as } R \to 1.$$ \hspace{1cm} (4)

Now, use monotone convergence for series. \hspace{1cm} \text{\blacksquare}

To prove the Corollary, it is convenient to use a similar argument for the expression on the R.H.S. of (2) and to make an easy comparison of positive series.

Exercise 12 Give an alternative proof of Proposition 10 by means of Green’s theorem. It might be useful to observe that, if f is holomorphic, then $\Delta |f|^2 = 4|f'|^2$.

Proposition 10 inserts $H^2(D)$ in the scale of the weighted Dirichlet spaces.

Definition 13 For $f \in H(D)$ and $\alpha > -1$, let

$$\|f\|^2_{D(\alpha)} = |f(0)|^2 + \int_D |f'(z)|^2 (1 - |z|^2)^\alpha \frac{dA(z)}{\pi},$$

and let $D(\alpha)$ be the space of the functions for which $\|f\|_{D(\alpha)} < \infty$. $D(\alpha)$ is the weighted Dirichlet space defined by the weight $(1 - |z|^2)^\alpha$. $D = D(0)$ is the classical Dirichlet space and $D(1) = H^2(D)$ is the Hardy space.
Reproducing kernel and reproducing formula.

Definition 14 Let \mathbb{H} be a Hilbert space of holomorphic functions defined in an open region Ω in \mathbb{C}. \mathbb{H} has reproducing kernel $\{K_z\}_{z \in \Omega}$ if for all $z \in \Omega$ there exists $K_z \in \mathbb{H}$ such that the reproducing formula holds:

$$f(z) = (f, K_z)_{\mathbb{H}}, \forall f \in \mathbb{H}.$$

If a reproducing kernel exists, \mathbb{H} is called a RKHS (reproducing kernel Hilbert space).

Definition 15 Suppose that $z \in \Omega$ and that the functional "evaluation at z", $\eta_z : \mathbb{H} \to \mathbb{C}$, $\eta_z(f) = f(z)$, is bounded on \mathbb{H}. Then, we say that \mathbb{H} has bounded point evaluation at z.

Theorem 16 \mathbb{H} is a reproducing kernel Hilbert space iff it has bounded point evaluation at all $z \in \Omega$.

Proof. (\Rightarrow) $|\eta_z(f)| = |f(z)| = |(f, K_z)_{\mathbb{H}}| \leq ||f||_{\mathbb{H}} ||K_z||_{\mathbb{H}}$.

(\Leftarrow) Since $\eta_z \in \mathbb{H}^*$, by Riesz’ Representation Theorem there exists $K_z \in \mathbb{H}$ for all $f \in \mathbb{H}$: $f(z) = \eta_z(f) = (f, K_z)_{\mathbb{H}}$.

Some properties of reproducing kernels. Let $K(z, w) = \overline{K(w, z)}$. Then:

(i) $K(w, z) = \overline{K(z, w)} = (K_w, K_z)_{\mathbb{H}}$.

(ii) $K(z, z) = ||K_z||^2_{\mathbb{H}}$.

(iii) $||\eta_z||_{\mathbb{H}^*} = ||K_z||_{\mathbb{H}}$.

(iv) If $\{\phi_n\}_n$ is any o.n.b. for \mathbb{H}, then

$$K(z, w) = \sum_n \phi_n(z)\overline{\phi_n(w)}.$$

Here convergence is in \mathbb{H}-norm for each fixed z.

Theorem 17 The reproducing kernel for $H^2(\mathbb{D})$ is

$$K(z, w) = \frac{1}{1 - zw}.$$

Hence, we have the reproducing formula:

$$f(z) = f(0) + \int_{\mathbb{D}} \frac{f(w)\overline{w}}{(1 - zw)^2} \log|w|^{-1} dA(w).$$

Proof. Let $f(z) = \sum_{n \geq 0} a_n z^n$. Then,

$$f(z) = \sum_{n \geq 0} a_n \overline{z^n} = (f, K_z)_{H^2},$$

with

$$K_z(w) = \sum_{n \geq 0} z^n w^n = \frac{1}{1 - zw}.$$
The second assertion follows by inserting the reproducing kernel in the (polarized1 version of) the expression (1) for the H^2-norm. ■

Problem 18 (L. Carleson; Shapiro and Shields). Let $S = \{z_k : k \in \mathbb{N}\} \subset \mathbb{D}$ be a sequence and define the operator

$$T_S f = \left\{ (f, \frac{\eta_z}{\|\eta_z\|_{H^2}})_{H^2} \right\} = \left\{ \frac{f(z)}{\|\eta_z\|_{H^2}} \right\}.$$

By the bounded evaluation property of $H^2(\mathbb{D})$, we have that $T_S : H^2(\mathbb{D}) \to \ell^\infty(S)$ is bounded. The sequence S is interpolating for $H^2(\mathbb{D})$ if the operator T_S boundedly maps $H^2(\mathbb{D})$ onto $\ell^2(S)$.

The problem is giving a geometric characterization of the interpolating sequences for $H^2(\mathbb{D})$.

The into part (boundedness from $H^2(\mathbb{D})$ to $\ell^2(S)$) of the definition of interpolating sequences can be so reformulated. Consider the positive measure $\mu = \mu_S$ on \mathbb{D} given by

$$\mu_S = \sum_{z_j \in S} \delta_{z_j} \frac{\eta_j}{\|\eta_j\|_{H^2}}^2.$$

Then, T_S is bounded from $H^2(\mathbb{D})$ to $\ell^2(S)$ if and only if

$$\int_{\mathbb{D}} |f|^2 d\mu \leq C(\mu)^2 \|f\|_{H^2(\mathbb{D})}^2.$$

We say that a measure satisfying (3) is a Carleson measure for $H^2(\mathbb{D})$.

Problem 19 (L. Carleson). Give a geometric characterization of the Carleson measures for $H^2(\mathbb{D})$.

Exercise 20 Recall that the Dirichlet space is defined by the norm

$$\|f\|^2_D = |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 \frac{dA(z)}{\pi}.$$

(i) Express the norm $\|f\|^2_D$ in terms of the Fourier coefficients of $f(z) = \sum_{n \geq 0} a_n z^n$.

(ii) Find the reproducing kernel for D. (As a byproduct, this shows that D has bounded point evaluation).

(iii) Write down a reproducing formula for D.

Multipliers. Let $h \in H(\mathbb{D})$. $h \in \mathcal{M}(H^2(\mathbb{D}))$ is a multiplier of $H^2(\mathbb{D})$ if the multiplication operator $\mathcal{M}_h : f \mapsto hf$ is bounded on $H^2(\mathbb{D})$.

Definition 21 The Hardy space $H^\infty(\mathbb{D})$ is the space of the bounded holomorphic functions on \mathbb{D}, endowed with the sup-norm.

1Here is the expression:

$$(f, g)_{H^2(\mathbb{D})} = f(0)g(0) + \int_{\mathbb{D}} f'(z)\overline{g'(z)} \log |z|^2 \frac{dA(z)}{\pi}.$$
Theorem 22 The bounded holomorphic functions exhaust the multiplier space, \(M(H^2(\mathbb{D})) = H^\infty(\mathbb{D}) \). Moreover,

\[|||M_h|||_{H^2(\mathbb{D})} = ||h||_{H^\infty(\mathbb{D})}. \]

Proof. \(H^\infty \subseteq M(H^2) \). In fact,

\[
\|M_h f\|_{H^2} \leq \|h\|_{H^\infty} \|f\|_{H^2}.
\]

In particular, \(|||M_h|||_{H^2} \leq ||h||_{H^\infty} \).

In the other direction,

\[
H^2 \xrightarrow{M_h} H^2 \xrightarrow{\eta_z} \mathbb{C}
\]

is bounded, then

\[
|f(z)h(z)| = |(\eta_z \circ M_h)f| \leq \|\eta_z\|_{H^\infty} |||M_h||| \cdot ||f||_{H^2},
\]

then

\[
\|\eta_z\|_{H^\infty} \|h(z)\| = \sup_{f \in H^2} \frac{|f(z)h(z)|}{||f||_{H^2}} \leq \|\eta_z\|_{H^\infty} |||M_h|||,
\]

hence \(||h||_{H^\infty} \leq |||M_h|||_{H^2} \). \(\blacksquare \)

Exercise 23 Deduce from the proof of Theorem 22 the following. If \(H \) is a Hilbert space of analytic functions on \(\mathbb{D} \) with bounded point evaluation, then \(|||M_h|||_{H^2} = ||h||_{H^\infty(\mathbb{D})} \).

Problem 24 (L. Carleson). Find all sequences \(S = \{z_j : j \geq 0\} \) in \(\mathbb{D} \) such that the functional \(h \mapsto \{h(z_j) : j \geq 0\} \) maps \(H^\infty(\mathbb{D}) \) onto \(\ell^\infty(S) \).

Problem 25 (Nevanlinna-Pick). Characterize all sequences \(z = \{z_j\}_{j=1}^n \subset \mathbb{D} \) (points) and \(w = \{w_j\}_{j=1}^n \subset \mathbb{D} \) (values) such that there exists \(h \in H^\infty(\mathbb{D}) \) with \(||h||_{H^\infty} \leq 1 \) and \(h(z_j) = w_j, j = 1, \ldots, n \).

Multiplications and translations. For \(f, g \in L^1(\mathbb{S}) \), define the convolution of \(f \) and \(g \):

\[
f \ast g(e^{i\tau}) = \int_{-\pi}^{\pi} f(e^{i(\tau-\theta)})g(e^{i\theta}) \frac{d\theta}{2\pi}.
\]

Then \(f \ast g \in L^1(\mathbb{S}) \) and \(\hat{f \ast g} = \hat{f} \cdot \hat{g} \). Hence, the convolution operator \(C_g : f \mapsto g \ast f \) translates into a multiplication operator on the Fourier side. The converse is much more problematic (it is false, as long as we talk about functions).

\(^2 \)\text{A problem would arise if} ||\eta_z||_{H^\infty} = 0, \text{i.e. if all functions of} \ H^2 \text{ had a common zero at} \ z. \text{Since} \ 1 \ \text{is in} \ H^2, \text{this is not the case.}
Definition 26 A translation3 on \(\mathbb{S} \) is a map of the form \(T_\theta : e^{i\theta} \mapsto e^{i(\theta - \tau)} \).

Let \(L : L^2(\mathbb{S}) \rightarrow L^2(\mathbb{S}) \) is an operator which commutes with translations if

\[L \circ T_\tau = T_\tau \circ L, \quad \forall \tau \in \mathbb{R}. \]

Theorem 27 Let \(L : L^2(\mathbb{S}) \rightarrow L^2(\mathbb{S}) \) be a bounded operator. Then, \(L \) commutes with translations if and only if there exists a sequence \(\{l_n\}_{n \in \mathbb{Z}} \in \ell^\infty \), such that

\[\hat{L}f(n) = l_n \hat{f}(n). \]

Moreover, \(|||L|||_{L^2(\mathbb{S})} = |||l|||_{\ell^\infty}. \)

Sometimes, we write \(l_n = \hat{L}(n) \).

Proof. \((\Rightarrow)\) Consider the characters \(\gamma_n(e^{i\theta}) = e^{in\theta}, n \in \mathbb{Z} \). We start by proving that they diagonalize \(L \),

\[L\gamma_n(e^{i\theta}) = l_n \gamma_n(e^{i\theta}), \]

for suitable constants \(l_n \).

Clearly, \(T_\tau \gamma_n(e^{i\theta}) = \gamma_n(e^{i\theta})e^{-in\tau} \). Since \(L \) commutes with translations,

\[(L \circ T_\tau) \gamma_n(e^{i\theta}) = (T_\tau \circ L) \gamma_n(e^{i\theta}) = (L \gamma_n(e^{i\theta})) = L(e^{-in\tau} \gamma_n)(e^{i\theta}) = e^{-in\tau} L\gamma_n(e^{i\theta}) \]

It would be tempting now to set \(\tau = \theta \) to obtain \(L\gamma_n(\tau) = \gamma_n(\tau) L\gamma_n(1) \) and to let \(l_n = L\gamma_n(1) \). Unfortunately the equality above is in the \(L^2 \) sense, so we can not really evaluate our functions at points. We pick however the relation

\[L\gamma_n(e^{i\theta}) = e^{-in\tau} L\gamma_n(e^{i\theta}) \]

and we Fourier transform it:

\[\hat{L}\gamma_n(m) = e^{im\tau} \int_{-\pi}^{\pi} L\gamma_n(\theta - \tau)e^{-im\theta} \frac{d\theta}{2\pi}, \]

\[= e^{i(n-m)\tau} \int_{-\pi}^{\pi} L\gamma_n(\theta - \tau)e^{-im(\theta - \tau)} \frac{d\theta}{2\pi}, \]

\[= e^{i(n-m)\tau} \hat{L}\gamma_n(m), \]

where translation invariance of the measure \(\frac{d\theta}{2\pi} \) was used to pass to the last line. Since equality holds for all \(\tau \in \mathbb{R}, \) \(\hat{L}\gamma_n(m) = 0 \) whenever \(n \neq m \). i.e., \(L\gamma_n(e^{i\theta}) = \hat{L}\gamma_n(n)\gamma_n(e^{i\theta}) \). Since the right hand side of the last equality is a continuous function, we can evaluate at points: \(L\gamma_n(1) = \hat{L}\gamma_n(n) = l_n \).

Also, \(|l_n| = |\hat{L}\gamma_n(n)| \leq |||L||| \cdot \|\gamma_n\|_{H^2} = |||L||| \),

so we have the estimate \(|||L|||_{\ell^\infty} \leq |||L||| \).

Using this special case and passing to the Fourier side, we see that

\[\hat{L}f(n) = l_n \hat{f}(n) \text{ and } |||L|||_{L^2(\mathbb{S})} \geq |||L|||_{\ell^\infty} \]

\((\Leftarrow)\) It is easy and it is left as an exercise. \(\blacksquare \)

3In fact, a rotation!
As an example, let consider P_r, the "sliced" Poisson kernel. We have computed $\hat{P_r}(n) = r^{|n|}$, so we can reconstruct the convolution kernel:

$$P_r[f(e^{i\theta})] = P_r \ast f(e^{i\theta}),$$

where the inverse Fourier formula gives

$$P_r(e^{i\theta}) = \sum_{n \in \mathbb{Z}} r^{|n|} e^{i\theta} = \frac{1 - r^2}{|1 - re^{i\theta}|}.$$

In particular, we have that

1. $P_r > 0$, hence P_r sends real valued (positive) functions to real valued (positive) functions. In particular, this finishes the proof of Proposition 8.

2. $\int_{-\pi}^{\pi} P_r(e^{i\theta}) \frac{d\theta}{2\pi} = 1$ (integrate the series term-by-term).

3. $\lim_{r \to 1} P_r(e^{i\theta}) \to 0$ uniformly in $\epsilon \leq |\theta| \leq \pi$, for all $\epsilon > 0$.

We also have translations in \mathbb{Z}. Translation invariant operators on $\ell^2(\mathbb{Z})$ are Fourier transformed in multiplication operators on $L^2(S)$.

Exercise 28 For $a, b \in \ell^1(\mathbb{Z})$, define

$$a \ast b(n) = \sum_{m \in \mathbb{Z}} a_{n-m} b_m.$$

(i) Show that $a \ast b \in \ell^1(\mathbb{Z})$.

(ii) Show that $a \in \ell^1(\mathbb{Z})$ and $b \in \ell^p(\mathbb{Z}) \implies a \ast b \in \ell^p(\mathbb{Z})$ (Young’s inequality).

(iii) For $a \in \ell^1(\mathbb{Z})$, let

$$\hat{a}(e^{it}) = \sum_{n} a_n e^{-int}.$$

Show that $\hat{a} \in C(S)$.

(iv) For $a \in \ell^2(\mathbb{Z})$, the definition of \hat{a} gives a series which converges in $L^2(S)$ to a function $f \in L^2(S)$, $f(e^{it}) = \sum_{n} a_n e^{-int}$.

(v) Show that, if $b \in \ell^1(\mathbb{Z})$, then $C_b : a \mapsto b \ast a$ is a linear operator commuting with translations, for which $C_b \hat{a} = \hat{b} \cdot \hat{a}$, where $\hat{b} \in L^\infty(S)$.

(vi) Show that $L : \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ is a bounded operator which commutes with translations iff $\hat{L}a(e^{it}) = m(e^{it})\hat{a}(e^{it})$ for some $m \in L^\infty(S)$.

Some useful and interesting operators. We consider some operators defined on $L^2(S)$ and commuting with translation, either in S. Let L be such an operator. To L we associate its Fourier transform $\hat{L} = F \in \ell^\infty(\mathbb{Z})$, $\hat{L}(n) = l_n$, and its Poisson extension $P[L] = Z[F L]$,

$$P[L](re^{i\theta}) = \sum_{n} l_n r^{|n|} e^{i\theta n}.$$
For a function or an operator L and for $r \in [0, 1)$, we can define $P_r[L](e^{i\theta}) \overset{\mathrm{def}}{=} P[L](re^{i\theta})$, similarly to what we did for a function in L^2. Then, the function $P_r[L]$ is real analytic on S for all $0 \leq r < 1$, provided $\limsup_{n \to \infty} |l_n|^{1/n} \leq 1$, and so

$$(L \circ P_r)(f)(e^{i\theta}) = P_r[L](f)(e^{i\theta}) = (P_r[L]) * f(e^{i\theta}),$$

as soon as $f \in L^2(S)$.

Proposition 29 If $f \in L^2(S)$, then

$$\|P_r[L] * f - Lf\|_{L^2(S)} \downarrow 0, \text{ as } r \uparrow 1.$$

The proof is identical to that of the analogous statement for the Poisson kernel.

Exercise 30 We have norm convergence of $P_r[L]$ to L iff

$$\lim_{r \to 1} \sup_{n \in \mathbb{Z}} |l_n(1 - r|n|)^2| = 0.$$

Projection operators. Recall the projection operator $L^2(S) \xrightarrow{\pi_+} H^2(S)$, where $H^2(S)$ is the space of the boundary values (in the L^2 sense, so far) of functions in $H^2(\mathbb{D})$. The multiplier of π_+ is $\hat{\pi}_+ = \chi_N$ and so the Poisson extension of π_+ is

$$P[\pi_+](z) = Z[\chi_N](z) = \sum_{n \in \mathbb{N}} z^n = \frac{1}{1 - z}.$$

Let 1 be the constant unit function and let $< 1 >$ the subspace of the constant functions in $H^2(S)$. We also consider the space $H^2_0(S) = H^2(S) \oplus < 1 >$ and the corresponding projection $\pi^0_+ : L^2(S) \to H^2_0(S)$. We have then

$$P[\pi^0_+](z) = \frac{z}{1 - z}, \quad P[\pi_-](z) = \frac{\overline{z}}{1 - z}.$$

Hilbert transform (or conjugate function operator). The Hilbert transform $\mathcal{H} : L^2(S) \to L^2(S)$ is the operator having as multiplier

$$\hat{\mathcal{H}}(n) = \frac{1}{i} \text{sign}(n).$$

Here, $\text{sign}(0) = 0$, by convention.

Theorem 31 The operator \mathcal{H} is the only operator from $L^2(S)$ to itself such that:

(i) \mathcal{H} commutes with translations;

(ii) \mathcal{H} maps \mathbb{R}-valued functions into \mathbb{R}-valued functions;

(iii) $P[\mathcal{H}f](0) = 0$ for all $f \in L^2(S)$;

(iv) $P[f] + iP[\mathcal{H}f] \in H^2(\mathbb{D})$ for all f in $L^2(S)$.

10
Property (iv) is the motivation for introducing H.

Proof. Let for the moment H be an operator satisfying (i)-(iv). By (i), H has multiplier. By (iv), when $n < 0$, $0 = \hat{f} + i\hat{H}f$, hence $H(n) = i$. By (iii), $0 = \hat{H}(0)$:

$$0 = P[\hat{H}f](re^{iθ}) = \sum_n \hat{f}(n)\hat{H}(n)r^{|n|}e^{inθ},$$

let $r = 0$.

Let f be \mathbb{R}-valued. By (iv), $g = -i(P[f] + iP[\mathcal{H}f]) = P[\mathcal{H}f] - iP[f]$ and $h = \mathcal{H}(P[f] + iP[\mathcal{H}f]) = P[\mathcal{H}f] + iP[\mathcal{H}^2f]$ are holomorphic functions (we use the commutativity of operators which commute with translations) and, by (ii) and since P preserves the class of \mathbb{R}-valued functions, g and h have the same real part. By the open mapping theorem, $g - h$ is an imaginary constant: $h(z) - g(z) = h(0) - g(0) = iP[f](0)$. In particular, if $f \in H^2(S)$ and $P[f](0) = 0$, then $-iP[f] = P[\mathcal{H}f]$. Apply this to $P[f](z) = z^n$, $n \geq 1$, to obtain that $\hat{H}(n) = -i$ if $n \geq 1$. ■

We have the formula

$$P[\mathcal{H}](z) = -i \sum_{n>0} z^n + i \sum_{n>0} \bar{z}^n = i \left(\frac{z}{1-z} + \frac{\bar{z}}{1-\bar{z}} \right) = \frac{2Imz}{|1-z|^2}.$$

Note that $P[\mathcal{H}](e^{iθ}) = \cot(θ/2)$. If we could pass in the limit as $r \to 1$, we would have the definition of \mathcal{H} as convolution operator:

$$\mathcal{H}f(e^{iτ}) = \int_{-\pi}^{\pi} f(e^{i(τ-θ)}) \cot \left(\frac{θ}{2} \right) dθ.$$

Unfortunately, the integral diverges in $θ = 0$. We might then try with a principal value integral:

$$\mathcal{H}f(e^{iτ}) = \lim_{ε \to 0} \int_{-π}^{π} \chi_{|θ|≥ε}(θ)f(e^{i(τ-θ)}) \cot \left(\frac{θ}{2} \right) dθ.$$

It turns out that the operator defined by (4) maps $L^2(S)$ into itself, and more, and that it coincides with the Hilbert transform defined earlier. It is the prototype of all singular integral operators.

Remark 32 (i) Direct calculation or the meaning of the operators show that $\mathcal{H} = i(π_- - π_0^ζ)$, $P = P[π_+] + P[π_-]$.

(ii) $P = P[Id]$ and $P[\mathcal{H}]$ are related by the fact that $P[f] + iP[\mathcal{H}f] \in Hol(\mathbb{D})$:

$$(P[f] + iP[\mathcal{H}f])(z) = \frac{1+z}{1-z} \in Hol(\mathbb{D}).$$

In particular, $Id + i\mathcal{H} = 2π_+ - π_{<1>}.$

Shift operator. Consider the operator $f \mapsto M_z f$, which is bounded on $h^2(\mathbb{D})$. Its restriction to $H^2(\mathbb{D})$ is called the shift operator. On the Fourier side, it is in fact just translation by 1 in \mathbb{Z}:

$$M_z \left(\sum_n a_n z^n \right) = \sum_n a_{n-1} z^n,$$

where $a_{-1} = 0$ by definition.