
Under consideration for publication in Math. Struct. in Comp. Science

Exponentiable morphisms of domains

F. Cagliari 1 and S. Mantovani 2

1 Dipartimento di Matematica, Università di Bologna
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Given a map f in the category ω-Cpo of ω-complete posets, exponentiability of f in

ω-Cpo easily implies exponentiability of f in the category Pos of posets, while the

converse is not true. We find then the extra conditions needed on f exponentiable in

Pos to be exponentiable in ω-Cpo, showing the existence of partial products of the

two-point ordered set S = {0 < 1} (Theorem 1.8). Using this characterization and the

embedding via the Scott topology of ω-Cpo in the category Top of topological spaces,

we can compare exponentiability in each setting, obtaining that a morphism in ω-Cpo,

exponentiable both in Top and in Pos, is exponentiable also in ω-Cpo. Furthermore we

show that the exponentiability in Top and in Pos are independent from each other.
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Introduction

For the application of domains to logic and computing, it is very useful that the
category ω-Cpo of ω-complete posets, with continuous functions, is cartesian closed (see
(Gierz et al. 2003)). This means that the poset Y X of continuous maps between two
ω-cpos X and Y is again a ω-cpo and this construction gives rise to a functor −X , that is
right adjoint to −×X. This very important property is unfortunately lost by “slicing”,
that is the categories ω-Cpo/B of ω-cpos over a fixed base B are not always cartesian
closed, as we will see soon. Hence it makes sense to investigate the nature of maps f

exponentiable in ω-Cpo, i.e. those f for which the functor (−) × f has a right adjoint
(−)f . This property of exponentiability has been well investigated in the category Pos
of partial order sets and monotone maps. In this case, exponentiability is characterized
by a sort of interpolation property, a weakened version of the Giraud-Conduché result on
exponentiable morphisms in the category Cat (see e.g. (Giraud 1964), (Niefield 2001),
(Tholen 2000).) It is easy to see that exponentiable maps in ω-Cpo are exponentiable in
Pos, but our recent characterization of exponentiable monomorphisms in ω-Cpo shows
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that the converse is not true (see (C-M 2007)). We now obtain in Theorem 1.8 the extra
conditions needed for f exponentiable in Pos to be exponentiable in ω-Cpo, using as a
main tool the notion of partial product ((Dyckhoff-Tholen 1987)).

In the category Top of topological spaces and continuous maps, exponentiability of
morphisms is a rather complicated property, well studied and characterized by means of
many approaches, e.g. by Niefield and Richter from different topological points of view,
(see (Niefield 1982; Richter 2002)) and by Clementino-Hoffman-Tholen via an ultrafilter-
interpolation property (see (Clementino et al. ’03)).

By means of the Scott topology (see (Scott 1972)), we can consider any poset and
any ω-cpo as topological spaces, hence it may be interesting to compare exponentiable
continuous maps in Pos, in ω-Cpo and in Top. Since there are posets and ω-cpos that
are not core compact and, hence, not exponentiable in Top, it easy to deduce that, in
general exponentiable continuous maps in Pos and in ω-Cpo are not exponentiable in
Top. This remains true not only for objects, but also for monomorphisms, as Example
3.3 of (C-M 2007) shows. On the other hand, using our characterization Theorem 1.8, we
show that, given a continuous map f in ω-Cpo, exponentiable both in Top and in Pos,
then f is exponentiable also in ω-Cpo. Furthermore, we show that exponentiability in
Pos and in Top are independent from each other, exhibiting an example of a continuous
map between posets, exponentiable in Top, but not in Pos.

We would like to thank the anonymous referees for very helpful comments and valuable
suggestions on a preliminary version of the paper.

1. Exponentiable objects in ω-Cpo/B

We are going to consider the category ω-Cpo of ω-chain complete posets and continuous
maps (see e.g. (Abramsky-Jung 1994), (Markowsky 1976), (Markowsky-Rosen 1976)).
We shall need some definitions and standard results about them.

Definition 1.1. A poset X in which every ω-chain has a supremum is called a ω-chain
complete poset (or ω-cpo for short).

Since the paper (Scott 1972), posets can be considered as topological spaces when
endowed with the so called Scott topology, where C is closed in X if it is a lower set closed
under existing suprema of directed sets. In a similar way, on posets (and in particular on
ω-cpos) it is possible to consider the ω-Scott topology, where C is closed in X if it is a
lower set closed under existing suprema of ω-chains. Also in this topology, the closure of
x in X is given by ↓ x = {y ∈ X|y ≤ x}.
— A map f : Y → X between posets (ω-cpos) is continuous with respect to the ω-Scott

topologies if and only if f preserves existing suprema of ω-chains.
— A map f : Y → X between ω-cpos is a regular monomorphism in ω-Cpo if and only

if it is a continuous order embedding, that is a continuous map such that x ≤ y if
and only if f(x) ≤ f(y).

Definition 1.2. If f : Y → X is a regular mono in ω-Cpo, then Y is said to be a
sub-ω-cpo of X.
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If X is an ω-cpo and Y ⊆ X, let us denote by Y ∗ the smallest sub-ω-cpo of X containing
Y, that is the intersection of all sub-ω-cpos of X containing Y (see e.g. (Fiech 1996)).

Now we are going to stress a property of Y ∗ that we will need later.

Lemma 1.3. If X is an ω-cpo and Y ⊆ X, Y ∗ is uniquely determined among all sub-ω-
cpos Z of X by the following properties:

1 Y ⊆ Z

2 Given h, k : Z ⇒ T , if h = k on Y , then h = k.

Proof. Y ∗ has these properties by definition, because the subset on which two contin-
uous functions agree, is a sub-ω-cpo (see (Fiech 1996)). Now, let Z fulfill Properties 1
and 2. Then Y ∗ ⊆ Z, hence we can consider the cokernel pair (q1, q2) : Z ⇒ Z

⋃
Y ∗ Z

in ω-Cpo of the inclusion of Y ∗ in Z. Since obviously q1 = q2 on Y ∗, by Property 2,
q1 = q2. This means that Z = Y ∗.

The category ω-Cpo is cartesian closed, since for any object X, the functor −×X has
a right adjoint, denoted by (−)X , which assigns to any Y the ω-cpo Y X of the continuous
maps from X to Y with the pointwise order (see (Gierz et al. 2003)). This property is
related to the fact that the category Pos of partially order sets and monotone maps
is itself cartesian closed. This is no longer true when we consider the category Pos/B

of partially order sets over a fixed base poset B, since not every map is exponentiable,
where:

Definition 1.4. A morphism f : X → B is exponentiable in a category C with finite
limits if the functor (−)× f : C/B → C/B has a right adjoint (−)f .

The characterization of exponentiable morphisms in Pos as convex (or interpolation-
lifting) monotone maps has been known for a long time as a weakened version of the
Giraud-Conduché result on exponentiable morphisms in the category Cat (see e.g. (Gi-
raud 1964), (Niefield 2001), (Tholen 2000) ) where

Definition 1.5. A map f : X → B in Pos is convex if, for x ≤ z in X, for any b with
f(x) < b < f(z), there exists y ∈ X such that x < y < z and f(y) = b.

Using similar arguments as in (Niefield 2001), we can prove that

Proposition 1.6. Every exponentiable morphism in ω-Cpo is convex.

The condition of convexity is not sufficient. If N is the poset of natural numbers with
the natural order and ∞ =

∨
N, the inclusion of ∞ in N ∪{∞} is convex, but it does not

fulfill the necessary condition for exponentiability of monomorphisms given in Theorem
1.10 of (C-M 2007).

We need then to find other conditions in order to characterize exponentiable maps
among the convex ones. The main tool we use to obtain our result is the notion of partial
product (see (Dyckhoff-Tholen 1987)):
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Definition 1.7. Given f : X → B and Y in a category C with finite limits, the partial
product P (f, Y ) of Y on f is defined (when it exists) as a morphism p : P → B equipped
with an “evaluation” e : P ×B X → Y, such that the square in

Y P ×B X
p

X //

p
P

��

eoo X

f

��
P p

// B

is a pullback and, given a pullback diagram on f and a map h : W ×B X → Y

Y W ×B X
g′ //

f ′

��

hoo X

f

��
W g

// B

there is a unique h′ : W → P with g = ph′ and h = eh′′, where h′′ : W ×B X → P ×B X

is given by the universal property of the pullback

Y W ×B X
hoo

h′′

xxrrrrrrrrrr
g′

$$HHHHHHHHH

P ×B X
p

X //

p
P

��

e

OO

f ′

��

X

f

��

W

h′

xxqqqqqqqqqqqq
g

$$IIIIIIIII

P p
// B.

The existence of partial products on f of every object Y in C is equivalent to expo-
nentiability of f in C (Lemma 2.1 in (Dyckhoff-Tholen 1987)).

In the category ω-Cpo, it is sufficient to prove the existence of partial products on
f of the two-point ordered set S = {0 < 1}, since any object may be obtained as a
regular subobject of a product of copies of S. In fact the same happens in the category
Top0 of T0-topological spaces (see (Adamek-Herrlich-Strecker 1990)), where ω-Cpo fully
embeds. The result follows, since any topological product of copies of the continuous
lattice S coincides with the product in ω-Cpo (see (Gierz et al. 2003)) and topological
embeddings between ω-cpos are regular monomorphisms in ω-Cpo (while the converse
is not true, see e.g. the example due to Moggi in (Taylor 2002)).

The extra conditions needed for f convex to be exponentiable in ω-Cpo are given in
the next theorem, where an ω-chain (bi)i∈N is not eventually constant in B if, for any i,
there exists j > i, with bj > bi.
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Theorem 1.8.
Given f : X → B convex in ω-Cpo, the following are equivalent:

1 f is exponentiable in ω-Cpo.

2 Given an ω-chain (bi)i∈N, not eventually constant in B, with b =
∨

bi, Ω =
⋃

i{bi}∪{b}
and Z = f−1(Ω \ {b}),
(a) Z∗ = f−1(Ω).

(b) Given an ω-chain (xn)n∈N in X, with
∨

xn = x, f(xn) ∈ Ω and f(x) = b, the
ω-Scott-closure C in Z of (

⋃
↓ xn)

⋂
Z coincides with (↓ x) ∩ Z.

3 Given an ω-chain (bi)i∈N, not eventually constant in B, with b =
∨

bi, Ω =
⋃

i{bi}∪{b}
and Z = f−1(Ω \ {b}),
(a) Z∗ = f−1(Ω).

(b) If Z and Z∗ are provided with the ω-Scott topology, the inclusion j : Z → Z∗ is
a topological embedding.

Proof. 1 ⇒ 3.
(a) Let f be exponentiable in ω-Cpo. Ω can be viewed as a colimit in ω-Cpo of the

diagram:

{bi, bi+1}

{bi+1}
+ �

88rrrrrrrrrr
� s

&&LLLLLLLLLL

{bi+1, bi+2}
Since f is exponentiable, pulling back along f preserves colimits, then f−1(Ω) turns

out to be a colimit of

f−1{bi, bi+1}

f−1{bi+1}
) 	

77nnnnnnnnnnnn

� u

''PPPPPPPPPPPP

f−1{bi+1, bi+2}

Given h, k : f−1(Ω) ⇒ T that coincide on f−1{bi, bi+1} for any i, by the universal
property of colimits, h = k and then Z∗ = f−1(Ω), by Lemma 1.3.

(b) Let A be an ω-Scott open set of Z and let Ai = A ∩ f−1{bi}. The characteristic
functions ki of the open sets Ai ∪ Ai+1 of f−1{bi, bi+1}, by the universal property of
colimits, determine a unique k : Z∗ → S, which is the characteristic function of a unique
open set Â of Z∗ such that Â ∩ Z = A.

2 ⇒ 3.
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We want to prove that any ω-Scott closed set C of Z has an extension to an ω-Scott
closed C ′ of Z∗ (that turns out to be the closure of C in Z∗).

Let us define C ′ = {t ∈ Z∗ | (↓ t)
⋂

Z ⊆ C}.
C ′ is down closed: if t′ ≤ t ∈ C ′, (↓ t′)

⋂
Z ⊆ (↓ t)

⋂
Z ⊆ C.

The condition (b) tells us that C ′ is closed under suprema of ω-chains: given an ω-chain
(xn) of C ′, if

∨
xn = x ∈ Z, then xn ∈ Z, then xn ∈ (↓ xn)

⋂
Z ⊆ C. This means that

also x ∈ C ⊆ C ′, being C closed in Z. If on the contrary f(x) = b, since (↓ xn)
⋂

Z ⊆ C,
ClZ (

⋃
(↓ xn)

⋂
Z) = (↓ x)

⋂
Z ⊆ C by (b), therefore x ∈ C ′.

3 ⇒ 2.
First, let us observe that Condition 3(a) implies that if a ω-Scott closed set C of Z has

an extension to an ω-Scott closed Ĉ of f−1(Ω) = Z∗, this extension is unique and then it
coincides with the closure of C in Z∗. In fact, if C ′ is a closed set with C ′ ∩Z = C, then
also Ĉ∪C ′, Ĉ∩C ′ are closed sets of Z∗ with the same property. If K = (Ĉ∪C ′)\(Ĉ∩C ′),
since Z∗ \K ⊆ Z∗ is an ω-cpo containing Z, K = ∅ and Ĉ = C ′.

Now let xn be an ω-chain in X with
∨

xn = x, xn ∈ f−1(Ω) = Z∗ and f(x) = b.
For any xn, (↓ xn) ∩ Z is closed in Z and its closure in Z∗ is (↓ xn) ∩ Z∗, by Condition
3(b) and the observation as above. Furthermore, if C = ClZ (

⋃
(↓ xn)

⋂
Z), C has an

extension to an ω-Scott closed Ĉ of Z∗. Since (↓ xn)∩Z ⊆ C, (↓ xn)∩Z∗ ⊆ Ĉ, then any
xn ∈ Ĉ, so also x ∈ Ĉ and (↓ x) ∩ Z∗ ⊆ Ĉ.

On the other hand, Ĉ ⊆ (↓ x) ∩ Z∗, since xn ≤ x, consequently
(↓ x) ∩ Z = (↓ x) ∩ Z∗ ∩ Z = Ĉ ∩ Z = C.

2 ⇒ 1.
We want to prove that f is exponentiable, showing the existence of the partial product

P of S on f . As a set, P = {(σ, b)|σ : f−1(b) → S, σ continuous}. We endow P with the
relation (σ, b) ≤ (σ′, b′) given by

1 b ≤ b′

2 ifx ≤ x′ inX with f(x) = b, f(x′) = b′, then σ(x) ≤ σ′(x′)

It is trivial to show that this relation is reflexive and symmetric, while the transitivity
depends on the convexity of f . Now we want to prove that any ω-chain (σi, bi) in P has
a supremum. Let b = ∨bi and let σ : f−1(b) → S be such that

σ(x) = 0 ⇔ ∀ ai ∈ f−1(bi) with ai ≤ x, σi(ai) = 0.

Clearly σ is monotone and (σ, b) = ∨(σi, bi). We are going to prove that σ is continuous,
showing that σ−1(0) is ω-Scott closed in f−1(b). If bi is eventually constant, there exists
ī with bj = bī for all j > ī, then σ−1(0) =

⋂
i≥ī

σ−1
i (0).

So, let bi be not eventually constant: without a substantial loss of generality, we can
suppose bi strictly increasing. Let xn be an ω-chain in f−1(b) with σ(xn) = 0. Then
(↓ xn) ∩ f−1(bi) ⊆ σi

−1(0), for any n and any i, then
⋃
n
(↓ xn) ∩

⋃
i

f−1(bi) ⊆
⋃
i

σi
−1(0).

This implies that the function σ̄ :
⋃
i

f−1(bi) = Z → S defined by

σ̄(x) = σix(x), where bix = f(x)

has value 0 on
⋃
n
(↓ xn)

⋂
Z. Since σ̄ is trivially continuous, σ̄ has value 0 also on
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its closure ClZ

(⋃
n
(↓ xn) ∩ Z

)
= (↓ x) ∩ Z, by Condition 2(b). Consequently, for any

ai ∈ f−1(bi) with ai ≤ x, σ̄(ai) = 0 = σi(ai). This means σ(x) = 0, that is σ continuous.

Now we are going to prove that the evaluation map e : P ×B X → X is continuous.
If (σi, bi, xi) is an ω-chain in P ×B X, ∨(σi, bi, xi) = (∨σi,∨bi,∨xi) = (σ, b, x) and
e(∨(σi, bi, xi)) = σ(x), while ∨e(σi, bi, xi) = ∨σi(xi). If (bi) is eventually constant, the ω-
chain (xi) is eventually in f−1(b), so that e(σ, b, x) = ∨σi(xi), since any fiber is cartesian.

Let us now suppose that σ(x) = 1 and ∨σi(xi) = 0, that is ∃ aī ∈ f−1(bī) with aī ≤ x,

σī(aī) = 1, while σi(xi) = 0, for any i. Such an aī is in (↓ x) ∩ Z. Since σi(xi) = 0,

(↓ xi)∩f−1(bi) ⊆ σi
−1(0) and, as before, σ̄ has value 0 on ClZ

(⋃
i

(↓ xi) ∩ Z

)
= (↓ x)∩Z.

This means that σ̄(aī) = 0, but this is impossible, since σī(aī) = 1.

The last thing we have to prove is the universal property of the partial product. Given
a pullback diagram on f and a map α : U ′ → S

S U ′ g′ //

f ′

��

αoo X

f

��
U g

// B

for any u ∈ U , f ′−1(u) ∼= f−1(g(u)), hence we can consider the restriction α|u of α

to the fiber of f on g(u). We can then define α̃ : U → P by α̃(u) =
(
α|u, g(u)

)
, we

trivially have that pα̃ = g. We have to prove that α̃ is continuous. So, let ui be an
ω-chain in U with ∨ui = u. If g(ui) is eventually constant in B, there exists ī such that
g(ui) = g(uī) = b, for any i ≥ ī. Consequently, α̃(ui) for i ≥ ī is an ω-chain in the power
object Sf−1(b), whose supremum is α̃(u) = α|f ′−1(u)=f−1(b), by the universal property of
the exponentiation. We can then suppose g(ui) = bi strictly monotone, without loss of
generality. If Ω =

⋃
{bi} ∪ {b}, then Z = f−1(Ω \ {b}), and Z∗ = f−1(Ω) can be seen as

subsets of U ′.

Let ᾱ :
⋃
i

f−1(bi) = Z → S be defined by

ᾱ(x) = α|uix
(x), where bix = f(x)

Then ᾱ : Z → S is continuous, as before, hence C = (ᾱ)−1 (0) is a closed set of Z.
Since 2 ⇒ 3, we know that C has a unique extension to a closed set Ĉ of Z∗ (the closure
of C in Z∗). If α̃(u) > ∨α̃(ui), there would be z ∈ f−1(b) such that

α|u(z) = 1 and
(
∨α|ui

)
(z) = 0.

V = α−1(1) ∩ Z∗ is an open set such that z ∈ V and V ∩ C = ∅, since α|C = 0, so that
z /∈ Ĉ. But z ∈

(
∨α|ui

)−1 (0) ∩ Z∗ = C ′, which is then a closed set with C ′ ∩ Z = C,

with C ′ 6= Ĉ. But this is impossible, since we know that such an extension of C must
be unique. This means that α̃(u) = ∨α̃(ui), so α̃ is continuous and f is proved to be
exponentiable.
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2. Comparing exponentiability in ω-Cpo, in Pos and in Top

Let f : X → B be a morphism in ω-Cpo, which is also a morphism in Pos and in Top,

via the ω-Scott topology. It may be worth comparing exponentiability of f in ω-Cpo, in
Pos and in Top. If we take f exponentiable in ω-Cpo, we already noticed in Proposition
1.6 that f is exponentiable in Pos, while in general f is not exponentiable in Top (see
Example 3.3 of (C-M 2007)).

Theorem 2.1.
Let f : X → B be a morphism in ω-Cpo. If f is exponentiable both in Pos and in

Top, then f is exponentiable also in ω-Cpo.

Proof. Let f : X → B be exponentiable both in Pos and in Top. Since f is then
convex, we can apply Theorem 1.8, once showed that f fulfills conditions 3 (a) and 3 (b).

Given (bi)i∈N not eventually constant in B with b =
∨

bi, Ω =
⋃

i{bi} ∪ {b} and
Z = f−1(Ω \ {b}), we have to prove that

(a)Z∗ = f−1(Ω). If not, there exists x̄ ∈ f−1(Ω) \ Z∗. Consider in ω-Cpo the cokernel
pair f1, f2 : f−1(Ω) ⇒ f−1(Ω)

⋃
Z∗ f−1(Ω) of the inclusion i of Z∗ in f−1(Ω) :

Z∗ i //

i

��

f−1(Ω)

f2

��
f−1(Ω)

f1

// f−1(Ω)
⋃

Z∗ f−1(Ω)

The map i is the equalizer of f1, f2, then f1(x) = f2(x) holds for any x ∈ Z∗,
while f1(x̄) 6= f2(x̄). Then, since f−1(Ω)

⋃
Z∗ f−1(Ω) is T0, there exists a map γ :

f−1(Ω)
⋃

Z∗ f−1(Ω) → S with γ(f1(x̄)) 6= γ(f2(x̄)). Denoting by α1 = γf1 and α2 =
γf2, we have that α1(x) = α2(x) for any x ∈ Z∗ and α1(x̄) 6= α2(x̄).
We can define a continuous map g : N∗ → B defined as g(i) = bi, g(∞) = b, so that
g factorizes along the embedding of Ω into B.
Consider now the pullback of g : N∗ → B along f :

N∗ ×B X
h //

k

%%LLLLLLLLLL

��

X

f

��

f−1(Ω)
j

;;xxxxxxxxx

��

N∗
g

//

&&MMMMMMMMMMMM B.

Ω

;;vvvvvvvvv

If we consider g restricted to its image Ω, by the universal property of the pullback,
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there is a unique map k : N∗ ×B X → f−1(Ω). Consider now in Top the partial
product P = P (f, S) and the two maps α1k, α2k : N∗ ×B X → S. By the universal
property of the partial product, we get two morphisms α̃1, α̃2 : N∗ → P

S N∗ ×B X
α1k

oo
α2k

oo

xxrrrrrrrrrrr

xxrrrrrrrrrrr
h

%%LLLLLLLLLLL
k // f−1(Ω)

j

��
P ×B X p

X

//

p
P

��

e

OO

��

X

f

��

N∗

α̃1

xxpppppppppppp
α̃2

xxpppppppppppp
g

&&MMMMMMMMMMMM

P p
// B.

such that α̃1(∞) 6= α̃2(∞), while α̃1(i) = α̃2(i) for any i.
Any open set containing α̃1(i) = α̃2(i) must contains also α̃1(∞) and α̃2(∞), since
otherwise there would be an open set in N∗ containing n, but not ∞; on the other
hand, any open set containing α̃1(∞) must contain also some α̃1(i), since the sequence
α̃1(i) converges to α̃1(∞). Therefore any open set containing α̃1(∞) must contain also
α̃2(∞) and, by the same arguments, any open set containing α̃2(∞) must contain also
α̃1(∞); but this is impossible, since P is a T0 space.

(b)Considering also on Z the ω-Scott topology, we want to prove that the inclusion
j : Z → Z∗ is a topological embedding. If we denote by Zsub the topological space
obtained considering on Z the topology induced by Z∗, weaker than the Scott topol-
ogy, it is sufficient to prove that every ω-Scott open of Z is open in Zsub.
Since the restriction f̃ : Z∗ → Ω of f to Z∗ is again exponentiable in Top (see
(Niefield 1982)), we can consider the partial product P = P (f̃ , S) of S on f̃ and the
pullback of the topological inclusion of Ω \ {b} in Ω along f̃ .
Given an ω-Scott open A in Z, we want to show that the characteristic map hA :
Zsub → S of A is continuous. So we are going to prove that the map h′A : Ω\{b} → P,

given by h′A(bi) = (bi, hA|A ∩ f̃−1(bi)), is continuous and that hA = eh′′A, where
h′′A : Zsub → P ×Ω Z∗ is obtained by pullback.

S Zsub

h′′A

xxrrrrrrrrrr

hAoo

##GG
GG

GG
GG

G

P ×Ω Z∗ //

��

e

OO

��

Z∗

f̃

��

Ω \ {b}
h′A

yyrrrrrrrrrrr

##GG
GG

GG
GG

G

P p
// Ω.
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h′A is well defined since the ω-Scott topology coincides with the induced topology on
every fiber f̃−1(bi).
Ω \ {b} has the final topology induced by the inclusions of {bi, bi+1} into Ω \ {b},
then h′A is continuous if and only if any restriction of h′A to {bi, bi+1} is continuous.
By the universal property of the partial product, it is then sufficient to prove that
hA|f̃−1(bi, bi+1) : f̃−1(bi, bi+1) → S is continuous. But this is true, since on each
couple of fibres the ω-Scott topology coincides with the induced topology.

Remark 2.2. We remark here that in the previous theorem the condition of exponen-
tiability both in Top and in Pos is essential to obtain exponentiability in ω-Cpo. In
fact, the next example will show that exponentiability Top and in Pos are independent
from each other, showing a continuous map between posets exponentiable in Top but
not convex, and therefore not exponentiable in Pos.

Example 2.3.
Let f : X → T be the function defined the following way:

XA = (0, 1], XB = (0, 1), X = XA ∪XB ∪ {c1, c2},

T = {a, b, c}, a < b < c;

f(XA) = a, f(XB) = b, f{c1, c2} = c.

We have to define a partial order � on X. In XA and XB , the relation � is the natural
one. Moreover, for any x ∈ (0, 1),

xA � xB � ci

and then also 1A � ci.
Endowing X and T with the ω-Scott topology, f is continuous, but f is not convex,

since 1A � c1, f(1A) = a < b < c = f(c1), but there is no element in X between 1A and
c1.

We are going to show that f is exponentiable in Top, since it fulfills the conditions
proved by Niefield in (Niefield 1982). In fact, for any x ∈ X and any neighborhood U of
x in the fibre of f(x), we are able to exhibit a family H = Ha ∪Hb ∪Hc of open subsets
of fibres that easily satisfies:

1 U ∈ Hf(x);
2 any Ht is Scott-open, for t ∈ T ;
3 for any open set V in X, the set {t ∈ T |Vt ∈ Ht} is open in T ;
4 ∩H = ∪t (∩Ht) is a neighborhood of x in X.

Consider x0 ∈ XA. If U is a neighborhood of x0 in XA, there exists 0 < x′A < x0, with
x′A ∈ U , then it is possible to define
Ha = {V open in XA|x′A ∈ V } : it is ω-Scott open, since it is the set of open sets

containing a fixed compact set.
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Hb = {U open in XB |x′B ∈ U} : idem.
Hc = {{c1, c2}} .

If x0 ∈ XB and U is a neighborhood of x0 in XB , there exist 0 < x′B < x0 with
x′B ∈ U , then define
Ha = ∅;
Hb = {U open in XB |x′B ∈ U} ;
Hc = {{c1, c2}};
For ci, let us take Ha = Hb = ∅ and Hc = {{c1, c2}} .
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