Subharmonic functions®
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Upper semicontinuous functions. Let (X, d) be a metric space. A function
f: X = RU{—o0} is upper semicontinuous (u.s.c.) if

liminf f(y) < f(z) Vz € X.
y<z
A function g is lower semicontinuous (L.s.c.) iff —g is u.s.c.

For instance, if £ C X, then yg is u.s.c. <= F is closed. An increasing
function ¢ : R — R is u.s.c. <= ¢ is right-continuous.

Lemma 1 f is u.s.c. < f~!(a,00)) is closed Va € R <= f~1([~0,a))
s open Va € R.

Proof. Exercise with sequences. m

Theorem 2 (Weierstrass.) If K C X is compact and f : K — RU{—o0} is
u.s.c., then f has mazimum (eventually, —c0) on K.

Proof. Let x, € K be s.t. f(z,) "= supg(f). There is a subsequence of the
x),s converging in K (we still call it x,, x, — x). Then,

sup(f) = f(x) = lim f(2,) = sup(f).

]
Subharmonic functions. Let U C C be open. u: U — RU {—o0} is subhar-
monic if u is u.s.c. in U and Yw € U 3p > 0 Vr € [0, p):

u(w) < /7T u(w + rew)g. (1)

—T

v i8 superharmonic iff —v is subharmonic.

Theorem 3 Let f € Hol(U). Then, log|f| is subharmonic in U.

Proposition 4 (i) u,v subharmonic and a,b > 0 = au + bv is subhar-
monic (the class of the subharmonic functions is a cone).

(ii) If u,v are subharmonic, then max(u,v) is subharmonic.

(iwi) If h is harmonic on U and ® is convex on the range of h, then ® o h is
subharmonic.

*Mostly from Thomas Ransford, Potential theory in the complex plane. London Mathe-
matical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232



Proof. (i) and (ii) are obvious, (iii) follows from Jensen’s inequality. m

Theorem 5 (Maximum principle.) If u is subharmonic in U and U is con-
nected, then

(i) If u has mazximum in U, then u is constant.
(i4) If limsup, . u(z) <0 for all ( € OU, then u <0 on U.

Note. If U is unbounded, co € 0U.
Proof. (i) Let A ={z: u(z) < M =suppu} and B = {z: u(z) = M}.
Since u is u.s.c., A is open. Let zg € B. By the sub-mean value property,

s

oo dl
u(zo + relg)ﬁ < M.

M = u(z) g/

—Tr

for all sufficiently small values of r, say r < p. Then, u(z) = M a.e. on
{|z = 20| < p}. Now, since u is u.s.c., u(z) = M on all of {|z — 29| < p}. Hence,
B is open, too. This implies that B = U.

(ii) Extend u to UUQU by setting u(¢) = limsup,_, - u(z) < 0 when ¢ € 9U.
By Weierstrass’ Theorem, u has a maximum on U U QU. If the maximum is
on QU, we are finished, if it is inside U, then u is constant and we are finished
anyway. H
Phragmén-Lindel6f principle. In a quantitative way, the theorem below
says that a subharmonic function is either well behaved at the boundary, or it
has to explode at a minimum rate.

Theorem 6 Let U be a connected open set in C having oo on its boundary.
Suppose that
limsupu(z) <0 for all ¢ € OU — {o0}

z—C

and suppose that there exists a superharmonic v on U such that

liminf v(z) > 0 and limsup ulz) <0
Z2—00 Z2—00 U(Z)
Then,
u<0onU.

Proof. (i) Suppose first that v > 0 on U and for € > 0, let u. = v — ev, which is
subharmonic in U. Since v > 0, limsup,_, u.(z) < 0 for ¢ € OU — {oo}. Also,
there are R, ¢ > 0 such that v(z) > ¢ if |2| > R. Hence,

lim sup ue(z) = limsup v (u(z) — e) <0
2—00 2—00 'U(Z)
by the various hypothesis. By the maximum principle, u. < 0 on U and letting
€ — 0 we are finished.
(ii) Let A > 0. The hypothesis hold for v4 = v + A in place of v. Clearly,
liminf, o va > A. Also, let R > 0 s.t. |z| > R implies that v(z) > 0.

1imsuszZ;§0 = Ve>03p>0: |z2|>p = »
2—00 z
= Ve>03p>0: |z|] > max(R,p

z

z)

= u(z) < ev(z)

<
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= Ve>03p>0: |z| >max(R,p) = u(z) <e(v(z)+ A4)

<= limsup u(z) <0
z2—00 UA(Z)

Let now Fy, = {z : u(z) > n > 0}. F, is closed in U by u.s.c. of u. Then,
v has a minimum on F,, N {|2|] < R} and v > 0 on F, — {|z| < R}; hence,
v is bounded below on F;. Choose A > 0 st. v+ A > 0 on F, and set
V ={z: wva(z) > 0}. Then V is open by ls.c. of v. If {; € U — {0},
then limsup, . (u(z) —n) < —n < 0 by hypothesis. If (; € U N9V, then
limsup,_,.,(u(z) —n) <0 because ¢ ¢ V and F,, C V.

Applying (i) on each connected component of V', we have that w —n < 0 on
V. On the other hand, F;, C V, hence u —n > 0 on U — V. Overall, u < 7 on
U. Let nown —0. =

Corollary 7 Let U C C be an unbounded domain and let u be subharmonic in

U. If
, , u(z)
limsupu(z) <0 V¢ € U — {oo} and limsup

z—C 2—00 10 ‘ |_ ’

then u <0 on U.

Proof. Let ( € 9UNC. Then, zlog |z — (| is superharmonic in U. By Theorem
9 and translation invariance, u(z — () <0on U + ¢, henceu <0on U. m

For instance, if u < 0 on OU — {oo} and u(z) = 0,0 (log|z|), then u < 0
onU.

Theorem 8 (Liouville.) Let u be subharmonic in C and suppose that

lim sup u(z) <0.
2—00 log |Z|
Then, u is constant in C.
Proof. If u = —oo, we are o.k. Otherwise, let w € C s.t. u(w) # —oo and

consider u3 = u — u(w) on C — {w}. Then, limsup,_,, u1(z) < 0 and the
corollary to Theorem 9 applies, giving u; < 0 on C. By the maximum principle,
u must be constant. m

In particular, a function u, subharmonic on C, which is bounded above, is
constant.

Theorem 9 (Phragmén-Lindel6f in its original form.) Lety > 0 and con-
sider the strip S ={z : |Re(z)| < 35 }. Let u be subharmonic in S be such that,
for some A >0 and a < v,

u(z +iy) < ae?Vl.
Iflimsup, - u(z) <0 for all { # oo in S, then u <0 on S.

Proof. Let v(z) = Re(cos(8z)) = cos(fz)cosh(By) >0on S, if a <8< v. v
is clearly harmonic. Also,

liminf v(z) > cos <§7r) lim inf cosh(By) = +o0,

Z—00 y |y|~>+oo



and

) u(z) .. Aelyl

lim sup —= < lim sup .
2=oo 0(2) T jylmoo cos (g—:) cosh(By)

Hence, we can apply Theorem 9. m

One might wonder where the complex cos-function came from. It originates
from the Poisson kernel of S (rather, from the sum of two instances of the
Poisson kernel).!

A famous consequence of the above.

Theorem 10 (Three Lines Lemma.) Letu be subharmonicin S = {z: 0<
Re(z) < 1} and suppose that there exist A > 0 and o < 7 such that u(z) < Ae®V.

If

limsupu(z) <

z—C -

My when Re(¢) =0,
M, when Re() =1

9

then
u(z +1y) < Mo(1 — ) + Mx.

Proof. Let ui(z) = u(z) — Re(Mp(1 — 2) + M;z), which is subharmonic in
S. Then, u satisfies a (translated version of) the classical PL principle, hence
up<0onS. m

Consider the function u(z) = Re(cos(y(z))). It fails the hypothesis of The-
orem 9 ”just barely”, yet it does not satisfies the thesis.

Exercise 11 Write a version of the Phragmén-Lindelof Theorem for the angle
{o: Jarg(a)] < £,

Subharmonicity and laplacians

Theorem 12 Let Q C C be open and let u : @ — R be a function in C?(£2).
Then, u is subharmonic in Q if and only if Au > 0 in Q.

Proof. (<) We verify that the (global) sub-mean value property holds. With-

out loss of generality, we verify it at 0 € 2. We will use Green’s Theorem?.

Audzdy = / Vu - vdo
|z|=r

|z|<r

X 0
8,,u(r610)7"d—
o 2w

" 0, A0
6
. Oru(re )r—27r

0 i 0. df

— u(re®)— 1.

or | J_, 27

1There is an exercise of this kind below. Maybe some hint here is necessary.

2If © is open, bounded and has piecewise C'!' boundary, if X is a C1(2,R?) vector field
which continuously extends to ¢ = 912, if v denotes the exterior unit normal to ¢, then

/ divXdzdy = /X - vdo,
Q c

where dxdy and do are area measure in 2 and the length element on ¢, respectively.




If Au > 0in Q, then M (u,r) = ["_ u(re®) 2 increases with r, but M (u, 0) = 0,
hence u satisfies the sub-mean value property.
(=). The followin formula extends the limit-characterization of the second

derivative from calculus.?

Lemma 13 If u € C?(Q,R) and zy € §, then

Tz +re?) 8 —u(z0)  Au(z)
ll—{% r2 T4 @)

Proof of the Lemma. WLOG, let zy = 0. Let vg = (cos#,sinf) = e and
¢o(r) = u(rvg). Then, ¢y(r) = Vu(rvg) - vg and ¢} (r) = vg - (Hessu(rvg)ve). By
Taylor’s formula with the error term in Lagrange’ form,

60(0) + (0 + B
where a € [0,1],

Po(r)

30(0) + ¢4 0)r + 210

r? + T2€,
where the error € = €(0,r) satisfies

|65 (ar) — 65(0))|
|vg - (Hessu(ar) — Hessu(0))vyg|

sup ||Hessu(z) — Hessu(0)]|
|21<r

= n(r)

(0, 7))

IA

and 7)(r) — 0 as 7 — 0 because u is C?. For the same reason, €(6, r) is continuous
in (6,r). Then,

/” (@) P o) = / () — u(0) 2

o 27 - o
do
= [ [G6(r) — do(0)]5

= ! bp(0)r + MTQ + 1"26@

21

o 2 o 2

Now, in the last line, the first summand clearly vanishe (essentially by symme-
try), the last one tends to zero as r — 0 by the estimates above and the fact
that e is continuous, while for the term in the middle, we have (below, D is the
diagonalization of Hessu(0) and A; are the eigenvalues of Hessu(0))

1 (" do 1 [7 do

5/_‘” Vg - (Hessu(O)vg)% = §[ﬂ Vg - (D'Ua)g
R ) o db
= 5/_Tr()\lcos 6 + g sin 0)%

3From Taylor’s formula,

Pz +h) —2¢(z) + ¢(x — h)
h2 '

/1 — 1
¢"(z) = lim

2
2 ™
= Vu(0) -vgg—e + {/ vg - (Hessu(O)vg)ﬁ +e(0,71)
7

b



1 1
= 1(/\1 + )\2) = ZAU(O)

m The wished implication follows from the lemma and the sub-mean value
property. ®



