Publications and Preprints
A. Baldi, B. Franchi, Pierre Pansu: GAGLIARDO-NIRENBERG INEQUALITIES FOR DIFFERENTIAL FORMS IN HEISENBERG GROUPS, submitted.
A.
Baldi, B. Franchi, M. Barnabei: A recursive basis for primitive forms
in symplectic spaces and
applications to Heisenberg groups, to
appear on Acta Mathematica Sinica, English Series (2015).
A. Baldi, B. Franchi, Francesca Tripaldi: Gagliardo-Nirenberg inequalities forhorizontal vector fields in the Engel group and in the 7-dimensional quaternionic Heisenberg group, to appear on Geometric Methods in PDE’s, Springer INdAM Series, Vol. 11 (2015).
A. Baldi, B. Franchi: MAXWELL’S EQUATIONS IN ANISOTROPIC MEDIA AND MAXWELL’S EQUATIONS IN CARNOT GROUPS AS VARIATIONAL LIMITS, Advanced Nonlinear Studies 15 (2015), 333-362.
Baldi, Annalisa; Franchi, Bruno: Sharp a priori estimates for div-curl systems in Heisenberg groups J. Funct. Anal. 265 (2013), no. 10, 2388–2419.
Baldi, Annalisa; Franchi, Bruno: Some remarks on vector potentials for Maxwell's equations in space-time Carnot groups. Boll. Unione Mat. Ital. (9) 5 (2012), no. 2, 337–355.
A. Baldi, B. Franchi: DIFFERENTIAL FORMS IN CARNOT GROUPS: A Γ-CONVERGENCE APPROACH, Calculus of Variations and Partial Differential Equations 43, (2012) 211–229.
A. Baldi, B. Franchi, N. Tchou and M. C. Tesi: Compensated Compactness for Differential Forms in Carnot Groups and Applications, Advances in Mathematics 223 (2010), 1555--1607.
A. Baldi, B. Franchi and M. C. Tesi, Hypoellipticity, fundamental solution and Liouville type theorem for matrix--valued differential operators in Carnot groups, J. Eur. Math. Soc. 11 (2009), 777--798.
A. Baldi and F. Montefalcone, A note on the extension of BV functions in metric measure spaces, J. Math. Anal. Appl. 340 (2008) 197--208.
A. Baldi, B. Franchi and M. C. Tesi, Differential forms, Maxwell Equations, and Compensated compactness in Carnot Groups. Lect. Notes Semin. Interdiscip. Mat., 7, Semin.
Interdiscip. Mat. (S.I.M.), Potenza, 2008 (2008) 21--40.
Baldi, B. Franchi and M. C. Tesi, Compensated compactness in the contact complex of Heisenberg groups, Indiana Univ. Math. J. 81 (2008) 133--174.
N. Arcozzi and A. Baldi, From Gruschin to Heisenberg via an isoperimetric problem, J. Math. Anal. Appl. 340 (2008) 165--174.
A. Baldi, B. Franchi and M.C. Tesi, : Compensated compactness, div--curl theorem and H-convergence in general Heisenberg groups, Proceedings of the Meeting "Subelliptic pde's and applications to geometry and finance". Subelliptic pde's and applications to geometry and finance. Cortona. 12-17 giugno 2006. vol. 6 (2007) 33--47.
A. Baldi, B. Franchi and M. C. Tesi: Compensated compactness, div-curl theorem and $H$-convergence in general Heisenberg groups. Subelliptic PDE's and applications to geometry and finance, Lect. Notes Semin. Interdiscip. Mat., 6, Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2007 (2007) 33--47.
A. Baldi, B. Franchi and M. C. Tesi: Fundamental solution and sharp $L\sp p$ estimates for Laplace operators in the contact complex of Heisenberg groups, Ric. Mat. 55 (2006), no. 1, 119--144.
A. Baldi and B. Franchi: Mumford-Shah type functionals associated with doubling metric measures, Prooceedings of the Royal Society of Edinburgh, sec. A, vol. 135A (2005), 1--23.
A. Baldi and M.C. Tesi: A Gamma-convegence approach to non-periodic homogenization of strongly anisotropic functionals, Mathematical Models and Methods in Applied Sciences. vol. 14-(12) (2004), 1735--1759.
A. Baldi and B. Franchi: A $\Gamma$-convergence result for doubling metric measures and associated perimeters, Calc. Var. Partial Differential Equations 16 (2003), no. 3, 283--298.
A. Baldi: Weighted BV functions, Houston J. Math. 27 (2001), no. 3, 683--705.
A. Baldi, B. Franchi and G. Lu: An existence result for a class of semilinear subelliptic PDE's, Contributions in honor of the memory of Ennio De Giorgi (Italian). Ricerche Mat. 49 (2000), suppl., 177--193.
A. Baldi: A non-existence problem for degenerate elliptic PDE's, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1371--1398.
A. Baldi, B. Franchi and M.C. Tesi: A finite element approximation and uniform error estimates for degenerate elliptic equations, Matematiche (Catania) 54 (1999), suppl., 49--60.