SHARP A PRIORI ESTIMATES FOR DIV-CURL SYSTEMS IN HEISENBERG GROUPS

ANNALISA BALDI & BRUNO FRANCHI

Abstract. In this Note we prove a family of inequalities for differential forms in Heisenberg groups H^1 and H^2, that are the natural counterpart of a class of div-curl inequalities in de Rham's complex proved by Lanzani & Stein and Bourgain & Brezis.

1. Introduction

In [23] Lanzani & Stein proved that the classical sharp Sobolev inequality (the so-called Gagliardo-Nirenberg inequality)
\[
\|u\|_{L^{n/(n-1)}(\mathbb{R}^n)} \leq C \|\nabla u\|_{L^1(\mathbb{R}^n)}, \quad u \in \mathcal{D}(\mathbb{R}^n)
\]
is the first link of a chain of analogous inequalities for compactly supported smooth differential h-forms in \mathbb{R}^n
\begin{align*}
(1) \quad \|u\|_{L^{n/(n-1)}(\mathbb{R}^n)} & \leq C \left(\|du\|_{L^1(\mathbb{R}^n)} + \|\delta u\|_{L^1(\mathbb{R}^n)} \right) \quad \text{if } h \neq 1, n-1; \\
(2) \quad \|u\|_{L^{n/(n-1)}(\mathbb{R}^n)} & \leq C \left(\|du\|_{L^1(\mathbb{R}^n)} + \|\delta u\|_{H^1(\mathbb{R}^n)} \right) \quad \text{if } h = 1; \\
(3) \quad \|u\|_{L^{n/(n-1)}(\mathbb{R}^n)} & \leq C \left(\|du\|_{H^1(\mathbb{R}^n)} + \|\delta u\|_{L^1(\mathbb{R}^n)} \right) \quad \text{if } h = n-1,
\end{align*}

where d is the exterior differential, and δ (the exterior codifferential) is its formal L^2-adjoint. Here $H^1(\mathbb{R}^n)$ is the real Hardy space (see e.g. [30]). In other words, the main result of [23] provides a priori estimates for a div-curl systems with data in $L^1(\mathbb{R}^n)$. This result contains in particular the well-known Burgain-Brezis inequality [7], [8] (see also [31]) for divergence-free vector fields in \mathbb{R}^n. Related results have been obtained again by Burgain-Brezis in [9] and are applied to the study of div-curl systems and of more general Hodge systems.

We refer the reader to all previous references for an extensive discussion about the presence of the Hardy space in (2), (3).

Recently, in [11], Chanillo & Van Schaftingen extented Burgain-Brezis inequality to a class of vector fields in Carnot groups. Some of the results of [11] are presented in Theorems 2.3 and 2.4 below.

To keep this paper self-contained, let us recall preliminarily the basic notions about Carnot groups. A connected and simply connected Lie group (G, \cdot) (in general non-commutative) is said a Carnot group of step κ if the...
Lie algebra \mathfrak{g} of the left-invariant vector fields admits a step κ stratification, i.e. there exist linear subspaces V_1, \ldots, V_κ such that

$$\mathfrak{g} = V_1 \oplus \cdots \oplus V_\kappa, \quad [V_1, V_i] = V_{i+1}, \quad V_\kappa \neq \{0\}, \quad V_i = \{0\} \text{ if } i > \kappa,$$

where $[V_1, V_i]$ is the subspace of \mathfrak{g} generated by the commutators $[X, Y]$ with $X \in V_1$ and $Y \in V_i$. The first layer V_1 is the so-called horizontal layer, that generates \mathfrak{g} by commutation.

A Carnot group \mathbb{G} can be identified, through exponential coordinates, with the Euclidean space (\mathbb{R}^N, \cdot) with a suitable group operation, where N is the dimension of \mathfrak{g}.

Carnot groups are endowed with two family of important transformations: the (left) translation $\tau_x : \mathbb{G} \to \mathbb{G}$ defined as $z \mapsto \tau_x z := x \cdot z$, and the (non-isotropic) group dilations $\delta_\lambda : \mathbb{G} \to \mathbb{G}$, that are associated with the stratification of \mathfrak{g} and are automorphisms of the group (see [13], [30] or [6] for an exhaustive introduction to Carnot groups).

We denote by Q the homogeneous dimension of \mathbb{G}, i.e. we set

$$Q := \sum_{i=1}^\kappa i \dim(V_i).$$

It is well known that Q is the Hausdorff dimension of the metric space \mathbb{G} endowed with any left invariant distance that is homogeneous with respect to group dilations. In general, $Q > N$.

The Lie algebra \mathfrak{g} of \mathbb{G} can be identified with the tangent space at the origin e of \mathbb{G}, and hence the horizontal layer of \mathfrak{g} can be identified with a subspace $H\mathbb{G}_e$ of $T\mathbb{G}_e$. By left translation, $H\mathbb{G}_e$ generates a subbundle $H\mathbb{G}$ of the tangent bundle $T\mathbb{G}$, called the horizontal bundle. A section of $H\mathbb{G}$ is called a horizontal vector field. Since, as usually, vector fields are identified with differential operators, we refer to the elements of V_1 as to the horizontal derivatives. For an horizontal vector field W we can give a natural notion of horizontal divergence $\text{div}_\mathbb{G}$ (see (8) below).

Among Carnot groups, the simplest but, at the same time, non-trivial instance is provided by Heisenberg groups \mathbb{H}^n, with $n \geq 1$, and, in particular, by the first Heisenberg group \mathbb{H}^1. Precise definitions will be given later (see Section 2); let us remind that \mathbb{H}^1 is a Carnot group of step 2 with 2 generators, and that it is in some sense the “model” of all topologically 3-dimensional contact structures.

More formally, the Heisenberg group \mathbb{H}^1 can be identified with \mathbb{R}^3, whith variables (x, y, t). Set $X := \partial_x - \frac{1}{2}y\partial_t$, $Y := \partial_y + \frac{1}{2}x\partial_t$, $T := \partial_t$. The stratification of its algebra \mathfrak{h} is given by $\mathfrak{h} = V_1 \oplus V_2$, where $V_1 = \text{span} \{X, Y\}$ and $V_2 = \text{span} \{T\}$.

In spite of the extensive study of differential equations in Carnot groups (and, more generally, in sub-Riemannian spaces) carried on the last few decades, very few results are known for pde’s involving differential forms in groups (see, e.g., [26], [29], [4], [3], [18], [1], [2], [16]).

As a contribution in this direction, in this paper we attack the study of inequalities (1), (2), (3) for differential forms in Heisenberg groups \mathbb{H}^n, $n \geq 1$.

2
The scalar case, i.e. the Gagliardo-Nirenberg inequality in Carnot groups, is already well known, as well as its geometric counterpart, the isoperimetric inequality: see [14], [15], [10], [19], [24], [25].

A natural setting for div-curl type systems in Heisenberg groups is provided by the so-called Rumin’s complex \((E^*_0, d_c)\) of differential forms in \(\mathbb{H}^n\). In fact, De Rham’s complex \((\Omega^*, d)\) of differential forms, endowed with the usual exterior differential, does not fit the very structure of the group, since it is not invariant under group dilations, basically since it mixes derivatives along all the layers of the stratification. Consider for instance the Heisenberg group \(H^1\), and let \(dx, \, dy\) and \(\theta = dt + \frac{1}{2}ydx - \frac{1}{2}xdy\) (the contact form of \(H^1\)) be the (left invariant) dual covectors of \(X, Y, T\), respectively. If we write the exterior differential \(df\) of a smooth function \(f\) in terms of \(dx, \, dy\) and \(\theta\), we obtain

\[
df = (Xf)dx + (Yf)dy + (Tf)\theta,
\]

that is not invariant under group dilations, since \(dx, \, dy\) are homogeneous of degree 1 with respect to group dilations, whereas \(\theta\) is homogeneous of degree 2.

Then, a naïf approach would be to replace \(d\) by the “horizontal differential” \(d_H\) defined on functions by cutting out the non-horizontal part \((Tf)\theta\), i.e., by setting

\[
d_H f = (Xf)dx + (Yf)dy
\]

that is homogeneous of degree 1. Unfortunately, \(d_H\) does not yield a complex, since \(d_H^2 f \neq 0\), because of the lack of commutativity of \(g\), and therefore \(d_H\) fails to be a good differential for the construction of an intrinsic complex. Rumin’s complex is meant precisely to overcome this difficulty.

As a matter of fact, the construction of the complex \((E^*_0, d_c)\) is rather technical and will be illustrated in Section 3. However, it is important to stress here that Rumin’s differential \(d_c\) may be a differential operator of higher order in the horizontal derivatives. This property affects crucially our results, that are therefore a distinct counterpart of those of Lanzani & Stein.

To give a gist of our results, let us consider for the moment just 1-forms in \(\mathbb{H}^1\). We remind that in \(\mathbb{H}^1\) Rumin’s spaces of forms \(E^*_0\) are

\[
E^1_0 = \text{span} \{dx, \, dy\};
\]
\[
E^2_0 = \text{span} \{dx \wedge \theta, dy \wedge \theta\};
\]
\[
E^3_0 = \text{span} \{dx \wedge dy \wedge \theta\}.
\]

Moreover

\[
d_c(\alpha_1 dx + \alpha_2 dy) = (X^2 \alpha_2 - 2XY \alpha_1 + YX \alpha_1)dx \wedge \theta + (2YX \alpha_2 - Y^2 \alpha_1 - XY \alpha_2)dy \wedge \theta,
\]

and, if we denote by \(\delta_c\) the formal \(L^2\)-adjoint of \(d_c\), then

\[
\delta_c(\alpha_1 dx + \alpha_2 dy) := X_1 \alpha_1 + X_2 \alpha_2.
\]

We notice that \(d_c\) is an operator of order 2 in \(X\) and \(Y\), whereas \(\delta_c\) is an operator of order 1 in the same horizontal derivatives.
In this case we show that there exists $C > 0$ such that for any divergence-free 1-form $u \in \mathcal{D}(\mathbb{H}^1, E_0^1)$ i.e. such that $\delta_c u = 0$, we have

$$\|u\|_{L^{Q/(Q-2)}(\mathbb{H}^1, E_0^1)} \leq C\|d_c u\|_{L^1(\mathbb{H}^1, E_0^1)}.$$

Notice that on the left-hand side the $L^{n/(n-1)}$-norm of (2) is replaced by the $L^{Q/(Q-2)}$-norm, coherently with the fact that d_c is an operator of order 2 on 1-forms.

On the other hand, if we assume $d_c u = 0$, then we have

$$\|u\|_{L^{Q/(Q-1)}(\mathbb{H}^1, E_0^1)} \leq C\|\delta_c u\|_{\mathcal{H}^1(\mathbb{H}^1)},$$

where \mathcal{H}^1 is the Hardy space in \mathbb{H}^1 defined in [13], p.75, and coherently with the fact that δ_c is an operator of order 1 on 1-forms.

Eventually, if we consider div-curl system

$$\begin{cases}
d_c u = f \\
\delta_c u = g,
\end{cases}$$

then the sharpest result we can obtain is

$$\|u\|_{L^{Q/(Q-2)}(\mathbb{H}^1, E_0^1)} \leq C\left(\|f\|_{L^1(\mathbb{H}^1, E_0^1)} + \|d_c g\|_{\mathcal{H}^1(\mathbb{H}^1, E_0^1)}\right).$$

The first step in the proof of these results relies on the fact that the components of closed forms in E_0^1 can be viewed as components of an horizontal vector field F with $\text{div}_\mathbb{H} F = 0$. This make possible to apply a result due to Chanillo & Van Schaftingen for divergence-free horizontal vector fields in Carnot groups (see Theorem 2.3 below). Then the result follows thanks to precise estimates for the fundamental solution of the “Laplace operator” on E_0^1 defined by $\Delta_{\mathbb{H}^1} := \delta_c d_c + (d_c \delta_c)^2$ (that are proved in [5]).

If we want to pass from \mathbb{H}^1 to \mathbb{H}^n with $n > 1$, as for the first step of the proof, the situation becomes increasingly more complex, and, already for the case $n = 2$ we rely on a careful use of Cartan’s formula (see Theorem 2.5), as well as in a long sequence of explicit cumbersome computations whose number growth very fast as n increases. Nevertheless, we believe that our approach for the Heisenberg group \mathbb{H}^2 can be used as a model of the situation for \mathbb{H}^n, with $n \geq 3$.

This paper is organized as follows: in Section 2 we fix our notations and we collect some known results about Heisenberg groups. Moreover, we present two crucial estimates proved by Chanillo & Van Schaftingen ([11]) for “divergence free” horizontal vector fields in Carnot groups, as well as the classical Cartan’s identity that we use in this paper to reduce ourselves precisely to the case of “divergence free” horizontal vector fields. In Section 3, we sketch the construction of Rumin’s complex of differential forms in Heisenberg groups, and we remind some properties of the fundamental solution for a suitable Laplace operator on Rumin’s forms ([4], [5]). Section 4 contains our main results in \mathbb{H}^1 and \mathbb{H}^2. Finally, in Section 5 we discuss the sharpness of our result, and, at same time, we show how they can be improved for special choices of the data.

Finally, we recall that different generalizations of the global inequalities proved by Lanzani & Stein and Bourgain & Brezis have been proved in [22].
2. Preliminary results

2.1. Notations. We denote by \mathbb{H}^n the n-dimensional Heisenberg group, identified with \mathbb{R}^{2n+1} through exponential coordinates. A point $p \in \mathbb{H}^n$ is denoted by $p = (x, y, t)$, with both $x, y \in \mathbb{R}^n$ and $t \in \mathbb{R}$. If p and $p' \in \mathbb{H}^n$, the group operation is defined as

$$p \cdot p' = (x + x', y + y', t + t' - \frac{1}{2} \sum_{j=1}^{n} (x_j y'_j - y_j x'_j)).$$

If we denote by p^{-1} the inverse of p, we remind that $p^{-1} = (-x, -y, -t)$. Sometimes, we write also pq for $p \cdot q$.

For a general review on Heisenberg groups and their properties, we refer to [30], [20] and to [32]. We limit ourselves to fix some notations, following [17].

For fixed $q \in \mathbb{H}^n$ and for $r > 0$, left translations $\tau_q : \mathbb{H}^n \to \mathbb{H}^n$ and non-isotropic dilations $\delta_r : \mathbb{H}^n \to \mathbb{H}^n$ are defined as

$$\tau_q(p) := q \cdot p \quad \text{and as} \quad \delta_r(p) := (rx, ry, r^2 t).$$

The Heisenberg group \mathbb{H}^n can be endowed with the homogeneous norm (Koranyi norm)

$$\varrho(p) = \left((x^2 + y^2)^2 + t^2 \right)^{1/4},$$

and we define the gauge distance (see [30], p. 638) as

$$d(p, q) := \varrho(p^{-1} \cdot q).$$

It is well known that the topological dimension of \mathbb{H}^n is $2n + 1$, since as a smooth manifold it coincides with \mathbb{R}^{2n+1}, whereas the Hausdorff dimension of (\mathbb{H}^n, d) is $Q = 2n + 2$.

We denote by \mathfrak{h} the Lie algebra of the left invariant vector fields of \mathbb{H}^n. The standard basis of \mathfrak{h} is given, for $i = 1, \ldots, n$, by

$$X_i := \partial_{x_i} - \frac{1}{2} y_i \partial_t, \quad Y_i := \partial_{y_i} + \frac{1}{2} x_i \partial_t, \quad T := \partial_t.$$

The only non-trivial commutation relations are $[X_j, Y_j] = T$, for $j = 1, \ldots, n$. When $n = 1$ we just write $X := X_1$ and $Y := Y_1$.

The horizontal subspace \mathfrak{h}_1 is the subspace of \mathfrak{h} spanned by X_1, \ldots, X_n and Y_1, \ldots, Y_n. Coherently, from now on, we refer to $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ (identified with first order differential operators) as to the horizontal derivatives. Denoting by \mathfrak{h}_2 the linear span of T, the 2-step stratification of \mathfrak{h} is expressed by

$$\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2.$$

The vector spaces \mathfrak{h} can be endowed with an inner product, indicated by $\langle \cdot, \cdot \rangle$, making $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ and T orthonormal.

Through this paper, to avoid cumbersome notations, we write also

$$W_i := X_i, \quad W_{i+n} := Y_i, \quad W_{2n+1} := T, \quad \text{for } i = 1, \cdots, n.$$
If \(f : \mathbb{H}^n \to \mathbb{R} \), we denote by \(\nabla_{\mathbb{H}} f \) the horizontal vector field
\[
\nabla_{\mathbb{H}} f := \sum_{i=1}^{2n} (W_i f) W_i,
\]
whose coordinates are \((W_1 f, ..., W_{2n} f)\). Moreover, if \(\Phi = (\phi_1, ..., \phi_{2n}) \) is an horizontal vector field, we define \(\text{div}_{\mathbb{H}} \Phi \) as the real valued function
\[
(8) \quad \text{div}_{\mathbb{H}} \Phi := \sum_{j=1}^{2n} W_j \phi_j.
\]

If \(f \) is a real function defined in \(\mathbb{H}^n \), we denote by \(\check{f} \) the function defined by \(\check{f}(p) := f(p^{-1}) \), and, if \(T \in \mathcal{D}'(\mathbb{H}^n) \), then \(\check{T} \) is the distribution defined by \(\langle \check{T} | \phi \rangle := \langle T | \check{\phi} \rangle \) for any test function \(\phi \).

Following e.g. [13], we can define a group convolution in \(\mathbb{H}^n \): if, for instance, \(f \in \mathcal{D}(\mathbb{H}^n) \) and \(g \in L^1_{\text{loc}}(\mathbb{H}^n) \), we set
\[
(9) \quad f \ast g(p) := \int f(q) g(q^{-1} \cdot p) \, dq \quad \text{for} \quad q \in \mathbb{H}^n.
\]
We remind that, if (say) \(g \) is a smooth function and \(L \) is a left invariant differential operator, then
\[
L(f \ast g) = f \ast Lg.
\]
We remark also that the convolution is again well defined when \(f, g \in \mathcal{D}'(\mathbb{H}^n) \), provided at least one of them has compact support (as customary, we denote by \(\mathcal{E}'(\mathbb{H}^n) \) the class of compactly supported distributions in \(\mathbb{H}^n \) identified with \(\mathbb{R}^{2n+1} \)). In this case the following identities hold
\[
(10) \quad \langle f \ast g | \phi \rangle = \langle g | \check{f} \ast \phi \rangle \quad \text{and} \quad \langle f \ast g | \phi \rangle = \langle f | \check{\phi} \ast g \rangle
\]
for any test function \(\phi \).

If \(I = (i_1, \ldots, i_{2n+1}) \) is a multi–index, we set \(W^I = W_{i_1}^{i_1} \cdots W_{i_{2n}}^{i_{2n}} T_{i_{2n+1}} \). Furthermore, we set \(|I| := i_1 + \cdots + i_{2n} + i_{2n+1} \) the order of the differential operator \(W^I \), and \(d(I) := i_1 + \cdots + i_{2n} + 2i_{2n+1} \) its degree of homogeneity with respect to group dilations.

Suppose now \(f \in \mathcal{E}'(\mathbb{H}^n) \) and \(g \in \mathcal{D}'(\mathbb{H}^n) \). Then, if \(\psi \in \mathcal{D}(\mathbb{H}^n) \), we have
\[
(11) \quad \langle (W^I f) \ast g | \psi \rangle = \langle W^I f | \psi \ast g \rangle = (-1)^{|I|} \langle f | \check{\psi} \ast (W^I \check{g}) \rangle
\]
\[
= (-1)^{|I|} \langle f \ast \check{W}^I \check{g} | \psi \rangle.
\]

Following [12], we remind now the notion of kernel of order \(\alpha \), as well as some basic properties.

Definition 2.1. A kernel of order \(\alpha \) is a homogeneous distribution of degree \(\alpha - Q \) (with respect to group dilations \(\delta_r \) as in (4)), that is smooth outside of the origin.

Proposition 2.2. Let \(K \in \mathcal{D}'(\Omega) \) be a kernel of order \(\alpha \).

i) \(\check{K} \) is again a kernel of order \(\alpha \);

ii) \(W_{t\ell} K \) is a kernel of order \(\alpha - 1 \) for any horizontal derivative \(W_{t\ell} K \), \(\ell = 1, \ldots, 2n \);

iii) If \(\alpha > 0 \), then \(K \in L^1_{\text{loc}}(\mathbb{H}^n) \).
2.2. Multilinear algebra. The dual space of \(\mathfrak{h} \) is denoted by \(\wedge^1 \mathfrak{h} \). The basis of \(\wedge^1 \mathfrak{h} \), dual to the basis \(\{X_1, \ldots, Y_n, T\} \) is the family of covectors \(\{dx_1, \ldots, dx_n, dy_1, \ldots, dy_n, \theta\} \) where \(\theta := dt - \frac{1}{2} \sum_{j=1}^n (x_j dy_j - y_j dx_j) \) is called the contact form in \(\mathbb{H}^n \).

We indicate as \(\langle \cdot, \cdot \rangle \) also the inner product on \(\Lambda^1 \mathfrak{h} \) that makes \(dx_1, \ldots, dy_n, \theta \) be an orthonormal basis.

Coherently with the previous notation (7), we set

\[
\theta_i := dx_i, \quad \theta_{i+n} := dy_i, \quad \theta_{2n+1} := \theta, \quad \text{for} \ i = 1, \ldots, n.
\]

We put \(\Lambda^0 \mathfrak{h} := \Lambda^0 \mathfrak{h} = \mathbb{R} \) and, for \(1 \leq k \leq 2n + 1 \),

\[
\Lambda^k \mathfrak{h} := \text{span} \{W_{i_1} \wedge \cdots \wedge W_{i_k} : 1 \leq i_1 < \cdots < i_k \leq 2n + 1 \} =: \text{span} \Theta_k,
\]

\[
\Lambda^k \mathfrak{h}_1 := \text{span} \{\theta_{i_1} \wedge \cdots \wedge \theta_{i_k} : 1 \leq i_1 < \cdots < i_k \leq 2n + 1 \} =: \text{span} \Theta^k.
\]

The volume \((2n + 1)-\text{form} \theta_1 \wedge \cdots \wedge \theta_{2n+1} \) will be also written as \(dV \).

The action of a \(k \)-covector \(\varphi \) on a \(k \)-vector \(v \) is denoted by \(\langle \varphi | v \rangle \).

The inner product \(\langle \cdot, \cdot \rangle \) extends canonically to \(\Lambda^k \mathfrak{h} \) and to \(\Lambda^k \mathfrak{h}_1 \) making both bases \(\Theta_k \) and \(\Theta^k \) orthonormal. We denote by \(\theta^1 \) the \(i \)-element of the orthonormal basis \(\Theta^k \), \(1 \leq i \leq \binom{2n+1}{k} \).

The same construction can be performed starting from the vector subspace \(\mathfrak{h}_1 \subset \mathfrak{h} \), obtaining the horizontal \(k \)-vectors and horizontal \(k \)-covectors

\[
\Lambda^k \mathfrak{h}_1 := \text{span} \{W_{i_1} \wedge \cdots \wedge W_{i_k} : 1 \leq i_1 < \cdots < i_k \leq 2n \}
\]

\[
\Lambda^k \mathfrak{h} := \text{span} \{\theta_{i_1} \wedge \cdots \wedge \theta_{i_k} : 1 \leq i_1 < \cdots < i_k \leq 2n \}.
\]

The symplectic 2-form \(d\theta \in \Lambda^2 \mathfrak{h}_1 \) is \(d\theta = -\sum_{i=1}^n dx_i \wedge dy_i \).

If \(1 \leq k \leq 2n + 1 \), the Hodge isomorphism

\[
*: \Lambda^k \mathfrak{h} \longleftrightarrow \Lambda^{2n+1-k} \mathfrak{h}_1 \quad \text{and} \quad *: \Lambda^k \mathfrak{h}_1 \longleftrightarrow \Lambda^{2n+1-k} \mathfrak{h},
\]

is defined by

\[
v \wedge * w = \langle v, w \rangle W_1 \wedge \cdots \wedge W_{2n+1},
\]

\[
\varphi \wedge * \psi = \langle \varphi, \psi \rangle \theta_1 \wedge \cdots \wedge \theta_{2n+1}.
\]

If \(v \in \Lambda^k \mathfrak{h} \) we define \(v^\flat \in \Lambda^k \mathfrak{h}_1 \) by the identity \(\langle v^\flat | w \rangle := \langle v, w \rangle \), and analogously we define \(\varphi^\flat \in \Lambda^k \mathfrak{h} \) for \(\varphi \in \Lambda^k \mathfrak{h}_1 \).}

As pointed out in the Introduction, the Lie algebra \(\mathfrak{h} \) can be identified with the tangent space at the origin \(e = 0 \) of \(\mathbb{H}^n \), and hence the horizontal layer \(\mathfrak{h}_1 \) can be identified with a subspace of \(T_{e=0} \mathbb{H}^n \) that we can still denote by \(\Lambda^1 \mathfrak{h}_1 \). By left translation, \(\Lambda^1 \mathfrak{h}_1 \) generates a subbundle of the tangent bundle, called the horizontal bundle, that, with a slight abuse of notations, we still denote by \(\Lambda^1 \mathfrak{h}_1 \). A section of \(\Lambda^1 \mathfrak{h}_1 \) is called a horizontal vector field.

We recall now the following two results due to Chanillo & Van Schaftingen that are keystones in our proofs.
Theorem 2.3 ([11], Theorem 1). Let $\Phi \in D(\mathbb{H}^n, \Lambda_1 \mathfrak{h}_1)$ be a smooth compactly supported horizontal vector field. If $F \in L^1_{\text{loc}}(\mathbb{H}^n, \Lambda_1 \mathfrak{h}_1)$ is \mathbb{H}-divergence free, then

$$\left| \langle F, \Phi \rangle_{L^2(\mathbb{H}^n, \Lambda_1 \mathfrak{h}_1)} \right| \leq C \| F \|_{L^1(\mathbb{H}^n, \Lambda_1 \mathfrak{h}_1)} \| \nabla^H \Phi \|_{L^Q(\mathbb{H}^n, \Lambda_1 \mathfrak{h}_1)}.$$

Let $k \geq 1$ be fixed, and let $F \in L^1(\mathbb{H}^n, \otimes^k \Lambda_1 \mathfrak{h}_1)$ belong to the space of the horizontal k-tensors. We can write

$$F = \sum_{i_1, \ldots, i_k} F_{i_1, \ldots, i_k} W_{i_1} \otimes \cdots \otimes W_{i_k}.$$

We remind that F can be identified with the differential operator

$$u \mapsto Fu := \sum_{i_1, \ldots, i_k} F_{i_1, \ldots, i_k} W_{i_1} \cdots W_{i_k} u.$$

Moreover, we denote by $D(\mathbb{H}^n, \text{Sym}(\otimes^k \Lambda_1 \mathfrak{h}_1))$ the subspace of compactly supported smooth symmetric horizontal k-tensors.

Then Theorem 2.3 is a special instance of the following more general result.

Theorem 2.4 ([11], Theorem 5). Let $k \geq 1$, $F \in L^1(\mathbb{H}^n, \otimes^k \Lambda_1 \mathfrak{h}_1)$, $\Phi \in D(\mathbb{H}^n, \text{Sym}(\otimes^k \Lambda_1 \mathfrak{h}_1))$. Suppose

$$\int_{\mathbb{H}^n} F \psi dV = 0 \quad \text{for all } \psi \in D(\mathbb{H}^n),$$

i.e. suppose that

$$\sum_{i_1, \ldots, i_k} W_{i_k} \cdots W_{i_1} F_{i_1, \ldots, i_k} = 0 \quad \text{in } D'(\mathbb{H}^n).$$

Then

$$\left| \int_{\mathbb{H}^n} \langle \Phi, F \rangle dV \right| \leq C_k \| F \|_{L^1(\mathbb{H}^n, \otimes^k \Lambda_1 \mathfrak{h}_1)} \| \nabla^H \Phi \|_{L^Q(\mathbb{H}^n, \otimes^k \Lambda_1 \mathfrak{h}_1)}.$$

We close this Section by recalling the following classical Cartan’s formula in \mathbb{H}^n (see, e.g., [21], identity (9) p. 21, though with a different normalization of the wedge product).

Theorem 2.5. Let ω be a smooth h-form of (Ω^*, d) (the usual de Rham’s complex), and let Z_0, Z_1, \ldots, Z_h be smooth vector fields in \mathbb{H}^n. Then

$$\langle d\omega | Z_0 \wedge \cdots \wedge Z_h \rangle = \sum_{i=0}^h (-1)^i Z_i \langle \omega | Z_0 \wedge \cdots \hat{Z}_i \cdots \wedge Z_h \rangle$$

$$+ \sum_{0 \leq i < j \leq h} (-1)^{i+j} \langle \omega | [Z_i, Z_j] \wedge \cdots \wedge \hat{Z}_i \cdots \wedge \hat{Z}_j \cdots \rangle.$$

3. Intrinsic complex and fundamental solution

We summarize now very shortly Rumin’s construction of the intrinsic complex. Though this theory can be naturally formulated in any Carnot group, we restrict ourselves to Heisenberg groups. For a general approach, we refer, for instance, to [29] and [3].
Definition 3.1. If $\alpha \neq 0$, $\alpha \in \bigwedge^1 h$, we say that α has weight 1, and we write $w(\alpha) = 1$. If $\alpha = \theta$, we say $w(\theta) = 2$. More generally, if $\alpha \in \bigwedge^h h$, we say that α has pure weight k if α is a linear combination of covectors $\theta_{i_1} \wedge \cdots \wedge \theta_{i_k}$ with $w(\theta_{i_1}) + \cdots + w(\theta_{i_k}) = k$.

Notice that, if $\alpha, \beta \in \bigwedge^h h$ and $w(\alpha) \neq w(\beta)$, then $\langle \alpha, \beta \rangle = 0$.

We have ([3], formula (16))
\[\bigwedge^h h = \bigwedge^{h,h} h \oplus \bigwedge^{h,h+1} h, \]
where $\bigwedge^{h,p} h$ denotes the linear span of $\Theta^{h,p} := \{ \alpha \in \Theta^h, w(\alpha) = p \}$.

Similarly, if we denote by $\Omega^{h,p}$ the vector space of all smooth h–forms in H^n of weight p, i.e. the space of all smooth sections of $\bigwedge^{h,p} h$, we have
\[\Omega^h = \Omega^{h,h} \oplus \Omega^{h,h+1}. \]

The following crucial property of the weight follows from Cartan identity: see [29], Section 2.1:

Definition 3.2. Let now $\alpha = \sum_{\theta^h_i \in \Theta^{h,p}} \alpha_i \theta^h_i \in \Omega^{h,p}$ be a (say) smooth form of pure weight p. Then we can write
\[d\alpha = d_0 \alpha + d_1 \alpha + d_2 \alpha, \]
where $d_0 \alpha$ has still weight p, $d_1 \alpha$ has weight $p + 1$, and $d_2 \alpha$ has weight $p + 2$.

By Cartan’s formula (12), $w(d\theta^h_i) = w(\theta^h_i)$ (because of their left-invariance), and then we can write explicitly
\[d_0 \alpha = \sum_{\theta^h_i \in \Theta^{h,p}} \alpha_i d\theta^h_i \]
that does not increase the weight,
\[d_1 \alpha = \sum_{\theta^h_i \in \Theta^{h,p}} \sum_{j=1}^{m_i} (X_j \alpha_i) \theta_j \wedge \theta^h_i \]
that increases the weight by 1, and
\[d_2 \alpha = \sum_{\theta^h_i \in \Theta^{h,p}} (T\alpha_i) \theta \wedge \theta^h_i, \]
that increases the weight by 2.

The following definition of intrinsic covectors (and therefore of intrinsic forms) is due to M. Rumin ([29], [27]).

Definition 3.3. If $0 \leq h \leq 2n + 1$ we set
\[E^h_0 := \ker d_0 \cap R(d_0)^\perp \subset \Omega^h. \]
It is easy to see that $*E^h_0 = E^{2n+1-h}_0$.

We refer to the elements of E^h_0 as to intrinsic h–forms on \mathbb{H}^n. Since the construction of E^h_0 is left invariant, this space of forms can be seen as the space of sections of a fiber subbundle of $\bigwedge^h h$, generated by left translation and still denoted by E^h_0. In particular E^h_0 inherits from $\bigwedge^h h$ the scalar product on the fibers.
Lemma 3.7. If L is a differential form with respect to the basis Ξ_0^h, then there exists a unique $\alpha \in \bigwedge^h \mathfrak{h}$ such that $d_0 \alpha = \beta \in \bigwedge^h \mathfrak{h}$.

We set $\alpha := d_0^{-1} \beta$. We notice that d_0^{-1} preserves the weights.

The following theorem summarizes the construction of the intrinsic differential d_c (for details, see [29] and [3], Section 2).

Theorem 3.4 (see [26], [28]). We have:

- $E_0^1 = \bigwedge^1 \mathfrak{h}_1$;
- if $2 \leq h \leq n$ then $E_0^h = \bigwedge^h \mathfrak{h}_1 \cap \left(\bigwedge^{h-2} \mathfrak{h}_1 \wedge d\theta \right)^\perp$;
- if $n < h \leq 2n + 1$ then $E_0^h = \{ \alpha = \beta \wedge \theta, \beta \in \bigwedge^{h-1} \mathfrak{h}_1, \alpha \wedge d\theta = 0 \}$.

Notice that all forms in E_0^h have weight h if $1 \leq h \leq n$ and weight $h + 1$ if $n < h \leq 2n + 1$.

We denote by $\Xi_0^h = \{ \xi_j^h \}$ an orthonormal basis of E_0^h. We can take $\xi_j^1 = \theta_j$ for $j = 1, \ldots, 2n$.

Definition 3.5. From now on, we shall refer to the components of a form $\alpha \in E_0^h$ with respect to the basis Ξ_0^h tout court as to the components of α without further specifications.

Theorem 3.8. The de Rham complex (Ω^*, d) splits in the direct sum of two sub-complexes (E^*, d) and (F^*, d), with

$$E := \ker d_0^{-1} \cap \ker (d_0^{-1} d) \quad \text{and} \quad F := \mathcal{R}(d_0^{-1}) + \mathcal{R}(d d_0^{-1}).$$

We have

i) Let Π_E be the projection on E along F (that is not an orthogonal projection). If $\alpha \in E_0^h$, then

- $\Pi_E \alpha = \alpha - d_0^{-1} d_1 \alpha$ if $1 \leq h \leq n$;
- $\Pi_E \alpha = \alpha$ if $h > n$.

ii) Π_E is a chain map, i.e.

$$d \Pi_E = \Pi_E d.$$

iii) Let Π_{E_0} be the orthogonal projection from $\bigwedge^* \mathfrak{h}$ on E_0^*, then

$$\Pi_{E_0} = I - d_0^{-1} d_0 - d_0 d_0^{-1}, \quad \Pi_{E_0}^2 = d_0^{-1} d_0 + d_0 d_0^{-1}.$$

iv) $\Pi_{E_0} \Pi_E \Pi_{E_0} = \Pi_{E_0}$ and $\Pi_E \Pi_{E_0} \Pi_E = \Pi_E$.

Set now

$$d_c = \Pi_{E_0} d \Pi_E : E_0^h \to E_0^{h+1}, \quad h = 0, \ldots, 2n.$$

We have:

v) $d_c^2 = 0$.

10
vi) the complex $E_0 := (E^*_0, d_c)$ is exact;

vii) $d_c : E^h_0 \to E^{h+1}_0$ is an homogeneous differential operator in the horizontal derivatives of order 1 if $h \neq n$, whereas $d_c : E^n_0 \to E^{n+1}_0$ is an homogeneous differential operator in the horizontal derivatives of order 2.

Remark 3.9. if $f \in E^0_0$ (i.e. f is a smooth function), then

$$d_c f = \sum_{j=1}^n X_j f dx_j + \sum_{j=1}^n Y_j f dy_j.$$

Proposition 3.10. Denote by $\delta_c = d^*_c$ the formal adjoint of d_c in $L^2(G, E^*_0)$. Then $\delta_c = (-1)^h \ast d_c \ast$ on E^h_0.

Example 3.11. Let $\mathbb{H}^1 \equiv \mathbb{R}^3$ be the first Heisenberg group, with variables (x, y, t). We have:

$$E^1_0 = \text{span} \{dx, dy\};$$
$$E^2_0 = \text{span} \{dx \wedge \theta, dy \wedge \theta\};$$
$$E^3_0 = \text{span} \{dx \wedge dy \wedge \theta\}.$$

Thus, if $\alpha = \alpha_1 dx + \alpha_2 dy \in E^1_0$, then

(a) $d_c \alpha = (X^2 \alpha_2 - 2XY \alpha_1 + YX \alpha_1) dx \wedge \theta + (2YX \alpha_2 - Y^2 \alpha_1 - XY \alpha_2) dy \wedge \theta$

(b) $\delta_c \alpha = X \alpha_1 + Y \alpha_2$.

On the other hand, if $\alpha = \alpha_1 dx \wedge \theta + \alpha_2 dy \wedge \theta \in E^2_0$, then

(c) $d_c \alpha = (X \alpha_2 - Y \alpha_1) dx \wedge dy \wedge \theta$;

(d) $\delta_c \alpha = (XY \alpha_1 - 2XY \alpha_3 - Y^2 \alpha_2) dx + (X^2 \alpha_3 + 2XY \alpha_2 - XY \alpha_3) dy$.

Example 3.12. Choose now $\mathbb{H}^2 \equiv \mathbb{R}^5$, with variables (x_1, x_2, y_1, y_2, t). In this case (see e.g. [3], Appendix B)

$$E^1_0 = \text{span} \{dx_1, dx_2, dy_1, dy_2\};$$
$$E^2_0 = \text{span} \{dx_1 \wedge dx_2, dx_1 \wedge dy_2, dx_2 \wedge dy_1, dy_1 \wedge dy_2, \frac{1}{\sqrt{2}}(dx_1 \wedge dy_1 - dx_2 \wedge dy_2)\}.$$

The classes E^3_0 and E^4_0 are easily written by Hodge duality:

$$E^3_0 = \text{span} \{dy_1 \wedge dy_2 \wedge \theta, dx_2 \wedge dy_1 \wedge \theta, dx_1 \wedge dy_2 \wedge \theta, dx_1 \wedge dx_2 \wedge \theta,\frac{1}{\sqrt{2}}(dx_1 \wedge dy_1 - dx_2 \wedge dy_2) \wedge \theta\};$$
$$E^4_0 = \text{span} \{dx_2 \wedge dy_1 \wedge dy_2 \wedge \theta, dx_1 \wedge dy_1 \wedge dy_2 \wedge \theta, dx_1 \wedge dx_2 \wedge dy_2 \wedge \theta, dx_1 \wedge dx_2 \wedge dy_1 \wedge \theta\};$$
$$E^5_0 = \text{span} \{dx_1 \wedge dx_2 \wedge dy_1 \wedge dy_2 \wedge \theta = dV\}.$$
Thus, if \(\alpha = \alpha_1 dx_1 + \alpha_2 dx_2 + \alpha_3 dy_1 + \alpha_4 dy_2 \in E^1_0 \), we have
\[
(a) \quad d_c \alpha = (X_1 \alpha_2 - X_2 \alpha_1) dx_1 \wedge dx_2 + (Y_1 \alpha_4 - Y_2 \alpha_3) dy_1 \wedge dy_2 \\
+ (X_1 \alpha_4 - Y_2 \alpha_1) dx_1 \wedge dy_2 + (X_2 \alpha_3 - Y_1 \alpha_2) dx_2 \wedge dy_1 \\
+ \frac{X_1 \alpha_3 - Y_1 \alpha_1 - X_2 \alpha_4 + Y_2 \alpha_2}{\sqrt{2}} (dx_1 \wedge dy_1 - dx_2 \wedge dy_2).
\]
\[
(b) \quad \delta_c \alpha = X_1 \alpha_1 + X_2 \alpha_2 + Y_1 \alpha_3 + Y_2 \alpha_4.
\]

Definition 3.13. In \(\mathbb{H}^n \), following [26], we define the operator \(\Delta_{\mathbb{H},h} \) on \(E^h_0 \) by setting
\[
\Delta_{\mathbb{H},h} = \begin{cases} \\
(\delta_c d_c + d_c \delta_c) & \text{if } h \neq n, n+1; \\
(\delta_c d_c)^2 + d_c \delta_c & \text{if } h = n; \\
d_c \delta_c + (\delta_c d_c)^2 & \text{if } h = n+1.
\end{cases}
\]

Notice that \(-\Delta_{\mathbb{H},0} = \sum_{j=1}^n (X_j^2 + Y_j^2)\) is the usual sub-Laplacian of \(\mathbb{H}^n \).

Set \(N_h := \dim E^h_0 \). For sake of simplicity, once the basis \(\Xi_h^0 \) of \(E^h_0 \) is fixed, the operator \(\Delta_{\mathbb{H},h} \) can be identified with a matrix-valued map, still denoted by \(\Delta_{\mathbb{H},h} \).

This identification makes possible to avoid the notion of currents: we refer to [3] for this more elegant presentation.

Combining [26] and [5], we obtain the following result.

Theorem 3.14. If \(0 \leq h \leq 2n + 1 \), then the differential operator \(\Delta_{\mathbb{H},h} \) is hypoelliptic of order \(a = 2 \) if \(h \neq n, n+1 \) and of order \(a = 4 \) if \(h = n, n+1 \) with respect to group dilations.

Moreover for \(j = 1, \ldots, N_h \) there exists
\[
K_j = (K_{1j}, \ldots, K_{N_hj}), \quad j = 1, \ldots, N_h
\]
with \(K_{ij} \in D' (\mathbb{H}^n) \cap E (\mathbb{H}^n \setminus \{0\}) \), \(i, j = 1, \ldots, N \) such that
\[\text{i) we have} \quad \sum_i \Delta_{\mathbb{H},h} K_{ij} \delta = \begin{cases} \\
\delta & \text{if } \ell = j; \\
0 & \text{if } \ell \neq j.
\end{cases}\]
\[\text{ii) if } a < Q, \text{ then the } K_{ij} \text{'s are kernels of type } a \text{ in the sense of [12], for } i, j = 1, \ldots, N_h \text{ (i.e. they are smooth functions outside of the origin, homogeneous of degree } a - Q, \text{ and hence belonging to } L^1_{\text{loc}} (\mathbb{H}^n) \text{, by Proposition 2.2). If } a = Q, \text{ then the } K_{ij} \text{'s satisfy the logarithmic estimate } |K_{ij}(p)| \leq C (1 + |\ln \rho(p)|) \text{ and hence belong to } L^1_{\text{loc}} (\mathbb{H}^n). \text{ Moreover, their horizontal derivatives } W_\ell K_{ij}, \text{ } \ell = 1, \ldots, 2n, \text{ are kernels of type } Q - 1;\]
\[\text{iii) when } \alpha \in D(\mathbb{H}^n, \mathbb{R}^{N_h}), \text{ if we set} \]
\[K \alpha := \left(\sum_j \alpha_j \ast K_{1j}, \ldots, \sum_j \alpha_j \ast K_{N_hj} \right), \]
then \(\Delta_{\mathbb{H},h} K \alpha = \alpha \). Moreover, if \(a < Q \), also \(K \Delta_{\mathbb{H},h} \alpha = \alpha. \)
\[\text{iv) if } a = Q, \text{ then for any } \alpha \in D(\mathbb{H}^n, \mathbb{R}^{N_h}) \text{ there exists } \beta_{\alpha} := (\beta_1, \ldots, \beta_{N_h}) \in \mathbb{R}^{N_h}, \text{ such that} \]
\[K \Delta_{\mathbb{H},h} \alpha - \alpha = \beta_{\alpha}.\]
Remark 3.15. Coherently with formula (15), the operator K can be identified with an operator (still denoted by K) acting on smooth compactly supported differential forms in $\mathcal{D}(\mathbb{H}^h, E^h_0)$.

4. Main result

Theorem 4.1. Denote by (E^h_0, d_c) the complex of intrinsic forms in \mathbb{H}^1. Then there exists $C > 0$ such that for any h-form $u \in \mathcal{D}(\mathbb{H}^1, E^h_0)$, $0 \leq h \leq 3$, satisfying

\[
\begin{cases}
d_c u = f \\
\delta_c u = g,
\end{cases}
\]

we have

\[
\|u\|_{L^q/(q-1)(\mathbb{H}^1)} \leq C \|f\|_{L^1(\mathbb{H}^1, E^h_0)} \quad \text{if } h = 0;
\]

\[
\|u\|_{L^q/(q-2)(\mathbb{H}^1, E^h_0)} \leq C \left(\|f\|_{L^1(\mathbb{H}^1, E^h_0)} + \|d_c g\|_{H^1(\mathbb{H}^1)} \right) \quad \text{if } h = 1;
\]

\[
\|u\|_{L^q/(q-2)(\mathbb{H}^1, E^h_0)} \leq C \left(\|d_c f\|_{H^1(\mathbb{H}^1, E^h_0)} + \|g\|_{L^1(\mathbb{H}^1, E^h_0)} \right) \quad \text{if } h = 2;
\]

\[
\|u\|_{L^q/(q-1)(\mathbb{H}^1, E^h_0)} \leq C \|g\|_{L^1(\mathbb{H}^1, E^h_0)} \quad \text{if } h = 3.
\]

Proof. First of all, we notice that, since the complex (E^h_0, d_c) is invariant under Hodge-star duality, we may restrict ourselves to forms in E^h_0, with $h = 0, 1$. The case $h = 0$ is well known ([14], [10], [24]). On the other hand, keeping in mind Theorem 3.14, if $u, \phi \in \mathcal{D}(\mathbb{H}^1, E^h_0)$, we can write

\[
\langle u, \phi \rangle_{L^2(\mathbb{H}^1, E^h_0)} = \langle u, \Delta_{H,1} K \phi \rangle_{L^2(\mathbb{H}^1, E^h_0)}
\]

\[
= \langle u, (\delta_c d_c + (d_c \delta_c)^2) K \phi \rangle_{L^2(\mathbb{H}^1, E^h_0)}.
\]

Consider now the term

\[
\langle u, \delta_c d_c K \phi \rangle_{L^2(\mathbb{H}^1, E^h_0)} = \langle d_c u, d_c K \phi \rangle_{L^2(\mathbb{H}^1, E^h_0)}.
\]

If we write $f := d_c u$, then f is a 2-form in E^h_0, and therefore it can be written as $f = f_1 dx \wedge \theta + f_2 dy \wedge \theta$. Analogously, we can write $d_c K \phi = (d_c K \phi)_1 dx \wedge \theta + (d_c K \phi)_2 dy \wedge \theta$. Thus

\[
\langle u, \delta_c d_c K \phi \rangle_{L^2(\mathbb{H}^1, E^h_0)} = \langle f_1, (d_c K \phi)_1 \rangle_{L^2(\mathbb{H}^1)} + \langle f_2, (d_c K \phi)_2 \rangle_{L^2(\mathbb{H}^1)}.
\]

Let us estimate, for instance, the first term of the sum. We remind that, since f is closed, we have $X f_2 - Y f_1 = 0$ (by Example 3.11, (c)), i.e. if $F := (f_2, -f_1)$ then $\text{div}_H F = 0$.

Thus, if we choose $\Phi := (0, (d_c K \phi)_1)$, we can apply Theorem 1 in [11] to obtain

\[
\left| \langle F, \Phi \rangle \right| = \left| \langle f_1, (d_c K \phi)_1 \rangle_{L^2(\mathbb{H}^1)} \right| \leq C \|d_c u\|_{L^1(\mathbb{H}^1, E^h_0)} \|\nabla H d_c K \phi\|_{L^q(\mathbb{H}^1, E^h_0)}.
\]

The term $\langle f_2, (d_c K \phi)_2 \rangle_{L^2(\mathbb{H}^1)}$ can be handled in the same way, choosing $\Phi := ((d_c K \phi)_2, 0)$. After all, we obtain

\[
\left| \langle u, \delta_c d_c K \phi \rangle_{L^2(\mathbb{H}^1, E^h_0)} \right| \leq C \|d_c u\|_{L^1(\mathbb{H}^1, E^h_0)} \|\nabla H d_c K \phi\|_{L^q(\mathbb{H}^1, E^h_0)}.
\]

Furthermore, $\nabla H d_c K \phi$ can be expressed as a sum of terms with components of the form

\[
\alpha_j * W^I \tilde{K}_{ij}, \quad \text{with } d(I) = 3.
\]
By Theorem 3.14, iv) and Proposition 2.2, ii) $W^I \tilde{K}_{ij}$ are kernels of order 1, so that, by [12], Proposition 1.11 we have

$$\langle u, (d_c \delta_c K \phi) \rangle_{L^2(\mathbb{H}^1, E^0_0)} \leq C \|f\|_{L^1(\mathbb{H}^1, E^0_0)} \|\phi\|_{L^{q/2}(\mathbb{H}^1, E^0_0)}.$$

Consider now the second term in (18)

$$\langle u, (d_c \delta_c K \phi) \rangle_{L^2(\mathbb{H}^1, E^0_0)} = \langle d_c \delta_c u, d_c \delta_c K \phi \rangle_{L^2(\mathbb{H}^1, E^0_0)}.$$

By Theorem 3.14, formula (17), keeping in mind that δ_c is an operator of order 1 in the horizontal derivatives when acting on 1-forms, as well as d_c when acting on 0-forms, the quantity $d_c \delta_c K \phi$ can be written as a sum of terms with components of the form

$$\phi_{ij} \ast W^I \tilde{K}_{ij}, \quad \text{with } d(I) = 2 \text{ and } \phi_{ij} \in D(\mathbb{H}^1).$$

On the other hand, if $d_c \delta_c u = d_c g = (d_c g)_1 \, dx + (d_c g)_2 \, dy$, then we are reduced to estimate

$$\langle (d_c g)_i, \phi_{ij} \ast W^I \tilde{K}_{ij} \rangle_{L^2(\mathbb{H}^1)} = \langle (d_c g)_i \ast W^I \tilde{K}_{ij}, \phi_{ij} \rangle_{L^2(\mathbb{H}^1)},$$

for $i \leq 2$. Moreover,

$$|\langle (d_c g)_i, \phi_{ij} \ast W^I \tilde{K}_{ij} \rangle_{L^2(\mathbb{H}^1)}| \leq \|d_c g\|_{H^1(\mathbb{H}^1, E^0_0)} \|\phi\|_{L^{q/2}(\mathbb{H}^1)}.$$

Notice the $W^I \tilde{K}_{ij}$'s and hence the $\gamma(W^I \tilde{K}_{ij})$'s are kernels of type 2 since $d(I) = 2$. Thus, by Theorem 6.10 in [13],

$$|\langle (d_c g)_i, \phi_{ij} \ast W^I \tilde{K}_{ij} \rangle_{L^2(\mathbb{H}^1)}| \leq C \|d_c g\|_{H^1(\mathbb{H}^1, E^0_0)} \|\phi\|_{L^{q/2}(\mathbb{H}^1)}.$$

Thus

$$\|u\|_{L^{q/(q-2)}(\mathbb{H}^1, E^0_0)} \leq C \left(\|f\|_{L^1(\mathbb{H}^1, E^0_0)} + \|d_c g\|_{H^1(\mathbb{H}^1, E^0_0)} \right),$$

which concludes the proof. \qed

Remark 4.2. The sharpness of the results of previous theorem will be discussed in Section 5.

Theorem 4.3. Denote by (E^*_0, d_c) the complex of intrinsic forms in \mathbb{H}^1. Then there exists $C > 0$ such that for any h-form $u \in D(\mathbb{H}^1, E^0_0)$, $0 \leq h \leq 5$, such that

\[
\begin{align*}
\{ & d_c u = f \\
\delta_c u = g
\end{align*}
\]

we have

\[
\begin{align*}
\|u\|_{L^{q/(q-1)}(\mathbb{H}^2)} & \leq C \|f\|_{L^1(\mathbb{H}^2, E^0_0)} & \text{if } h = 0; \\
\|u\|_{L^{q/(q-1)}(\mathbb{H}^2, E^0_0)} & \leq C \|g\|_{L^1(\mathbb{H}^2, E^0_0)} & \text{if } h = 5; \\
\|u\|_{L^{q/(q-1)}(\mathbb{H}^2, E^0_0)} & \leq C (\|f\|_{L^1(\mathbb{H}^2, E^0_0)} + \|g\|_{H^1(\mathbb{H}^2)}) & \text{if } h = 1; \\
\|u\|_{L^{q/(q-1)}(\mathbb{H}^2, E^0_0)} & \leq C (\|f\|_{H^1(\mathbb{H}^2, E^0_0)} + \|g\|_{L^1(\mathbb{H}^2, E^0_0)}) & \text{if } h = 4; \\
\|u\|_{L^{q/(q-2)}(\mathbb{H}^2, E^0_0)} & \leq C (\|f\|_{L^1(\mathbb{H}^2, E^0_0)} + \|d_c g\|_{L^1(\mathbb{H}^2, E^0_0)}) & \text{if } h = 2; \\
\|u\|_{L^{q/(q-2)}(\mathbb{H}^2, E^0_0)} & \leq C (\|d_c f\|_{L^1(\mathbb{H}^2, E^0_0)} + \|g\|_{L^1(\mathbb{H}^2, E^0_0)}) & \text{if } h = 3.
\end{align*}
\]
Proof. As in Theorem 4.1, the cases \(h = 0 \) and \(h = 5 \) are well known, and we may restrict ourselves to forms in \(E_0^h \), with \(h = 1, 2 \), since the complex \((E_0^h, d_c)\) is invariant under Hodge-star duality.

Case \(h = 1 \). If \(u, \phi \in D(\mathbb{H}^2, E_0^1) \), we can write
\[
\langle u, \phi \rangle_{L^2(\mathbb{H}^2, E_0^1)} = \langle u, \Delta_{\mathbb{H}^1} \mathcal{K} \phi \rangle_{L^2(\mathbb{H}^2, E_0^1)} = \langle u, (\delta_c d_c + d_c \delta_c) \mathcal{K} \phi \rangle_{L^2(\mathbb{H}^2, E_0^1)}.
\]

Consider now the first term in the previous sum,
\[
\langle u, \delta_c d_c \mathcal{K} \phi \rangle_{L^2(\mathbb{H}^2, E_0^1)} = \langle d_c u, d_c \mathcal{K} \phi \rangle_{L^2(\mathbb{H}^2, E_0^1)}.
\]

If we write \(f := d_c u \), then \(0 = d_c f := \Pi_{E_0} d\Pi_E f = \Pi_{E_0} \Pi_E df \), by Theorem 3.8, ii). If we apply \(\Pi_E \) to this equation, we get
\[
0 = \Pi_E \Pi_{E_0} \Pi_E df = \Pi_E df = d\Pi_E f,
\]
by Theorem 3.8, iv), i.e, \(\Pi_E f \) is closed in the usual sense. Moreover, since \(f, d_c \mathcal{K} \phi \in E_0^1 \), we can write \(f = \sum_{\ell=1}^5 f_\ell \xi_\ell^1 \), \(d_c \mathcal{K} \phi = \sum_{\ell=1}^5 (d_c \mathcal{K} \phi)_\ell \xi_\ell^2 \), and hence we can reduce ourselves to estimate
\[
\langle f_\ell, (d_c \mathcal{K} \phi)_\ell \rangle_{L^2(\mathbb{H}^2)} \quad \text{for } \ell = 1, \ldots, 5.
\]

Consider now the horizontal 2-tensors \(F, G \in D(\mathbb{H}^2, \otimes^2 \Lambda^1_b) \) defined as
\[
\begin{align*}
F &:= -\frac{1}{2} f_4 (X_1 \otimes X_2 + X_2 \otimes X_1) - \frac{1}{2} f_3 (X_1 \otimes Y_2 + Y_2 \otimes X_1) \\
&\quad + \frac{1}{2} f_2 (X_2 \otimes Y_1 + Y_1 \otimes X_2) - \frac{1}{2} f_1 (Y_1 \otimes Y_2 + Y_2 \otimes Y_1), \\
G &:= \sqrt{2} f_3 (X_1 \otimes X_2 + X_2 \otimes X_1) - f_3 X_1 \otimes X_1 + f_2 X_2 \otimes X_2 \\
&\quad - f_1 (Y_1 \otimes X_1 + X_2 \otimes Y_2),
\end{align*}
\]

that are identified with the following differential operator
\[
\begin{align*}
F &:= -f_4 X_2 X_1 - f_3 Y_2 X_1 + f_2 X_2 Y_1 - f_1 Y_2 Y_1, \\
G &:= \sqrt{2} f_3 X_2 X_1 - f_3 X_1^2 + f_2 X_2^2 - f_1 (Y_1 X_1 + X_2 Y_2),
\end{align*}
\]
since the only nontrivial commutation rules are \([X_1, Y_1] = [X_2, Y_2] = T \). We claim that
\[
\int_{\mathbb{H}^n} F \psi dV = \int_{\mathbb{H}^n} G \psi dV = 0 \quad \text{for all } \psi \in D(\mathbb{H}^n),
\]
Suppose for a while (24) holds, and let us achieve the estimate of (23). Suppose for instance \(f_\ell = f_1 \). We consider now the symmetric horizontal 2-tensor \(\Phi \):
\[
\Phi := (d_c \mathcal{K} \phi)_1 (Y_1 \otimes Y_2 + Y_2 \otimes Y_1),
\]
so that
\[
\langle f_1, (d_c \mathcal{K} \phi)_1 \rangle_{L^2(\mathbb{H}^2)} = \langle F, \Phi \rangle_{L^2(\mathbb{H}^2, \otimes^2 \Lambda^1_b)}.
\]
By Theorem 2.4
\[
|\langle f_1, (d_c \mathcal{K} \phi)_1 \rangle_{L^2(\mathbb{H}^2)}| \leq \| F \|_{L^1(\mathbb{H}^2, \otimes^2 \Lambda^1_b)} \| \nabla_H (d_c \mathcal{K} \phi)_1 \|_{L^q(\mathbb{H}^2)}
\]
\[
\leq \| f \|_{L^1(\mathbb{H}^2, E_0^1)} \| \nabla_H d_c \mathcal{K} \phi \|_{L^q(\mathbb{H}^2, E_0^1)}.
\]
On the other hand, \(\nabla_H d_c \mathcal{K} \phi \) can be expressed as a sum of terms with components of the form
\[
\phi_j \ast W^I \tilde{K}_{ij} \quad \text{with } d(I) = 2.
\]
By Theorem 3.14, iv) and Proposition 2.2, ii) $W^I \tilde{K}_{ij}$ are kernels of type 0, so that, by [12], Proposition 1.9 we have

$$\langle f_1, (d_c K\phi)_1 \rangle_{L^2(\mathbb{H}^d)} \leq C\|f\|_{L^1(\mathbb{H}^d, E_0^d)} \|\phi\|_{L^Q(\mathbb{H}^d, E_0^d)}. \tag{26}$$

The same arguments applies to f_2, f_3, f_4. As for f_5, we can use the same argument, replacing F by G and considering $\langle G, \Phi \rangle$ with the symmetric horizontal 2-tensor Φ:

$$\Phi := \sqrt{2} (d_c K\phi)_5 (X_1 \otimes X_2 + X_2 \otimes X_1).$$

We obtain eventually

$$\langle f, d_c K\phi \rangle_{L^2(\mathbb{H}^d, E_0^d)} \leq C\|f\|_{L^1(\mathbb{H}^d, E_0^d)} \|\phi\|_{L^Q(\mathbb{H}^d, E_0^d)}. \tag{27}$$

Consider now the second term in (21)

$$\langle u, d_c \delta_c K\phi \rangle_{L^2(\mathbb{H}^d, E_0^d)} = \langle \delta_c u, \delta_c K\phi \rangle_{L^2(\mathbb{H}^d)}.$$

By Theorem 3.14, formula (17), keeping in mind that δ_c is an operator of order 1 in the horizontal derivatives when acting on E_0^d the quantity $\delta_c K\phi$ can be written as a sum of terms such as

$$\phi_j \ast W^I \tilde{K}_{ij}, \quad \text{with } l = 1, 2, 3, 4.$$

On the other hand,

$$\langle \delta_c u, \phi_j \ast W^I \tilde{K}_{ij} \rangle_{L^2(\mathbb{H}^d)} = \langle g, \phi_j \ast W^I \tilde{K}_{ij} \rangle_{L^2(\mathbb{H}^d)} = \langle g \ast \gamma(W^I \tilde{K}_{ij}), \phi_j \rangle_{L^2(\mathbb{H}^d)}$$

Notice the $W^I \tilde{K}_{ij}$‘s and hence the $\gamma(W^I \tilde{K}_{ij})$‘s are kernels of type 1. Thus, by Theorem 6.10 in [13],

$$|\langle \delta_c u, \phi_j \ast W^I \tilde{K}_{ij} \rangle_{L^2(\mathbb{H}^d)}| \leq C\|g\|_{H^1(\mathbb{H}^d)} \|\phi\|_{L^Q(\mathbb{H}^d, E_0^d)}.$$

Combining this estimate with the one in (27), we get eventually

$$|\langle u, \phi \rangle_{L^2(\mathbb{H}^d, E_0^d)}| \leq C(\|f\|_{L^1(\mathbb{H}^d, E_0^d)} + \|g\|_{H^1(\mathbb{H}^d)}) \|\phi\|_{L^Q(\mathbb{H}^d, E_0^d)},$$

and hence

$$\|u\|_{L^Q(\mathbb{H}^d, E_0^d)} \leq C(\|f\|_{L^1(\mathbb{H}^d, E_0^d)} + \|g\|_{H^1(\mathbb{H}^d)}).$$

Thus, to achieve the proof in the case $h = 1$ we are left to prove the claim (24).

We prove first that

$$\int_{\mathbb{H}^n} F^I \psi dV = 0 \quad \text{for all } \psi \in D(\mathbb{H}^n).$$

To this end, we apply Cartan’s formula (12) with $\omega = \Pi E f$ and $Z_0 = T$, $Z_1 = X_1, Z_2 = Y_1$. Since $\Pi E f = f - d_{0}^{-1} d_{1} f$, and keeping in mind that $d\Pi E f = 0$ (by (22)), we can write
On the other hand, let us compute explicitly $d_0 = \int (\text{see Example 3.12})$ a straightforward computation gives:

$$
(28) \\
0 = Z_0(f|Z_1 \land Z_2) - Z_1(f|Z_0 \land Z_2) + Z_2(f|Z_0 \land Z_1) \\
- \left(Z_0(d_0^{-1}d_1f|Z_1 \land Z_2) - Z_1(d_0^{-1}d_1f|Z_0 \land Z_2) + Z_2(d_0^{-1}d_1f|Z_0 \land Z_1) \right) \\
- \langle f|[Z_0, Z_1] \land Z_2 \rangle + \langle f|[Z_0, Z_2] \land Z_1 \rangle - \langle f|[Z_1, Z_2] \land Z_0 \rangle \\
- \left(-\langle d_0^{-1}d_1f|[Z_0, Z_1] \land Z_2 \rangle + \langle d_0^{-1}d_1f|[Z_0, Z_2] \land Z_1 \rangle - \langle d_0^{-1}d_1f|[Z_1, Z_2] \land Z_0 \rangle \right) \\
:= A_1 + A_2 + A_3 + A_4.
$$

By our choice of Z_i, trivially, $A_3 = A_4 = 0$, since each term of the sum vanishes. Indeed, we have $[T, X_1] = [T, Y_1] = 0$ and $[X_1, Y_1] \land T = T \land T = 0$. Moreover, in A_1 the second and the third term vanish since $T \wedge X_1$ and $T \wedge Y_1$ have weight 3 whereas f has weight 2. In A_2 the first term vanishes since $d_0^{-1}d_1f$ has weight 3 whereas $X_1 \wedge Y_1$ has weight 2. Then

$$
0 = A_1 + A_2 = T\langle f|X_1 \land Y_1 \rangle + X_1\langle d_0^{-1}d_1f|T \land Y_1 \rangle - Y_1\langle d_0^{-1}d_1f|T \land X_1 \rangle.
$$

Keeping in mind that

$$
(29) \\
\xi^2_1 = dx_1 \land dx_2, \quad \xi^2_2 = dx_1 \land dy_2, \quad \xi^2_3 = dx_2 \land dy_1, \quad \xi^2_4 = dy_1 \land dy_2, \\
\xi^2_5 = \frac{1}{\sqrt{2}}(dx_1 \land dy_1 - dx_2 \land dy_2),
$$

(see Example 3.12) a straightforward computation gives:

$$
A_1 = \frac{Tf_5}{\sqrt{2}}.
$$

On the other hand, let us compute explicitly d_1f. We have:

$$
d_1f = (X_1f_3 - \frac{X_2f_5}{\sqrt{2}} + Y_1f_1)dx_1 \land dx_2 \land dy_1 \\
- (X_1f_5 + X_2f_2 - Y_2f_1)dx_1 \land dx_2 \land dy_2 \\
+ (X_1f_4 - Y_1f_2 + \frac{Y_2f_5}{\sqrt{2}})dx_1 \land dy_1 \land dy_2 \\
+ (X_2f_4 + Y_2f_3 + \frac{Y_1f_5}{\sqrt{2}})dx_2 \land dy_1 \land dy_2.
$$

Moreover,

$$
d_0(dx_1 \land \theta) = -dx_1 \land dx_2 \land dy_2, \quad d_0(dx_2 \land \theta) = dx_1 \land dx_2 \land dy_1, \\
d_0(dy_1 \land \theta) = dx_2 \land dy_1 \land dy_2, \quad d_0(dy_2 \land \theta) = -dx_1 \land dy_1 \land dy_2,
$$

so that

$$
dx_1 \land \theta = -d_0^{-1}(dx_1 \land dx_2 \land dy_2), \quad dx_2 \land \theta = d_0^{-1}(dx_1 \land dx_2 \land dy_1), \\
dy_1 \land \theta = d_0^{-1}(dx_2 \land dy_1 \land dy_2), \quad dy_2 \land \theta = -d_0^{-1}(dx_1 \land dy_1 \land dy_2).
$$
Hence
\[A_2 = X_1(d_0^{-1}d_1 f | T \wedge Y_1) - Y_1(d_0^{-1}d_1 f | T \wedge X_1) \]
\[= X_1((X_2f_4 + Y_2f_3 + (\frac{Y_1f_5}{\sqrt{2}}))dy_1 \wedge \theta | T \wedge Y_1) \]
\[- Y_1((\frac{X_1f_5}{\sqrt{2}} + X_2f_2 - Y_2f_1)dx_1 \wedge \theta | T \wedge X_1) \]
\[= -X_1X_2f_4 - X_1Y_2f_3 - \frac{X_1Y_1f_5}{\sqrt{2}} + \frac{Y_1X_1f_5}{\sqrt{2}} + Y_1X_2f_2 - Y_1Y_2f_1 \]
\[= -X_1X_2f_4 - X_1Y_2f_3 - \frac{Tf_5}{\sqrt{2}} + Y_1X_2f_2 - Y_1Y_2f_1 \]

Therefore,
\[0 = A_1 + A_2 = -X_1X_2f_4 - X_1Y_2f_3 + Y_1X_2f_2 - Y_1Y_2f_1. \]

Hence the first identity in (24) is proved. The second identity in (24) can be proved analogously by choosing, in the Cartan’s formula (12), \(\omega = \Pi_E f \) and \(Z_0 = T, Z_1 = X_1, Z_2 = X_2. \)

Case h = 2. If \(u, \phi \in E_0^2 \) are smooth compactly supported forms, then we can write
\[
(\langle u, \phi \rangle)_{L^2(H^2, E_0^2)} = (\langle u, \Delta_{H^2} \mathcal{K} \phi \rangle)_{L^2(H^2, E_0^2)}
\]
\[
= (\langle u, (\delta, d_c + (d, \delta_c)^2) \mathcal{K} \phi \rangle)_{L^2(H^2, E_0^2)}.
\]
Consider now the term
\[
(\langle u, \delta_c d_c \mathcal{K} \phi \rangle)_{L^2(H^2, E_0^2)} = (\langle (d_c u, d_c \mathcal{K} \phi) \rangle)_{L^2(H^2, E_0^2)}.
\]
Let us write \(f := d_c u. \) We can write \(f = \sum_\ell f_\ell \xi_\ell^3, \) where
\[
\xi_1^3 = dx_1 \wedge dx_2 \wedge \theta, \quad \xi_2^3 = dx_1 \wedge dy_2 \wedge \theta, \\
\xi_3^3 = dx_2 \wedge dy_1 \wedge \theta, \quad \xi_4^3 = dy_1 \wedge dy_2 \wedge \theta, \\
\xi_5^3 = \frac{1}{\sqrt{2}}(dx_1 \wedge dy_1 - dx_2 \wedge dy_2) \wedge \theta.
\]
As above, \(0 = d_c f = \Pi_{E_0} d\Pi_E f, \) and hence \(d\Pi_E f = 0. \) But, on 3-forms \(\Pi_E f = f, \) since \(f \) has weight 4, that is already the maximum weight among all (even not intrinsic) 3-forms in \(H^2, \) so that eventually \(df = 0. \) Again
\[
(\langle d_c u, d_c \mathcal{K} \phi \rangle)_{L^2(H^2, E_0^2)} = \sum_\ell (\langle f_\ell, (d_c \mathcal{K} \phi)_\ell \rangle)_{L^2(H^2)}.
\]
As above, we prove that for any \(\ell = 1, 2, 3, 4, 5, \) \(f_\ell \) is one of the components of an horizontal vector field with vanishing horizontal divergence. However, the subsequent estimates are different from the case \(h = 1 \) because of the different order of the operators involved.

Consider now the following horizontal fields in \(H^2: \)
- \(F = (2f_3, -\sqrt{2}f_5, 2f_1, 0); \)
- \(G = (-\sqrt{2}f_5, -2f_2, 0, 2f_1); \)
- \(K = (0, 2f_3, \sqrt{2}f_5, 2f_3). \)
We claim that
\[(32) \quad \text{div}_H F = \text{div}_H G = \text{div}_H K = 0.\]
Notice each component of \(f\) appears at least once as a component of one of the horizontal vector fields \(F, G, K\).

Suppose now for a while (32) holds, and let us achieve the estimate of \(\langle f_f, (d_c\mathcal{K}\phi)_1 \rangle_{L^2(\mathbb{H}^2)}\). Suppose for instance \(f_f = f_1\). We define a new horizontal vector field \(\Phi\) as
\[
\Phi := (0, 0, (d_c\mathcal{K}\phi)_1, 0),
\]
so that
\[
\langle f_1, (d_c\mathcal{K}\phi)_1 \rangle_{L^2(\mathbb{H}^2)} = \langle F, \Phi \rangle_{L^2(\mathbb{H}^2, \mathbb{H}^2)}.
\]
By Theorem 2.3
\[
|\langle f_1, (d_c\mathcal{K}\phi)_1 \rangle_{L^2(\mathbb{H}^2)}| \leq \|f\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} \|\nabla_H d_c\mathcal{K}\phi\|_{L^q(\mathbb{H}^2, E_{\phi}^3)}
\]
On the other hand, \(\nabla_H d_c\mathcal{K}\phi\) can be expressed as a sum of terms with components of the form
\[
\phi_j \ast W^I \tilde{K}_{ij}, \quad \text{with } d(I) = 3,
\]
since \(d_c : E_{\phi}^3 \rightarrow E_{\phi}^3\) is an operator of order 2 in the horizontal derivatives. By Theorem 3.14, iv) and Proposition 2.2, ii) \(W^I \tilde{K}_{ij}\) are kernels of type 1, so that, by [12], Proposition 1.11 we have
\[
|\langle f_1, (d_c\mathcal{K}\phi)_1 \rangle_{L^2(\mathbb{H}^2)}| \leq C \|f\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} \|\phi\|_{L^q(\mathbb{H}^2, E_{\phi}^3)}.
\]
The same argument can be carried out for all the components of \(f\), yielding
\[(33) \quad |\langle f, (d_c\mathcal{K}\phi)_{L^2(\mathbb{H}^2, E_{\phi}^3)} \rangle| \leq C \|f\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} \|\phi\|_{L^q(\mathbb{H}^2, E_{\phi}^3)}.
\]
Consider now the second term in (30). We have
\[
\langle u, (d_c\delta_c)^2\mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E_{\phi}^3)} = \langle d_c\delta_c u, d_c\delta_c\mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E_{\phi}^3)} = \langle d_c g, d_c\delta_c\mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E_{\phi}^3)}.
\]
We notice now that \(d_c g\) is a \(d_c\)-closed form in \(E_{\phi}^3\), and then we can repeat the arguments leading to (25) for \(f\) in the case \(h = 1\), obtaining
\[(34) \quad |\langle d_c g, d_c\delta_c\mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E_{\phi}^3)}| \leq \|d_c g\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} \|\nabla_H d_c\delta_c\mathcal{K}\phi\|_{L^q(\mathbb{H}^2, E_{\phi}^3)}
\]
As above, \(\nabla_H d_c\delta_c\mathcal{K}\phi\) can be expressed as a sum of terms with components of the form
\[
\phi_j \ast W^I \tilde{K}_{ij}, \quad \text{with } d(I) = 3,
\]
since \(\delta_c : E_{\phi}^3 \rightarrow E_{\phi}^3\) is an operator of order 1 in the horizontal derivatives, as well as \(d_c : E_{\phi}^3 \rightarrow E_{\phi}^3\). By Theorem 3.14, iv) and Proposition 2.2, ii) \(W^I \tilde{K}_{ij}\) are kernels of type 1, so that, by [12], Proposition 1.11 we have
\[
|\langle d_c g, d_c\delta_c\mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E_{\phi}^3)}| \leq C \|d_c g\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} \|\phi\|_{L^q(\mathbb{H}^2, E_{\phi}^3)}.
\]
Combining this estimate with the one in (33), we get eventually
\[
|\langle u, \phi \rangle_{L^2(\mathbb{H}^2, E_{\phi}^3)}| \leq C \|f\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} \|d_c g\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} \|\phi\|_{L^q(\mathbb{H}^2, E_{\phi}^3)},
\]
and hence
\[
\|u\|_{L^q/(q-2)(\mathbb{H}^2, E_{\phi}^3)} \leq C \|f\|_{L^1(\mathbb{H}^2, E_{\phi}^3)} + \|d_c g\|_{L^1(\mathbb{H}^2, E_{\phi}^3)}.
\]
Thus, to achieve the proof in the case \(h = 2 \) we have to prove the claim \((32)\).

To prove that \(\text{div}_H F = 0 \), we apply now Cartan’s formula \((12)\) with \(\omega = f \) and \(Z_0 = X_1, Z_1 = X_2, Z_2 = Y_1, Z_3 = T \).

Keeping in mind the commutation rules, we have

\[
0 = Z_0(f|Z_1 \wedge Z_2 \wedge Z_3) - Z_1(f|Z_0 \wedge Z_2 \wedge Z_3) \\
+ Z_3(f|Z_0 \wedge Z_1 \wedge Z_3) - Z_3(f|Z_0 \wedge Z_1 \wedge Z_2) \\
- \langle f|[Z_0, Z_1] \wedge Z_2 \wedge Z_3 \rangle + \langle f|[Z_0, Z_2] \wedge Z_1 \wedge Z_3 \rangle \\
- \langle f|[Z_0, Z_3] \wedge Z_1 \wedge Z_2 \rangle - \langle f|[Z_1, Z_2] \wedge Z_0 \wedge Z_3 \rangle \\
- \langle f|[Z_1, Z_3] \wedge Z_0 \wedge Z_2 \rangle - \langle f|[Z_2, Z_3] \wedge Z_0 \wedge Z_1 \rangle \\
+ \langle f|[T \wedge X_1 \wedge X_2 \wedge T \rangle \\
= X_1(f|X_2 \wedge Y_1 \wedge T) - X_2(f|X_1 \wedge Y_1 \wedge T) \\
+ Y_1(f|X_1 \wedge X_2 \wedge T) - T(f|X_1 \wedge X_2 \wedge Y_1)
\]

By \((31)\), identity \((35)\) becomes

\[
0 = X_1f_3 - \frac{1}{\sqrt{2}}X_2f_5 + Y_1f_1, \quad \text{i.e.} \quad \text{div}_H F = 0.
\]

This proves the first identity in \((32)\). To prove the remaining two identities in \((32)\), we apply again Cartan’s formula as above with \(Z_0 = X_1, Z_1 = X_2, Z_2 = Y_2, Z_3 = T \) and \(Z_0 = Y_1, Z_1 = X_2, Z_2 = Y_2, Z_3 = T \), respectively. This achieves the proof of the theorem. \(\Box\)

5. Sharp results: some remarks

Let us consider, for instance, the following estimates in \(\mathbb{H}^1 \) stated in Theorem 4.1: there exists a constant \(C > 0 \) so that

\[
\| u \|_{L^Q/(Q-2)(\mathbb{H}^1, E_h^1)} \leq C(\| f \|_{L^1(\mathbb{H}^1, E_0^2)} + \| d_c g \|_{H^1(\mathbb{H}^1)}) \quad \text{if} \quad h = 1;
\]

\[
\| u \|_{L^Q/(Q-2)(\mathbb{H}^1, E_h^2)} \leq C(\| d_c f \|_{H^1(\mathbb{H}^1, E_0^2)} + \| g \|_{L^1(\mathbb{H}^1, E_0^1)}) \quad \text{if} \quad h = 2;
\]

The presence of the terms \(dcg \) and \(dcf \) might seem somehow artificial, but is due to the fact that, on 1-forms, \(dc \) has order 2, whereas \(\delta c \) has order 1 (dually, on 2-forms, \(dc \) has order 1, whereas \(\delta c \) has order 2). By the way, also the norm in \(L^Q/(Q-2) \) in the left hand side is due to the presence of a second order operator in the right hand side. We notice also that if we consider, for instance, co-closed 1-forms (i.e. we assume \(g = 0 \)), then a straightforward homogeneity argument shows that the exponent \(Q/(Q-2) \) is sharp. On the other hand, if \(f = 0 \) or \(g = 0 \), then the statement can be sharpened. More precisely, the can state the following result:

Theorem 5.1. Let \(u \in D(\mathbb{H}^1, E_h^1) \) solve the system

\[
\begin{cases}
 dcu = f \\
 \delta cu = g
\end{cases}
\]

where \(c \) is a constant.
If $h = 1$ and $f = 0$, then
\[\|u\|_{L^{Q/(Q-1)}(\mathbb{H}^1, E^h_0)} \leq C\|g\|_{H^1(\mathbb{H}^1)}. \]

If $h = 2$ and $g = 0$, then
\[\|u\|_{L^{Q/(Q-1)}(\mathbb{H}^2, E^h_0)} \leq C\|f\|_{H^1(\mathbb{H}^1)}. \]

\textbf{Proof.} Suppose $h = 1$. The proof for $h = 2$ follows by Hodge duality. In the case $h = 1$ identity \((18)\) read as
\[\langle u, \phi \rangle = \langle u, (d_c \delta_c)^2 \mathcal{K}\phi \rangle = \langle g, \delta_c d_c \delta_c \mathcal{K}\phi \rangle. \]

Arguing as above, the term $\delta_c d_c \delta_c \mathcal{K}\phi$ can be written as a sum of terms of the form
\[\phi_j * W^I K_{ij}, \]
where $d(I) = 3$ and hence the $W^I K_{ij}$’s are kernels of type 1. Thus, by \((10)\) $\langle u, \phi \rangle$ can be written as a sum of terms of the form
\[\langle g * \gamma(W^I K_{ij}), \phi \rangle, \]
where the $\gamma(W^I K_{ij})$ are again kernels of type 1, by Proposition 2.2. i). Thus, we can achieve the proof of the assertion by Proposition 6.10 in \[13\]. \qed

A slightly different argument can be carried out for 2-forms and 3-forms in \mathbb{H}^2.

\textbf{Theorem 5.2.} Let $u \in D(\mathbb{H}^2, E^h_0)$ solve the system
\[
\begin{cases}
d_c u = f \\
\delta_c u = g.
\end{cases}
\]

If $h = 2$ and $f = 0$, then
\[\|u\|_{L^{Q/(Q-1)}(\mathbb{H}^2, E^h_0)} \leq C\|g\|_{L^1(\mathbb{H}^2, E^h_0)}. \]

If $h = 3$ and $g = 0$, then
\[\|u\|_{L^{Q/(Q-1)}(\mathbb{H}^2, E^h_0)} \leq C\|f\|_{L^1(\mathbb{H}^2, E^h_0)}. \]

\textbf{Proof.} Suppose $h = 2$. The proof for $h = 3$ follows by Hodge duality. In the case $h = 2$ identity \((30)\) read as
\[\langle u, \phi \rangle_{L^2(\mathbb{H}^2, E^h_0)} = \langle u, \Delta_{\mathbb{H}^2} \mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E^h_0)} = \langle u, (d_c \delta_c)^2 \mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E^h_0)} = \langle g, \delta_c d_c \delta_c \mathcal{K}\phi \rangle_{L^2(\mathbb{H}^2, E^h_0)}. \]

Since $\delta_c g = 0$, we can apply Theorem 2.3, and we get
\[\| u \|_{L^2(\mathbb{H}^2, E^h_0)} \leq C\|g\|_{L^1(\mathbb{H}^2, E^h_0)}\|\nabla_{\mathbb{H}^2} \delta_c d_c \delta_c \mathcal{K}\phi\|_{L^{Q}(\mathbb{H}^2, E^h_0)} \leq C\|g\|_{L^1(\mathbb{H}^2, E^h_0)}\|\phi\|_{L^{Q}(\mathbb{H}^2, E^h_0)}, \]

by \[12\], Proposition 1.9, since $\nabla_{\mathbb{H}^2} \delta_c d_c \delta_c \mathcal{K}$ is a kernel of type 0. Then we can conclude by duality as in Theorem 4.3. \qed

21
References

Annalisa Baldi and Bruno Franchi
Dipartimento di Matematica
Piazza di Porta S. Donato 5, 40126 Bologna, Italy.
e-mail: annalisa.baldi2@unibo.it, bruno.franchi@unibo.it.