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Abstract. We give a direct, combinatorial proof that the logarithmic capacity is essentially
invariant under quasisymmetric maps of the circle.

It is a known fact that logarithmic capacity of closed sets is essentially invariant under
quasisymmetric maps of the unit circle. An orientation preserving homeomorphism of the
unit disc, identified with an increasing homeomorphism ϕ : [0, 1] → [0, 1] via the map
e2πit 7→ e2πiϕ(t)+α, for some real α, is quasisymmetric if

1

M
≤ ϕ(x+ t)− ϕ(x)

ϕ(x)− ϕ(x− t)
≤M

for some fixed M > 1. The logarithmic capacity of a closed subset of the unit circle, identified
with a subset E of the unit interval, is comparable with its Bessel (2, 1/2)-capacity Cap(E).
Given a positive, Borel measure µ on [0, 1], let

E(µ) =

∫ 1

0

Kµ(x)2dx =

∫ 1

0

(∫ 1

0

dµ(y)

|x− y|1/2

)2

dx

be its energy. Here differences are taken modulus integers. Then,

Cap(E) = inf

{
µ(E)2

E(µ)
: supp(µ) ⊆ E

}
.

Theorem 1 (Corollary of a Theorem of Beurling and Ahlfors [BA].). There is a constant
C(M) depending on M only such that

1

C(M)
≤ Cap(ϕ−1(E))

Cap(E)
≤ C(M)

holds for all closed subsets E of [0, 1].

The indirect proof goes as follows. A quasisymmetric map ϕ of the circle extend to a
quasiconformal map f of the unit disc [BA]. Such maps leave set capacities essentially
invariant ([A]).

We will show that Theorem 1 can be rephrased as the “stable” version of Benjamini
and Peres’ result about the equivalence of classical and (a notion of) discrete capacity. An
excellent exposition of potential theory in the generality we need in this note (and more) is
in [AH], Chapter 2.

Let T be the usual rooted dyadic tree. We can think T to be the tree of the labels (n, k)
for the dyadic subintervals J0

(n,k) = [(k − 1)/2n, k/2n] (n ≥ 0, 1 ≤ k ≤ 2n). An edge of the
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tree joins labels (n, k) and (n + 1, k′) if J0
(n+1,k′) ⊂ J0

(n,k). The root ?? of T is o : (0, 1). If

α = (n, k), we set n = d(α) to be the level of α. Consider a different collection J of closed
intervals Jα ⊆ [0, 1] (α ∈ T ) such that

• Jo = [0, 1];
• Jα+ ∪ Jα− = Jα, where α±, the children of α, are labels for the two halfs of J 0

α , the
dyadic interval labeled by α.

Clearly, J and J 0 have the same combinatorial properties, a fact which will be used below
to quickly introduce notation.

A half-infinite geodesic starting at the root is a sequence {ζn : ≥ 0} in T , where ζ0 = o
and ζn+1 ∈ {ζn}. Given ζ 6= ξ in ∂T , let ζ ∧ ξ ∈ T be the element of T common to both ζ
and ξ having the greatest level. The function ρ(ζ, ξ) := 2−d(ξ∧ζ) defines a distance on ∂T .

Given a closed subset subset E of [0, 1], we identify it with a subset of T ’s boundary
∂T in the usual way: if ΛJ : ∂T → [0, 1] maps the geodesic ζ = {ζn}n≥0 ∈ ∂T to the
point ΛJ (ζ) = ∩n≥0Jζn . The map ΛJ is clearly continuous. In the case of J = J 0, it is a
contraction: |ΛJ 0(ξ)− ΛJ 0(ξ)| ≤ ρ(ζ, ξ).

Theorem 2. If J satisfies the quasi-symmetry condition

(1)
1

M
≤ |Jα|
|Jβ|
≤M

whenever Jα and Jβ are intervals in J such that d(α) = d(β), and Jα and Jβ are adjacent
as intervals in [0, 1] (modulus one), then CapT (Λ−1J (E)) ≈ Cap(E).

Requiring the condition that Jα and Jβ adjacent in [0, 1] is more than just asking the same
to hold for α = γ− and β = γ+: the continuous topology of [0, 1] plays a rôle here. The
tree capacity CapT is the (linear) one naturally defined on the (unweighted) dyadic tree T .
Given h : T → [0,∞) and ζ = {ζn : n ≥ 0} in ∂T , let

Ih(ζ) =
∞∑
n=0

h(ζn).

For F ⊆ ∂T ,

CapT (F ) := inf{‖h‖2`2(T ) : h ≥ 0, Ih ≥ 1 on F}.

In [BP] Benjamini and Peres show that Cap(E) ≈ CapT (Λ−1J 0(E)). The same result, in a
more general setting, is proved in [ARSW], from which we pick the notation we use in this
note.

We first show that Theorem 2 implies Theorem 1. Let ϕ be quasisymmetric and let
Jα = ϕ(J0

α). Then J satisfies the hypothesis of Theorem 2 and ΛJ = ϕ ◦ ΛJ 0 . If E is a
closed subset of [0, 1],

Cap(ϕ−1(E)) ≈ CapT (Λ−1J 0(ϕ
−1(E))) = CapT (Λ−1J (E)) ≈ Cap(E).

We now prove Theorem 2. Let µ ≥ 0 be an atomless Borel masure on [0, 1] (atoms make
energy infinite), which we may identify with a measure µ∗ on ∂T : µ∗(Λ−1J (Jα)) := µ(Jα)
defines µ∗ uniquely. Consider the Bessel potential

Kµ(x) =

∫
dµ(y)

|x− y|1/2
.
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For x ∈ [0, 1], let P0(x) = {α ∈ T : x ∈ Jα} and let

P1(x) = ∪α∈P0(x){β : d(α) = d(β) and dG(α, β) ≤ 3}.

and

P2(x) = ∪α∈P0(x){β : d(α) = d(β) and 2 ≤ dG(α, β) ≤ 3}.
Here, dG is a graph distance which takes into account the adjacency relations of the Jα’s in
[0, 1]:

min{|z − y| : z ∈ J0
α, y ∈ J0

β} = [dG(α, β)− 1]2−d(α)

if d(α) = d(β). In words, moving from Jα to Jβ across adjacent intervals at the same level,
we have to make dG(α, β) steps. The basic properties of P2(x) we need are:

(i)
∑

α∈P2(x)
χJα ≈ 1;

(ii) min{|y − x| : y ∈ Jα, α ∈ P2(x)} ≈ max{|y − x| : y ∈ Jα, α ∈ P2(x)} ≈ |Jα|.
The proofs are easy and they are left to the reader. Note that the (i) is purely combinatoric,
while (ii) relies on the metric hypothesis (1): adjacent intervals have comparable length.
Using (i), then (ii), we have

Kµ(x) ≈
∑

α∈P2(x)

∫
Jα

dµ(y)

|x− y|1/2

≈
∫ 1

0

∑
α∈P2(x)

|Jα|−1/2χ(y ∈ Jα)dµ(y)

=
∑

α∈P2(x)

|Jα|−1/2µ(Jα).

Things are more easily visualized if we replace P2 by P1. Trivially,∑
α∈P2(x)

|Jα|−1/2µ(Jα) ≤
∑

α∈P1(x)

|Jα|−1/2µ(Jα).

In the other direction, observe that, if α ∈ P1(x), then

(2) Jα = ∪β∈P2(x), d(β)≥d(α)Jβ,

and, for each α in P1(x), there are boundedly many β’s in P2(x) such that d(β) ≥ d(α) and
Jβ ∩ Jα 6= ∅. The second assertion is obvious. For the first one, given α ∈ P1(α) \ P2(α), it
is easy to see that Jα can be decomposed as the union of Jβ’s as in (2).

Then, ∑
α∈P1(x)

|Jα|−1/2µ(Jα) .
∑

α∈P1(x)

∑
β∈P2(x), d(β)≥d(α)

µ(Jβ)

=
∑

β∈P2(x)

µ(Jβ)
∑

α∈P1(x), d(α)≥d(β)

|Jα|−1/2

≈
∑

β∈P2(x)

|Jβ|−1/2µ(Jβ).

The energy becomes

E(µ) =

∫ 1

0

Kµ(x)2dx
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≈
∫ 1

0

∫ 1

0

∑
α∈P1(x)

|Jα|−1/2χ(y ∈ Jα)dµ(y)

2

dx

=

∫ 1

0

dµ(y)

∫ 1

0

dµ(z)H(y, z),

where

(3) H(y, z) =
∑

Jα3y,Jβ3z

|Jα|−1/2|Jβ|−1/2
∫ 1

0

χ(α, β ∈ P1(x))dx.

The kernel H(y, z) is estimated from above and below by a purely combinatorial quantity.
Let d(y∧̃z) = n ∈ N be the greatest integer such that there are elements γ1, γ2 at level n
with y ∈ Jγ1 , z ∈ Jγ2 and Jγ1 ∩ Jγ2 6= ∅ (γ1 and γ2 either coincide or they label adjacent
intervals in J ). After considering a handful of geometric series (in which hypothesis (1) is
crucial), it is easily verified that

(4) H(y, z) ≈ d(y∧̃z) + 1.

Being the quantity d(y∧̃z) purely combinatorial, it is the same for J and J 0, and this
remarks by itself proves Theorem 1, without passing through Theorem 2. However, we take
a different route. It is proved in [BP] (and, in greater generality, in [ARSW]) that∫ 1

0

dµ(y)

∫ 1

0

dµ(y)[d(y∧̃z) + 1] ≈ ET (Λ∗Jµ),

where ET (·) is the energy associated with the tree capacity CapT :

ET (ν) :=

∫
∂T

dν(ζ)

∫
∂T

dν(ξ)[d(ζ ∧ ξ) + 1].

Equivalence of energies, E(µ) ≈ ET (Λ∗Jµ), easily implies the equivalence of capacities in
Theorem 2.

We are left with the two-sided estimate for H(y, z).

The proof of Theorems 1 and 2 we have presented here is of a combinatorial nature, it is
then to be expected that it can be extended to a more general context. We think that a a
general statement can be proved for quasisymmetric maps between Ahlfors regular spaces,
using some technical tools contained in [ARSW]. We plan to return on this issue in an other
article. It would also be interesting to see is there are any relations between this approach to
quasisymmetric maps in one dimension and the interesting circle of ideas outlined in [NS].

A downside of the approach we take here (which was first considered, we like to stress,
in [BP]) is that we are able to deal with logarithmic capacity of subsets of the unit circle
only. Is there a result like Theorem 2, relating logarithmic and tree capacities, that can
applied to more general closed subsets of the complex plane? And a last question: can one
find estimates for the capacity of condensers, rather than sets, showing that some features of
classical potential theory in the complex plane and of potential theory on trees are essentially
equivalent?



INVARIANCE OF CAPACITY UNDER QUASISYMMETRIC MAPS OF THE CIRCLE: AN EASY PROOF5

References

[AH] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen
Wissenschaften 314, Springer-Verlag, Berlin, 1996, xii+366 pp.

[A] L.V. Ahlfors, Lectures on Quasiconformal mappings, Mathematical Studies 10, Van Nostrand, Prince-
ton, NJ ,1966.

[ARSW] N. Arcozzi, R. Rochberg, E. Sawyer, B. D. Wick. Potential theory on trees, graphs and Ahlfors-
regular metric spaces. arXiv:1010.4788 (2010).

[BP] Benjamini, Itai; Peres, Yuval. Random walks on a tree and capacity in the interval. Ann. Inst. H.
Poincar?? Probab. Statist. 28 (1992), no. 4, 557-592,

[BA] Beurling, Arne; Ahlfors, Lars. The boundary correspondence under quasiconformal mappings. Acta
Math. 96 (1956), 125-142.

[NS] Nag, Subhashis; Sullivan, Dennis. Teichm??ller theory and the universal period mapping via quantum
calculus and the H1/2H1/2 space on the circle. Osaka J. Math. 32 (1995), no. 1, 1-34.

Dipartimento di Matematica, Universita di Bologna, 40127 Bologna, ITALY
E-mail address: arcozzi@dm.unibo.it

Department of Mathematics, Washington University, St. Louis, MO 63130, U.S.A
E-mail address: rr@math.wustl.edu


