Scritto di Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Informatica per il Management Martedì 12 settembre 2017

Nome e cognome :
Jumero di matricola :
'irma:
Compilare la seguente dichiarazione.
l/la sottoscritto/a (matricola)
utorizza/non autorizza (cancellare la voce che non interessa) i docenti del corso a
ubblicare sul sito Web il risultato della prova scritta, usando come identificativo il
umero di matricola.
Firma

- 1) Le carte di un mazzo di 52 carte vengono distribuite in maniera casuale fra i giocatori $A,\,B,\,C$ e D.
 - a) Calcolare la probabilità che il giocatori A abbia solo carte di cuori.
 - b) Calcolare la probabilità che il giocatore A abbia esattamente tutti gli assi e tutti i re.
 - c) Calcolare la probabilità che ogni giocatore abbia esattamente un asso, un quattro, un cinque.

2) Il numero aleatorio Xinsieme dei valori possibili $I(X)=\{-2,-1,0,1\}$ e distribuzione data da

$$P(X = -2) = \frac{1}{10}, \quad P(X = -1) = \frac{1}{5}, \quad P(X = 0) = \frac{3}{10}, \quad P(X = 1) = \frac{2}{5}.$$

Siano $Y \in Z$ i due numeri aleatori definiti da $Y = 2 - X, Z = X^2$.

- a) Determinare gli insiemi dei valori possibili di Y e Z: I(Y) e I(Z).
- b) Calcolare le distribuzioni di Y e Z.
- c) Calcolare $\mathbf{P}(X)$, $\sigma^{\mathbf{2}}(X)$, $\sigma^{\mathbf{2}}(Y)$, $\mathbf{P}(Z)$.

3) Sia X un numero aleatorio con densità di probabilità p(x)

$$p(x) = \begin{cases} K(2x - x^2) & \text{per } 0 \le x \le 2, \\ 0 & \text{altrimenti.} \end{cases}$$

- a) Calcolare la costante K.
- b) Calcolare la funzione di ripartizione di X.
- c) Calcolare $\mathbf{P}(X)$ e $\sigma^{\mathbf{2}}(X)$.
- d) Calcolare $\mathbf{P}(1 \le X \le 2)$.

4) I numeri aleatori X_1, X_2, \ldots sono stocasticamente indipendenti subordinatamente alla conoscenza del parametro aleatorio Θ con densità subordinata

$$f(x|\theta) = \frac{1}{3\sqrt{2\pi}} \exp(-\frac{(x-\theta)^2}{18}).$$

La densità a priori di Θ è data da

$$\pi_0(\theta) = \frac{1}{2\sqrt{2\pi}} \exp(-\frac{(\theta - 2)^2}{8}).$$

Si osservano i valori dei primi 3 numeri aleatori: $X_1=1.8, X_2=0.4, X_3=2.4.$

- a) Calcolare la densità a posteriori di Θ .
- b) Calcolare previsione e varianza a posteriori di Θ .