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Probability Theory

The goal of Probability Theory is to quantify

our degree of uncertainness.

Probability Theory and Statistics, that is based

on Probability Theory and uses its language,

have applications to almost all Sciences and

humain activities.

The basic object of study of Probability Theory

are random objects and in particular random

numbers.

A random number is a well defined number,

whose value however is not necessarily known.

For example the result of a specific experiment

or observation.

We will denote random numbers with capital

letters.
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Given a random number X we denote by I(X)

the set of its possible values.

A randon number X is said to be upper bounded

if

sup I(X) <∞

, lower bounded if

inf I(X) > −∞

and bounded if both inequalities are true.

Similarly for two random numbers X,Y we will

denote by I(X,Y ) the set of the possible pairs

of (X,Y ) and in general if X1, X2, . . . , Xn are n

random numbers, then I(X1, X2, . . . , Xn) is the

set of possible n-tuples (X1, X2, . . . , Xn).
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A particular case of random numbers are events.

Events are random numbers whose set of val-

ues is contained in the set {0,1}. We will often

use for events the letters E,F,G,H,A,B,C, . . ..

If an event E takes the value 1, then we say

that E takes place; if it takes the value 0 then

we say that it does not take place.

In order to define events we will use the follow-

ing notation. A proposition that can be true

or false inserted between brackets will denote a

number equal to 1 if the proposition is true and

equal to 0 if the proposition is false. For ex-

ample if the random number X represents the

result obtained by thowing a die with set of

possible values I(X) = {1,2,3,4,5,6}. Then

we can define the event E =( X is even). This

notation will be used in general and not just

for defining events.
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Operations on random numbers and events.

On random numbers and events we can per-

form operations and obtiain other random num-

bers. In particular we can perform arithmetical

operations. We will also consider the following

operations that are in particular important in

the case of events. Given x, y real numbers,

we define

x ∧ y = min(x, y)

x ∨ y = max(x, y)

x̃ = 1− x

.
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It is easy to see that they satisfy the following

properties:

x ∧ y = y ∧ x

x ∨ y = y ∨ x

x ∧ (y ∧ z) = (x ∧ y) ∧ z

(x ∨ y) ∨ z = x ∨ (y ∨ z)
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x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

(x ∧ y)̃ = x̃ ∨ ỹ

(x ∨ y)̃ = x̃ ∧ ỹ

˜̃x = x

.
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Similar relations hold when the operations in-

volve n numbers instead of just two. It is not

necessary in this case to insert parentheses as

the operations satisfy the associative proper-

ties.

Let E F be two events.

E ∨ F is called the logic sum (or union in the

set theoretic interpretation) of the events E

and F . It is the event. It the event that takes

place if and only if at least one of the events

E of F takes place. Thefore it corresponds to

the preposition ”or”.

E ∧ F is called the logic product (or intersec-

tion in the set theoretic interpretation) of the

events E and F . As the events take only the

values 0 and 1, E ∧ F is equal to the orsi-

nary product EF . It is the event. It the event

that takes place if and only if both events E
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of F take place. Thefore it corresponds to the

preposition ”and”.

Ẽ is called the complemetary event of the event

E. It is the event that takes place if and only

if the event E does not take place.

The properties that we have stated at the be-

ginning can be applied to the logical operations

on events. As we have remarked, the logical

product can simply expressed by means of the

ordinary arithmetic product. This is not true

for the logical sum, as if two events both take

place their logical sum is equal to 1, whereas

their arithmetical sum is equal to 2 and there-

fore it is no an event but just a random num-

ber. If however two events are uncompatible

(i. e. they cannot both take place at the same

time), then their logical and arithmetical sum

are equal.



Let us show a simple application of these rela-

tions.

1− (E ∨ F ) = (E ∨ F )̃ = Ẽ ∧ F̃

= ẼF̃ = (1− E)(1− F ) = 1− E − F + EF.

It follows that

E ∨ F = E + F − EF.

Similarly it can be shown that

E∨F ∨G = E+F +G−EF −FG−EG+EFG.



Conditional probability and expectation.

Given a random number X and an event H, the

conditional expectation of X given the event H

is the expectation that we assign to X given

that in addition to the present information we

also know that the event H has taken place.

We denote it by P(X|H).
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It is easy to see that by coherence priciple it

must satisfy the following properties that are

analogues of those satisfied by ordinary expec-

tation:

inf I(X|H) ≤ P(X|H) ≤ sup I(X|H)

where I(X|H) denotes the set of the values

that X can assume whent the event H takes

place. In general I(X|H) ⊂ I(X). Therefore in

general inf I(X|) ≤ inf I(X|H) and sup I(X|H) ≤
sup I(X).

P(X + Y |H) = P(X|H) + P(Y |H)

P(aX) = aP(X).
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Principle of composite expectation.

It can be shown that coherence priciple also

implies that conditional expectation satisfies

the following relation, that is called principle

of composite expectation:

P(XH) = P(X|H)P(H).

When P(H) > 0 we have

P(X|H) =
P(XH)

P(H)

that sometimes is taken as a definition of con-

ditional expectation.
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If E and H are events then P(E|H) is called
the conditional probability of E given H.

If P(H) > 0 then

P(E|H) =
P(EH)

P(H)
.

That is the conditional probability of E given
H is the probability that both E and H take
place divided by the probability of H.

It follows from the properties of conditional ex-
pectation to see that if H ⊂ E, then P(E|H) =
1.

On the other side if E ⊂ H, then EH = E and
therefore

P(E|H) =
P(E)

P(H)
.
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Positive correlation, negative correlation and

non-correlation.

The event E is positively correlated with the

event H if P(E|H) > P(E).

The event E is negatively correlated with the

event H if P(E|H) < P(E).

The event E is non-correlated with the event

H if P(E|H) = P(E).

It is easy to see that if E is positively correlated

with H, then Ẽ is negatively correlated with H.

If E is negatively correlated with H, then Ẽ is

positively correlated with H.

If E is non-correlated with H, then also Ẽ is

non-correlated with H.
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Assume that P(E) > 0 and P(H) > 0, then

we can formulate the previous properties in a

symmetric way.

Therefore we can say that E and H are posi-

tively correlated if P(EH) > P(E)P(H).

E and H are negatively correlated if P(EH) <

P(E)P(H).

E and H are non-correlated or stochastically

independent if P(EH) = P(E)P(H).
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Independence of n events.

We say that n events E1, E2, . . . , En are stochas-

tically independent if for every subset

{i1, i2, . . . , ik} ⊂ {1,2, . . . , n}

we have

P(Ei1Ei2 . . . Eik) = P(Ei1)P(Ei2) . . .P(Eik).

This is equivalent to the following condition

P(E∗1E
∗
2 . . . E

∗
n) = P(E∗1)P(E∗2) . . .P(E∗n),

for every choice of E∗i between Ei and Ẽi for

i = 1,2, . . . , n.
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Bernoulli scheme.

A sequence of events E1, E2, . . . stochastically

independent and equiprobable (i. e. such that

for every i P(Ei) = p for some p is called

Bernoulli scheme. It represents a sequence of

trials or experiments each one performed in the

same conditions, cannot influence each other

and can have two results called respectively

success and failure.
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Distributions related to Bernoulli scheme.

The number Sn of successes in the first n tri-

als of a Bernoulli scheme of parameter p is

said to have binomial distribution with param-

eters n and p. It follows from the properties

of expectation, variance and covariance that

the expectation of Sn is np as the sum of n

random numbers with expectation p and that

its variance is np(1 − p) as the sum of n non-

correlated random numbers each one with vari-

ance p(1− p).

The number of the trial where the first success

is obtained in a Bernoulli scheme with param-

eter p is said to have geometrical distribution

with parameter p. It can be shown that this

distibution has expectation 1
p and variance 1−p

p2 .
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Limits of these distribution

Poisson distribution

Assume p is very small and n is very large in

such a way that np = λ.

Then the binomial distribution with these pa-

rameters can be approximated by Poisson dis-

tribution with parameter λ a distribution with

possible values 0,1,2, . . . and with

P(X = k) =
λk

k!
e−λ

. The expectation and the variance of X are

both equal to λ
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Exponential distribution

A number Y = X/n where X has geometri-

cal distribution with parameter p has approxi-

matively a continuous exponential distribution

with parameter λ with parameter λ, possible

values all positive numbers and P(Y ≤ x) = 0

for x < 0 and P(Y ≤ x) = 1 − e−λx for x > 0.

The expectation of this distribution is 1
λ and

the variance is 1
λ2. This is a an absolutely con-

tinuous distribution with a probability densitry

p(x) given by 0 for x < 0 and λe−λx. The

probability that a number with this distribu-

tion belongs to the interval [a, b] with a < b is

given by

∫ b
a
p(x)dx.
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Standard Normal or Gaussian distribution

Let X be a random number with binomial dis-
tribution with parameters n and p. We can
perform on it the operation of standardization
and obtan the random number Y given by

Y =
X − np√
np(1− p)

.

Y is obtained from X by means of a linear
transformation in such a way that its expecta-
tion is 0 and its variance is 1. It can be shown
that when n is large Y has approximatively a
standard normal or standard Gaussian distri-
bution, an absolutely continuous distribution
with probability density n(x) given by

n(x) =
1√
2π
e−

x2
2

.
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The probability that a number with this distri-
bution belongs to the interval [a, b] with a < b

is given by

∫ b
a
n(x)dx = N(b)−N(a),

where

N(x) =
∫ x
−∞

n(y)dy.

N(x) gives the probability that a number with
standard normal distribution is less than or equal
to x. N(x) cannot be expressed in terms of ele-
mentary function but its values for non-negative
x can be found in every text book of elemen-
tary statistics. The values for negative x can
be obtained by means of the relation

N(x) = 1−N(−x).
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General normal or gaussian distribution.

The general normal or Gaussian distribution

is absolutely continuous distribution with two

parameters m and σ. Its probability density is

given by

1√
2πσ

e
−(x−m)2

2σ2 .
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If Y has normal distribution with parameters

m and σ, then X = Y−m
σ has standard normal

distribution. Therefore we can use the tables

of N(x) to compute the probability that Y be-

longs to the interval [a, b] with a < b

P(a ≤ Y ≤ b) =
∫ b
a

1√
2πσ

e
−(x−m)2

2σ2

is given by

P(a ≤ Y ≤ b) = N(
b−m
σ

)−N(
a−m
σ

).

It follows from the properties of expectation

and variance that the expectation and variance

of Y can be obtained from those of X. The

expectation of Y is equal to m and its variance

is equal to σ2.
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Markov chains

Let S be a finite or denumerable set.

Then a homogeneous Markov chain is a se-

quence of random numbers

X0, X1, X2, . . .

with state space S is defined by giving the ini-

tial distribution ρs for s ∈ S and the matrix of

transition probabilities Π = (ps,s′) for s, s′ ∈ S,
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by saying that

P(X0 = s0, X1 = s1, . . . , Xn = sn) =

ρs0ps0,s1 . . . psn−1,sn

or (Markov property)

P(Xn = sn|X0 = s0, X1 = s1, . . . , Xn−1 = sn−1) =

psn−1,sn.
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They satisfy

0 ≤ ρ ≤ 1
∑
s∈S

ρs = 1.

Π =

 p11 p12 . . .
p21 p22 . . .

... ... . . .



0 ≤ pss′ ≤ 1
∑
s′∈S

pss′ = 1 ∀s ∈ S.
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Examples of random walks.

Random walk on Z.

The state spase S is Z. For some p, 0 < p < 1

ps,s+1 = p, ps,s−1 = 1− p.

Random walk on the interval [a, b] ⊂ Z with

absorbing boundary conditions.

Urn models.
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Transition probabilities in more steps.

p
(n)
s,s′ , P(Xk+n = s′|Xk = s) = (Πk)s,s′
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Ergodic theorem for Markov chains.

If S is finite and the Markov chain is irreducible

and aperiodical then for every states s, s′ ∈ S
the following limit exists

lim
n→∞ p

(n)
s,s′ = µs′

and does not depend on s.

Moreover µs is the unique solution of the fol-

lowing system of equations

∑
s
µs = 1

∑
s
µsps,s′ = µs′.
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This implies that µs is the (unique) invariant

(or stationary) distribution for the Markov chains.

This means that if we put the initial distribu-

tion of the Markov chain equal to µs, then the

distribution of Xn for all n ≥ 0 is µn.

Moreover µs is the percentage of time that the

Markov chain is in state s for every initial dis-

tribution.



Hypothesis Testing: Examples

Unknown mean µ of a normal distribution with

known variance σ2. 1.645 is the value x such

that the normal standard distribution has a

probability 0.05 to be larger than x. Let

Z =
(X − µo)

√
n

σ
.

If Z ≥ x, then the hypothesis µ = µ0 is re-

jected.
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Case in which σ2 is unknown.

In this case a one-sample t-test is used. Here

one estimates the unknown variance σ2 by

s2 ,
∑n
i=1(Xi −X)2

n− 1
.

The test statistic is then

t =
(x− µ0)

√
n

s
.
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The test is then similar to that when the vari-

ace is known. Only in this case one uses in-

stead of standard normal distribution the Stu-

dent t-distribution with ν = n − 1 degrees of

freedom with probability density

f(t) ,
Γ(ν+1

2 )
√
νπΓ(ν2)(1 + t2

ν )(ν+1)/2

for −∞ < t <∞.
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A protein coding gene is a segment of the

DNA that codes for a particular protein (or

proteins). In any given cell type at any given

time, this may or may not be needed. Each

cell will generate the proteins it needs, which

will usually be some small subset of all possible

proteins. If a protein is generated in a cell, we

says, we say that the gene coding for this pro-

tein is expressed in that cell type. When this

happens we say that the gene is differentially

expressed between the two cell types. There

are several techniques for measuring the level

of gene expression in a cell type. All of these

methods are subject to both biological and ex-

perimental variability. Therefore, one cannot

simply measure the level of expression once in

each cell type to test for differential expression.

Instead, one must repeat each experiment sev-

eral times and perform a statistical test of the

hypothesis that they are expressed at the same

or different levels.
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Suppose that the mean expression levels of a

given gene in two cell types, for example nor-

mal and tumor (cancerous) cells, are to be

compared. In statistical terms, this compar-

ison can be framed as the test of the equality

of two unknon means. For the moment we as-

sume that the (unknown) variance of expres-

sion level in normal cells is identical to that in

tumor cells. To test for equality of the two

means, we plan to measure the expression lev-

els of m cells of one type and compare these

with the expression levels of n cells of another

type.

34



Suppose that, before the experiment, the mea-

surements X11, X12, . . . , X1m from the first cell

type are thought as m NID(µ1, σ
2) random

variables, and the measurements X21, X22, . . . , X2n

from the second cell type are thought as n

NID(µ2, σ
2) random variables. The null hy-

potheses states that µ1 = µ2. We assume

for the moment that the alternative hypoth-

esis leaves both µ1 and µ2 unspecified, so that

our test is two-sided.

Let ν1 = m − 1, ν2 = n − 1 , ν = ν1 + ν2,

νs2 = ν1s
2
1 + ν2

2, δ = µ1 − µ2 then

t =
(δ − (x1 − x2))

s(1/n1 + 1/n2)
1
2

has Student’s t-distribution with ν degrees of

freedom.
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Case with different variances

Let δ = µ1 − µ2.

d =
(δ − (x1 − x2))

(s2
1/n1 + s2

2/n2)
1
2

has Behren’s distribution with ν1 and ν2 de-

grees of freedom

d = t1 cos(ω̃)− t2 sin(ω̃).

and angle ω̃ given by

tan(ω̃) = (s2/
√
n2)/(s1/

√
n1).
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Testing for the parameters in a multinomial

distribution

X2 =
k∑
i=1

(Yi − npi)2

npi

has approximately χ2 ( chi square ) distribution

with k − 1 degreed of freedom.
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Maximum likelihood for Markov chains

The probability of a sequence s1, s2, . . . , sn, given

that the initial state is s0 is given by

ps0,s1ps1,s2 . . . psn−1,sn.

This can be written as∏
s,s′

p
ns,s′
s,s′ ,

where ns,s′ denotes the number of transitions

from s to s′. The maximum likelihood point is

obtained for

ps,s′ =
ns,s′

ns,·
.
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Association tests.

Tests of associations are used typically when

observations are categorized into a certain num-

ber of ”row” categories and into a certain num-

ber of ”column” categories. The test evaluate

the association between row and column cat-

egories. We start with the case of two rows

and two columns.
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Examples:

Suppose that N laboratory mice, n of which

are males and N − n females are irradiated.

We wish to test whether a certain mutation

is more likely to arise in male mice than in

females. After the radiation it is found that,

in all, there are m new mutant mice in the

joint sample of males and females, and thust

N−m mice which are non-mutant. Conditional

on the event that the total number of mutant

mice is m, the number Y of mutant males has

the hypergeometric distribution if there is no

association between gender and the propensity

to be a mutant.
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Suppose that the probability that a mouse of

either gender is a mutant is p. The number of

mutant male mice has a binomial distribution

with parameters p and n and the number of

mutant female mice has a binomial distribution

with parameters p and N−n. The total number

of mutant mice has a binomial distributions

with parameters p and N .

Let A1 be the event that y male mice are mu-

tant and A2 be the event that, in all, m mice

are mutants. Using the formula of conditional

probability we can derive the hypergeometric

distribution for the number of mutant male

mice, given the total number m of mutant

mice. The event A1A2 is the event thet y

males and m − y females are mutants. This

allows to compute the probability of A1A2.
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We want to test the hypothesis that there is

no association between gender and propensity

to be a mutant, the alternative hypothesis of

interest being that males are more likely to be

mutants than are females.

Suppose that n male mice and N − n female

mice are irradiated, and that in all a total of

m mutant mice is observed and thus a total

of N −m non-mutants. These four totals are

taken as given.

To illustrate the calculations, suppose that n =

8, that N = 20 and that m = 9. Of the

males, y = 6 are mutants. These data may

be arranged in the form of a two-by-two con-

tingency table, as shown below.
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mutant non-mutant total
male 6 2 8

female 3 9 12
total 9 11 20

What is the probability of observing a value 6

or larger in the upper left-hand cell in the table,

assuming that the null hypothesis is true and

that the four marginal totals 8,12,9 and 11

are given. The hypergeometric formula shows

that this probability is

(
8
6

)(
12
3

)
(

20
9

) +

(
8
7

)(
12
2

)
(

20
9

) +

(
8
8

)(
12
1

)
(

20
9

)
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Tables of arbitrary size

Assume that categorization count data arise in

the form of a two-way table with an arbitrary

number r of rows and an arbitrary number c of

columns.

column
1 2 3 · · · c Total

1 Y11 Y12 Y13 · · · Y1c y1·
row 2 Y21 Y22 Y23 · · · Y2c y2·

... ... ... ... . . . ... ...
r Yr1 Yr2 Yr3 · · · Yrc yr·

Total y·1 y·1 y·1 · · · y·c y

It is assumed that the y observations leading

to the counts {Yjk} are independent of each

other. This fact is often overlooked in the

application of chi-square procedures in bioin-

formatics.
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Given the row and column totals, it can be

shown that if the two categories are indepen-

dent in the population then Yjk is a random

number with expectation value Ejk given by

Ejk =
yj·y·k
y
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Association tests

∑
jk

(Yjk − Ejk)2

Ejk

has approximately χ2 distribution with

ν = (r − 1)(c− 1)

degrees of freedom.
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The Analysis of one DNA sequence

many overlapping small piecec each of the or-

der of 500 bases (nucleotides)

assembling fragments into one long ”contig”

”shotgun sequencing”

n-times coverage or nX coverage if the length

of the original sequence is G the total length

of the fragments sequenced is nG.
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probabilistic issues

N fragments each of length L

The coverage a is given by

a = NL/G.

The number Y of fragments whose left-hand
end is located within an interval of length L to
the left of randomly-chosen point therefore has
a Poisson distribution with mean a, so that the
probability that at least one fragment arises in
this interval is 1− Pr(Y = 0) = 1− e−a.

What is the means proportion of the genome
covered by contigs?

What is the mean number of contigs?

What is the mean contig size?
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a 2 4 6
Mpgc .864665 .981684 .997521

a 8 10 12
Mpgc .999665 .999955 .999994
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The mean number of contigs is the number

N of fragments multiplied by the probability

that a fragment is the rightmost member of a

contig.

Mean number of contig= Ne−a = Ne−NL/G.

a .5 .75 1 1.5 2 3 4 5 6 7
Mnc .60.7 70.8 73.6 66.9 54.1 29.9 14.7 6.7 3.0 1.3

a 5 6 7
Mnc 6.7 3.0 1.3
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