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23. Let ¢ and r be arbitrary positive numbers and n a positive integer.

Show that

(12.24) ala + 1)@ + 2r)- - -(a + nr) ~ Crrtipnt@n+ig=n,

[The constant € is equal to (2r)?/T(a/r).]
94, Using the results of the preceding problem, show that

ale +r)a+ 2ot ) TOM

(A12:25) b+ r)b+2r)---®+nr) T(a/r)
25. Prove the following alternative form of Stirling’s formula:
(12.26) nl~ @m)i(n + Hrtle— ¢+,

26. Continuation. Using the method of the text, show that
(12.27)  (20)¥(n + HrHle— (D —1nGD < nl < 2m)Hn + )" Hem D,

27. Extending Stirling’s formula, prove that

1 1
(1228) n!~(21r)‘}n"+éexp {—n+m — W-I—...}'

CHAPTER III*

Fluctuations in Coin Tossing

and Random Walks

This chapter serves two purposes. First, it will show that exceed-
ingly simple methods may lead to far-reaching and important results.
Second, in it we shall for the first time encounter theoretical conclusions
which not only are unexpected but actually come as a shock to intuition
and common sense. They will reveal that commonly accepted notions
concerning chance fluctuations are without foundation and that the
implications of the law of large numbers are widely misconstrued.!

The discussion is inserted at this place only because of its elementary
character; the main topic of the book continues in chapter V. The
entire book is independent of the present chapter. Some of the formulas
will reappear later in connection with first passages and recurrence, but
they will be derived anew by analytical methods. A comparison of
methods should prove instructive and interesting. Accordingly, the
present chapter should be read at the reader’s discretion independently of,
or parallel to, the remainder of the book. To facilitate such a procedure,
this chapter may be read in fwo versions: the main text appears in
ordinary type. Passages in small type cover additional topics (refer-
ring mainly to first passage and recurrence phenomena) and should be
omitted at first reading. Section 7 contains an empirical illustration.

* This chapter may be omitted or read in conjunction with the following chapters.
Reference to its contents will be made in chapters X (laws of large numbers), XI
{first-passage times), XIII (recurrent events), XIV (random walks), but the con-
tents will not be used explicitly in the sequel.

! Although we are dealing formally only with coin tossing, the basic conclusions
are widely applicable. In fact, E. Sparre Andersen has made the surprising dis-
covery that many facets of the fluctuation theory of sums of independent random
variables are of a purely combinatorial nature and are common to a huge class of
such variables. This is true, in particular, of the two arc sine laws. See Mathe-
matica Scandinavica, vol. 1 (1953), pp. 263-285, and vol. 2 (1954), pp. 195-223.
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66 COIN TOSSING AND RANDOM WALKS [I1L.1

1. GENERAL ORIENTATION

A surprising wealth of information concerning chance fluctuations in
general will be devived from the following inconspicuous lemma an-
nounced in 1887 by Bertrand, Similar problems of arrangements have
attracted the interest of students of combinatorial analysis under the
name of ballot problems? Suppose thal, in a ballot, candidate P scores p
votes and candidate Q scores g votes, where p > q. The probability that
throughout the counting there are always more votes for P than for @ equals

»—q/p+ 9.

Tn mathematical language we are here concerned with arrangements
of 2 = p + ¢symbols e, €2, -+, & consisting of p plus ones (votes for
P) and ¢ minus ones (votes for @). The partial sum s; = € 4 e+
+...+ e is the number of votes by which P leads, or trails, just after
the kth vote is cast. Clearly s: =P — ¢ and

(1.1) 8 — 81 = €& = +1, so =0 @ =1, 2 a00) x).

Conversely, every arrangement (si, g, - .., Sz} of integers satisfying
(1.1) represents a potential voting record. We shall use a geometrical
terminology and represent such an arrangement by & polygonal line
whose ith side has slope ¢; and whose ith vertex has ordinate s;. Such
lines will be called paths.

Definition. Let > 0 and y be integers. A path {s1, 82 .-+, S}
from the origin to the point (z,y) 18 @ polygonal line whose yertices have
abscissas 0, 1, 2, ..., © and ordinates So, 81, 82, -+« Sz satisfying (1.1)
with 8z = Y-

If p among the ¢; are positive and ¢ negative, then

(1.2) t=p+q Y=0—4¢

An arbitrary point (z, y) can be joined to the origin by a path only if
2 and y are of the form (1.2). In this case thep places for the positive

2 Tor the history and literature sce A. Dvoretzky and T. Motzkin, A problem of
arrangements, Duke Mathematical Journal, vol. 14 (1947), pp. 305-313. As these
authors point out, most of the formally different proofs in reality use the reflection
principle (lemma 1 of section 2), but without the geometric interpretation this
principle loses its simplicity and appears as a curious trick. Dvoretzky and Motzkin
give a new proof of great simplicity and elegance. They generalize the ballot prob-
lem by requiring that at each instant P have at least o times the votes scored by
Q. This work has been continued by M. T. L. Bizley, Derivation of a new formula
for the number of minimal lattice paths, ete., The J ournal of the Institute of Actu-
aries, vol. 80, Part 1, No. 354 (1954), pp. 55-62.
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g; can be chosen from the z = p + ¢ available places in
(1.3) Noy = (p * q) - (p i q)
p q
erent ways. It is convenient to define N, , = 0 whenever z,y are

not of the form (1.2). Then there exist exactly N, » different paths from
Bertrand’s ballot theorem asserts that

the origin lo the point (x, y).

when i
y > 0 there exist exactly (y/x)N,, , paths satisfying the condi-

tions s; > 0, s > 0, . :
mon2) A y wees Sze1 > 0,8, = y. It will be proved in sec-

eXiEs::?;mple.h Figure 1 exhi'bits a path to the point Ny = (5,1). Th

et ‘eI; }fuc patl}s of which two satisfy the conditions s"> .0 ’I?II;e

path in the graph is {1, 2, 1, 2, 1}, and the other is {1, 2 ?: 2 1-} ’
Pt B } H

(0]

1GURE 1. Illustrating positive paths and the proof of theorem 2 in section 2
ection

We can draw the most interesti i

X esting conclusions from th

;en:ﬁ I'f Se drop the convention that the terminal point (z ;)boa%utokfetheo-
e :e in adv_anee. There exist 2" different paths frm;a the ori-r'path
f]f:{::zgn’ yzl with anbarbltraljy ordinate 7. As explained in soct?::l 1:30
hese 2" paths may be taken to represent the 2" i b ’

82 ; en sent the 2" possib] ; :
the ideal experiment consisting in # successive fissmgf g;ltsoit?eoi
G fee

coin. The classical description introduces the fictiti
1{’::;0;' who :;t }earﬁhntrial win:; o;, loses a unit amgurifif.tlm'gllllg sizilt}:j;
1 83y « v vy Sn| then represents Peter’s successive e ] i, tha
is,I'f&he excess of the acé)umulated ;;ml;eiﬂ;f slizfz;c;;”:?czf{zzzg a5
eXist:,,a ; eO, I%Z sn((e)t gain a,f: the conclusion of the nth trial is zlero: there
oxiss o 1 r.e ponind cc;xr so infrequently that they do not affect the pic-
fore,agree tes tr}(: erences to then} are disturbing. We shall there-
., a}; 0 a,.t at.the nth trial Peter leads if either s, > 0 or
t},;e precedinn_tlr > (‘1‘.6., in case of a tie that player leads who led at
they g tria ). “Peter lfaads at the nth trial” is but a descripti
OIr‘I‘ the nth side of the path is above the z-axis.” e
thaJthie b:llot theo_rem rgfers to paths situated entirely above the z-axis
s, to games in which the lead never changes. This topic may qu:
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pursued further by investigating how often the lead is likely to change

for an arbitrary path. In this connection we reach conclusions that

play havoe with our intuition. It is generally expected that in a pro-

longed series of coin tossings Peter should lead about half the time and

Paul the other half. This is entirely wrong, however. In 20,000 toss-

ings it is about 88 times more probable that Peter leads in all 20,000 trials

than that each player leads in 10,000 trials. In general, the lead changes
at such infrequent intervals that intuition is defied. No matter how
long the series of tossings, the most probable number of changes of lead
is zero; exactly one change of lead is more probable than two, two
changes are more probable than three, ote. In short, if a modern
edueator or psychologist were to describe the long-run case histories
of individual coin-tossing games, he would classify the majority of
coins as maladjusted. If many coins are tossed n times each, a sur-
prisingly large proportion of them will leave one player in the lead
almost all the time; and in very few cases will the lead change sides
and fluctuate in the manner that is generally expected of a well-behaved
coin.

This is a sample of the conclusions to be drawn from the first arc
sine law (see section 5 and the illustration in section 7). K. Sparre
Andersen has shown that this law has a wide field of applicability, and
the situation here described for coin tossings is typical for chance flue-
tuations involving cumulative effects. Most stochastic processes in
physics, economics, and education are of this nature, and our findings
<hould serve as a warning to those who are prone to discern secular
trends and deviations from average norms.

The same situation may be viewed from a somewhat different angle. If the coin
tossing proceeds at a uniform rate, common sense expects that, with due allowance
for chance fluctustions, a two-day game should produce twice as many ties as a
one-day game. In other words, we expeet intuitively the number of ties to increase
roughly in proportion to the duration of the game. Paradoxically this is not so:
The nunber of ties increases aboul as the square root of time. Tn 10,000 tossings the
median number of ties is 67, but in 1,000,000 tossings it increases only to 6743 the
" increases from about 150 to about 1500. The average wave-
The formulas on which these conclu-
assage and recurrence times in

typical “wavelength
length increases with time (sections 6 and 8).
gions are based play an important role for first p
general random walks and diffusion theory.
Theorem 3 of section 2 stands apart from the remainder and is no
Tt concerns a variant of the ballot problem for the case where the
gcore the same number, 7, of votes. Then P leads an even number, 2k, of times and
Q leads in the remaining 2n — 2k trials. Again we have the false intuition that
each candidate is likely to lead about half the time, that is, we expect 2k to be
close to m. Actually, if the ballot ended in o tie nin, the n + 1 possible divisions of
leads (namely 2n:0, 2n—2:2, on—4:4, ..., 2:2n—2,0 :2n) have the same probabilily

t used elsewhere.
two candidates

III.
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n+ 1)L i i
; g o—i‘;e zvhere’f}};;se;?l;i 131&:3: 1_nta marked contrast to the situation described
. no i i 9
SloIns};‘zn;o el l}))Ile;escrlbed in advance; there the extreme divi-
t has been pointed out b !
! y J. L. Hodges ? that thi isti i
cations to rank-order tests. We illustrate this point sb;hslc;;em e statistial sppll

E le. i
o ]:2;1;1)13 :e at:eS(;lppl())'se that a quantity (e.g. the height of plants) is measured on
each of su d_]ects and also on each of n control subjects, obtaining measure
m decrelils.h.lé, z;.daérrl. (11)11, >a; b>,. To ﬁg il;ieas, ;uppose that each group is arrangec;
er: ... and by > b >.... Let us combine t ‘

iig:ﬁg:fiez?d fwrliie the 2n letters ay, ..., b, in decreasing order. Tllxl: re}:il:izo
2 g g n letters a and n letters b may be interpreted as the record of .
bellot in ‘j:h ic ,ea;h candidate received n votes. For an extremely successful tro z
i r(; Z dsos Olﬂ:]i precede the b’s; a completely ineffectual treatment sh:;lld
e m or er.’ In our arrangement the a’s lead exactly 2k times if %
different 8 %rect.ade the b’s of same rank, that is, if the inequality a; > b; holds {
equalsyl/( su+s‘ir1pts. Assuming randomness, the probability tha.;; thj; ha, bens
o Z_ 1)/2naid1§her;f§re The probability that the a’s lead 2k tiiﬁes orpibil:
: ' . e classical example for this ar i

: gument -
ltévsllyl ;v;ghfoutdknowledge of the .theoretlcal probabilities) is due to Ga(llécs)idwilcl)ahtad
B a’sor a.tz?, referred to hlII.l by Charles Darwin. In his example 2n Wal;SEO
A :V;Irlet;lr; ﬁl;pizﬁjﬁ tflmes. Galton concluded that the treatment was

. is of mere randomness even an ineffectu
: al t
:}rl(:)lifsi g‘;);i:(;euii}it;igmre lTa.d.s in three out of sixteen similar experimeniesatrr’i‘ir;:
shows ¢ analysis may be a valuable suppl :
pplement t
intuition. (For related tests based on the theory of runs see chapze:uflra;z%:i;o?gk}),
R a.

2. PROBLEMS OF ARRANGEMENTS

Let A = (a,«) and B = (b, 8) be i
=1 = (b, e integral points in the positi
quadrant: b > a > 0, a > 0,8 > 0. By reflection of A on the :rI;axis:z

B

NG
Fiaure 2. Illustrating the reflection principle.

meant the point A’ = (a, —a). (See fi
. . ' . gure 2.) A path from A i
defined as in section 1, with A playing the role of the orJ;gin b

3 Galton's rank-order test, Biometrika, vol. 42\'(1955) pp. 261-262
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er of paths from A to B
all paths from A’ to B.

70

Lemma.t (Reflection principle.) The numb
which touch or cross the x-awis equals the number of

Proof. Consider a path {8 = @, Saq1, +-+y Sb = g} from A to B
having one or more vertices on the »-axis. Let ¢ be the abscissa of the
first such vertex (see figure 9); that is, choose ¢ so that s. > 0, ...
§.1>0,8=0 Then { —8a, —Sat1, -+ —St—1, & = 0, 8441, St42,
..., 8} is a path leading from A’ to B and having T = (4, 0) as its first
The sections AT and A'T being reflections of
e-to-one correspondence between all paths
A to B as have a vertex on the

vertex on the z-axis.
each other, there exists a on
from A’ to B and such paths from
z-axis. The lemma is proved.

Theorem 1. (Ballot theorem.) Letx > 0,y > 0;the number of paths
{81, 82, + -+, 82 = Y} from the origin to (z,y) such that sy > 0, sp > 0,
.., 8z > 0 equals (y/2)Nzy-

Proof. Since s, = =1, we have s; = 1 for each admissible path.
It follows that there exist as many admissible paths as there are paths
leading from the point (1, 1) to (x,y) which neither touch nor cross
the z-axis. By the last lemma the number of such paths equals

+q¢—1 +ta-1
(21) Na:—lvy—'l - N:p—l.y+1 = <p ) B (p q >
p—1 g—1

D

The Duality Principle. Almost every theorem on paths can be reformulated
to obtain a formally different theorem. Consider {sy, ..., sz} and the path ob-
tained from it by reversing the order of the e, that is, the path {81%, sa*, vvey 827
where si* = e, 8F = ez + €1, s3* = ezt ez—1 T €22 - - or

2.2) s0* =0, s1* = 8z — Sz—1, . 8% = 8z — Sz—i, (RS 8z* = Sz

.2) are congruent and are obtained from each other by
they join the same endpoints. To each thearem ot
applying it to the reversed path (2.2).

The two paths (1.1) and (2
a rotation through 180 degrees;
paths there corresponds a dual theorem obtained by

llot theorem gives us the number of reversed paths {s1%,...,

For example, the ba
£s Oford=1,2, ..., Butthisis

..., 8z} joining the origin to (z, y) such that s;
S —

4 The probability literature attributes this method to D. André (1887). The text
reduces it to a lemma on random walks. The classical difference equations of ran-
dom walks (chapter XIV) closely resemble differential equations, and the reflection
principle (even a stronger form of it) is familiar in that theory under the name of

Lord Kelvin’s method of 1mages.
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same z > z— T =l oo —1 an: |leIl e we h ve as an l]‘(ﬁlllat/lve
the me as S. S for z 1, 2
7 3 4y y & d Ci a d

Theo 1*,
ooy 1::12 ] The number of paths (s, s, ..., sz} from (0, 0) fo (z, y) such that
. 2 - -y Sz—1 < Sz (where s; = y > 0) equals (y/z) Ny,

G . R -
o thzo}r:‘?vtn:ally speaking, theorem 1 is concerned with paths whose left endpoint
est vertex, whereas the dual theorem 1* refers to paths whose last vzrte\r

is highest. (See figure 8.) Th i implicati
e ) eorem 1* has implications for first-passage times in

5

Ficure 3. Illustrating first passages and returns to the origin
We turn to a study of paths joining the origin to a point N = (2n, 0)
)

of the z-axis (an odd vertex on t -axis 1s i i
il n the z-axis is impossible). Put for

23) Lm = — Gﬁ-
n+1\n

2n
Theorem 2. Among t jotng gt
ng the " paths joining the origin o the point 2n

of the x-axis there are

(a) exactly Loy_g paths such that

2.4) o _

( ) 8§ > 0, So > 0, ey Sop—1 > 0, (SZn = 0)
() exactly Le,, paths such that

2.5) 120, 520, ..., 80020, (520 =0)

(That ?:S’ the ¢ are as man 0 il:h a l! 'L‘ ner 1)(27“,(768 Ve t
' ’ abo e
r-axris as the7 e are paihs tO 2n i 2 with no ver tex bClO’w the x'axis ) h

Proof. (See figure 1.) Kach isfyi iti
: . path satisfying condition (2.4
through the point Ny = (2rn—1, 1) and by theorem 1 the(nul)ngziszz



72 COIN TOSSING AND RANDOM WALKS X112

paths to N such that s > 0, ..., Sen—2 > 0 equals

1 2n — 1 1 <2n == 2) L

Ch 2n—1<n—1>—n n—1 e

This proves (). Again, let a path satisfy condition (2.4). Omitting
the first and the last side we get a path that joins the point 0y = (1, 1)
to N; = (2n—1, 1) and at the same time is such that all its vertices
lie on or above the line y = 1. Translating the origin to 01, we get 2
path from the new origin to the point N; (which has the new coordi-
nates 2n—2 and 0), none of whose vertices lies below the new z-axis.
We have thus established a one-to-one correspondence between such
paths and all paths satigfying (2.4), and the theorem is proved.

wing theorem stands apart from the remajnder

As explained in section 1 the follo
and will not be used in the sequel.

Theorem 3.5 Lel Log2qn be the number of paths from the origin fo the point 2n of
the z-axis such that 2% of its sides lie above the z-axis and 2n — 2k below (k = 0, 1o
vevym). Then Lopan = Loy, independently of k.

Proof. The assertion is trivially true for n = 1 and we assume by induction that
Lopay = Leyforv = 1,2, ..., n—1and 0 <k < » We propose to count the num-
ber of paths |81, 82, ..+ 30 = 0} with exactly 9k sides above the z-axis. First
pssume 1 <k <n —1. Such a path crosses the r-axis and we denote by 2r the
abacisss, of its first vertex on the z-axis. We have then to consider two classes of
paths.

A path of the first class is positive between O and 2r, and its section between 2r
and 2n contains exactly 2k — 2r sides above the axis. Here k > r. By theorem
2(a) there exist Loy 2 paths f{s1, ..., 8201, S2r = 0} withs; >0, ..., 8201 >0, and
by the induction hypothesis there exist Lox—gr2n—2r = Lan_gy paths joining (2r, 0)
to (2n, 0) and having 2k — 9y sides above the z-axis. Aeccordingly, there exists a
total of Lay_sLas_se paths of this class.

A path of the second class is negative between 0 and 2r; its section between 2r
and 2n then contains 2k sides above the z-axis. By the argument above there
exist again Lep—alan—2r paths of this class, but this time n — 7 > k.

It follows that for k = 1, ..., n—1

k n—k
2.7 Logon = 2 Lor—oLon—2r -+ ZlL2r—2L2n—2r-
r=1 7=

By changing the summation index to p =n —7 +1, the terms of the second

& First proved by complicated analytical methods by K. L. Chung and W. Feller,
Fluctuations in coin tossing, Proceedings National Academy of Seiences USA, vol,
35 (1949), pp. 605-608 (see also the first edition of the present book, chapier =11,
problem 4). An elegant combinatorial proof was given by J. L. Hodges (see foot~
note 3).
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sum become Lgy_gLlon_2, = Lg,_9Llas_s, with p running from k¥ + 1 to n. Thus

n
(2.8) Lo on = ZILZP—szn—zp,
p=

which is ¢ndependent of k.
- 1;/; Izi;c(}il 1vlmth allla2n sides I:/Lbove the z-axis is a path of the sort described in theorem
s ence Lon,on = La,. For reasons of symmetr
y we have al =
The total number of paths from the origin to (2n, 0) being (n iaSELO.?n "
that Lozan = Lonfork = 0, 1, ..., m. e 1t follows

As a corollary we find the identity

n
(2.9) Lon = 3 Loy slon_s,.

p=1

For a direct analytic verification see section 8(a).

3. RANDOM WALKS AND COIN TOSSING

‘In a sequence of N tossings of an ideal coin let ¢ = -1 if the kth
trial results. in heads and ¢ = —1 otherwise. Then s; = ¢ —I—e :
;}f— t h —2 t;f f .tlie cilmullative excess of heads over tails at ’;he ccl)nch::i(;l;
e rial. In classical betting langu ;18 ¢ g
!ated net gain.” Each possible outfomebofa%ﬁe&}\flssucr;?ezzg\fea:cccumu-
is represented by a path of N sides starting at the origin, and conossmigs
each §uch p%th may be talken as representing the outcon’le of N t: ding,
';hl.; gonsxdemtion leads us to take for our sample space the ag;iigii
Z];m ye 2_‘\?7?:;"1 ,(;{;,s,_l’ «+., SN} starting at the origin and to attribute proba-
An event such as “heads at the first two trials’’ must be interpret
as th?v Eggregate of all sequences starting with s; = 1, s = 2 rpTrz e
ar_e22 _ such sequences and the probability of this e;zent is t.herefgiz
2. , as is proper. More generally, if & < N there exist exactly 2V %
iizzzgnggths&l sl{, 82, ..., Sx} such that their first k vertices I}i,e on a
pa 81, 82, ..., Sx}. It follo ;
by the outcom.e of the first k < Z\; trials has ‘Zspt"};z;bi;t;vz?z;edf;;mz?ed
N. I-n practice, therefore, the number N plays no role progide((lﬂ% t (')f
suf.ﬁmently large. Conceptually and formally it is best t,o consider 1 llzsl
finite sequence of tossings as the beginning of a potentially infi 'teac
quence, but this would lead us into non-denumerable sar}; 1 Spaces.
We shall therefore consider finite sequences with N lar eII') :hSPaces-
numl?er of trials occurring in the formulas; except for thii }aln =
permitted, and be glad, to forget about & ., e
F:or .th.e probabilistic background and the connection with related
top}cs it is desirable to supplement the geometrie language b reajte
native terminology. We imagine the coin tossings perfoimt;g a’? o
form rate, so that the nth trial occurs at time n. Peter ma:y rarblaikuﬁi:
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cumulative gain at all times by an indicator which we shall call *
ticle.” This particle, then, moves on a vertical axis starting from the
origin. It moves at times 1,2, ... one unit step upward if the coin
lands heads, one unit step downward if the coin lands tails. We say
that the particle performs a symmetric random walk. (The physicist
takes it as the simplest model for one-dimensional diffusion; see chap-
ter XIV.)

At time n the position of the particle is the point s, of the vertical
axis. The path {81, Sa, -4 8 x| represents the space-time diagram of the
random walk, the x-axis playing the role of the time axis.

Guided by this background we introduce the following

‘par-

Terminology. We shall say that at time n there takes place:

A return to the origin if s, = 0.
A first return to the origin if

3.1) $#0, s#0, .., Sp1 Z0, 8 =0.
A first passage through v > 0if
(3.2) s <1, 8<T, ... Sn <1, 8 =1
A second, third, ... return to the origin and a first passage through

r < 0 are defined in an obvious way. Note that passages through the
origin can take place only at even times, and we shall frequently restrict
the formulas to even times. In betting language a return to the origin
represents an cqualization of the accumulated numbers of heads and tarls.
(Figure 3 exhibits two paths in which the first passages and returns to
the origin, respectively, are marked ; the second path has the peculiarity

of keeping to the negative side.)
4. REFORMULATION OF THE COMBINATORIAL THEOREMS

In the following sections we shall use the notations

2n\ o,
(4.1) Ugp = " 27, n=012...
and
1
(4.2) fo=0, Jon = E;Luzn_z, n=12 ...

Tt is easily verified that

4.3) fon = Ugn—2 — U2n,
Theorem 1. For each n > 1:

(4.4) Ugn = P{52n = 0}

n=12....
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(4.5) Ugn =Pfs; # 0, s, = 0, «roy Son #Z 0}
(46) u2n=P{s120,3220, ...,SgnZO}

gr mbwords: The three events, (a) a return to the origin takes place at time

2n, ) mo :gtur;)z occurs up to and including time 2n, and (c) the path

18 non-negative between 0 and 2n, have the co 12
e : mmon probability usy,.

4.7) Jon =P{s15# 0,8 # 0, ..., Son_y 5 0, 53, = 0}
(4:8) f2n = P{Sl 2 0; Sa Z 0; ey Son_2 2 0; 32n—1 < 0}

that is: the two events (a) the first return to the origin takes place at i
2n, and (b) the first passage through —1 occurs at time 2n — 1. me
common probability far. , have the

Proof. As was observed in section 3 it suffices to consider the sample

space of paths of the fixed length 2n. By (1.3) there exist (2n> path
. - . . - S
joining the origin to the point (2n, 0), and this proves (4.4) "

By theorem 2(a) in section 2 there exist L joini
origin to (2n, 0) such that s; > 0, ..., sgn_q >2(7)L._ 2T€11?I;1§0izlilzlling the
twice as many p_aths satisfying the condition in (4.7), and th i,
§ponfilng probability is 2Lg,_3-272" = f,,. Theorem ’2(b Ty
implies in the same way (4.8). e

The probability that no zero occurs up to i i i
eguals one minus the probability of a ﬁrls)t ret?ﬁz l?)ciiimg' t}me 5
time <2n. Using (4.7) this difference is R

(49) 1—fo—fa—...—fon =
1= (1 —up) — (w2 —ug) —...— (Ugn_sp — Ugn) = Us

which proves (4.5). Similar] i FRE
) . y, the right side in (4.6) equal i
Ei‘g"ﬁb.abgg’ of a first passage through —1 before )tirg: 2n, and using
.8) this erence 1s again gi . » < g
proof. gain given by (4.9). This accomplishes the

Corollary. It follows that for n > 1

(4.10) Ugn = Zf2ru2n:2r-
r=1
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Proof. If a return to the origin takes place at time 2n, then the first
return must take place at some time 27 < 2n. We have just seen that
the number of paths from the origin to (2n, 0) with the first return to
the origin taking place at time 2r < 2n equals 2%fz,+ 2% uon—2r-
Summing over r, we get equation (4.10). (For a direct analytic proof
see section 8(a). In chapter XIII, section 3, we shall see that (4.10) is
a special case of the basic equation for recurrent events.)

Theorem 1* in section 2 enumerates the paths in which a first passage through
y accurs at time z. The sum & 4y must be even, and for our purposes it is con-
venient to put # = 2n — y. The content of theorem 1* may then be restated as
follows.

Theorem 2. The probability that a first passage through y > O lakes place at
time 2n — y 1s given by

2n — 1
(4.11) = 2ny— y ( n J) 2, nzu>h

The simplicity with which the duality principle delivered this important formula
as a direct consequence of the ballot theorem is truly remarkable. A direct analytic
derivation of (4.11) is difficult and recuires special tricks.

In principle, the probabilities [ ) ¢an be calculated by induction on y. A path
of length 2n —y — 1in which a first pussage through y -+ 1 oceurs at the terminal
point may be decomposed into two segments (sce figure 3 for y = 4). The first
segment is the path from the origin up to the point of the first passage through #;
it oceurs at some time 2v — ¥ <2n — Y — 1. This section is followed by the sec-
ond, a section of length 2n — 9y — 1 in which the terminal endpoint is the only
one lying above the left endpoint. In other words, if its left endpoint is talken as
the origin, the second section represents a path with a firgt, passage through 1 ab
the endpoint, By definition there exist oty goctions of the first type and
gtn—2—1gt) . of the second, and any two can he combined to give a path with

first passage through y + 1 at time 2n — y — 1. Therefore

n—1

(4.12) FEFD = 3 FPfG v, n>y+ 1

y=u

Formula (4.8) states that a first passage through —1 (and hence also through -+1)

at time 2n — 1 has probability fan, that is,
(4.13) $n = Jon n> 1.
Equations (4.12).and (4.13) determine recursively all f. & but it is not easy to verify
that (4.11) satisfies (4.12), and it is not at all clear how the explicit formula (4.11)
could be derived from (4.12).

Formulas (4.12)-(4.13) permit 2 novel conclusion. We see from (4.13) that 5
is the probability that the first return to zero oceurs at lime 2n. Forgetting about
the preeeding theorem, let us now define %) as the probability that the yth return
to zero takes place at time 2n. The argument used in the last proof applies with-
out change: Splitting a path from the origin to the (y-+1)st return into the initial
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section leading to the yth return and the terminal section between the yth and the

(y+1)st return, we see again that (4.12 i i i i
s g o e ¢ g (4.12) holds. Since this relation uniquely de-

giv’fr}b:lzzr&r.xfli. The probability that the yth return to zero takes place at time 2n s
Allernative geometric proof. Consider a path leading from the origin to a first
passage through y at time 2n — y. (Figure 3 exhibits the case y = 5, 2n — 4 i 15S
Constru(ft a new path by inserting into this path y new sides ea’ch of leo N i
anq having left endpoints, respectively, at the origin and the y — 1 Vert?czs—t
which a first passage through 1, 2, ..., y—1 takes place. The new path y
{o1, 02, ..., o2,}, has length 2n. Clearly o7 <0, ..., 6221 <0, o p— 0’ Sag
ex_actlyg/ — 1 interior vertices lie on the z-axis. Converse71y ga—ch;at,h {s:r'l oo
wﬂi}_: this property is ?btained, in the manner dcs(ﬂ'ibed,’ from a pathl'w‘it}'; ‘frii’éi
pmjs:‘.ge _thruu'gh u atotl_me 2n —y. If f§ is defined as in theorem 2, we see that
there exist exactly 22 —¥f§% paths {sy, ..., au.] such that o; <0 rar-- =0
e)factly y = 1 interior vertices lic on the z-axis. Such a path c‘o;sisés (-).f” y_se(;tia Irl1d
wlrl1th 'endpomts on the z-axis, and we can produce 2V different paths by chang(i)nS
the signs of all ¢; of one or more such sections. In this way we obtain all paths o%

length 2n with s2, = 0 and exactl i 1
: y ¥ — 1 inner vert -axi i
number is therefore 22* E',’,), as asserted. e

5. PROBABILITY OF LONG LEADS: THE FIRST ARC SINE
LAW

Wg shajll say that the particle spends the time from k — 1 to k on the
positive side tf the kth side of its path lies above the x-axts, that is, if at
least one of ‘t'he two vertices s;_; and s is positive (in which caée the
o’;h;rtl}s1 Izﬁsmge 01; zero). In the betting terminology this means that
at bo e (k—1)st and the kth trial Peter’ i
Sl N s accumulated gain was

The paradoxical properties of the i i i

. paths mentioned i
be derived from the following S

Theorem 1.5 Let Dak,2n be the probability that in the time interval
from 0 to 2n the-pamcle spends 2k time units on the positive side and
2n — 2k t?me units on the negative side. Then

(56.1) D2k,2n = UskU2n_2k-
(Note that the total time spent on the positive side is necessarily even.)

P.roof. The.prol.aabil.ity that the particle keeps to the positive side
during the entire time interval from 0 to 2n is given by formula (4.6)

¢ First proved by complicated analytical methods by K. L. Chung and W. Feller
(see footnote 5 and the first edifion of the present book, chapter XII sec;;ions 5

and 6). The th rest; rk
- 1)). eorem was suggested by the work of E. Sparre Andersen (see foot-

. ==
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and we see that paon,2n = Uzn 88 asserted. For reasons of symmetry
we have also Po,zn = Ugn, and it remains only to prove (5.1) for
1 < k <n — 1. For that purpose we repeat the argument which led
to (2.7). A particle that keeps for 2k > 0 time units to the positive
side and for 2n — 2k > 0 time units to the negative side necessarily
passes through zero. Let 2r be the moment of its first return to zero.
Then the path belongs to one of the following two classes.

In the first class, up to time 2r the particle stays on the positive
side, and during the time interval from 2r to 2n it spends exactly
o — 2r > 0 time units on the positive side. There exist 2272, paths
of length 2r which refurn to the origin for the first time at 2r, and half
of them keep to the positive side. Furthermore, by definition, there
are 22" ¥ por_o:on—os Paths of length 2n — 2r starting at (27, 0) and
having exactly 2k — 2r sides above the z-axis. Thus the total number
of paths of length 2n in the first class equals

1 02 2n—2 _ o2n—1
1.2y 25" T Pok—_gr,2n—2r = 22" fo,Pak—2r,2n—2r

In the second class, from 0 to 2r the particle keeps to the negative
side, and between 2r and 2n it spends 2 time units on the positive side.
Here 2k < 2n — 2r and the argument above shows that the number
of paths in this class equals 22111, Dok on—2r

Tt follows that for 1 <k <n —1

k n—k
(5.2) Doion = 5 2 JarDok—2r2n—2r T 1> farPak.on—or
r=1 r=1

Suppose now by induction that pek, gy = Uskuzy—ok for » = 1, 2, ...,
n—1 (this relation being trivially true for » = 1). Then formula (5.2)

reduces to

& n—k
(5.3) Pakan = %u2n——2k Z Jartop—2r T % Uk Z Sorton—sk—2r
=1 r=1

In view of equation (4.10), the first sum equals ugr and the second
equals Ugn_2k and therefore (5.1) holds.

We feel intuitively that the fraction k/n of the total time spent on the
postlive side is most likely to be close to 1 However, the opposite is
true: The possible values close Lo 1 are least probable and the extreme
values k/n = 0 and k/n = 1 have the greatest probability. This assertion
can be verified using a ratio test on (5.1).

Table 1 illustrates the paradox. In betting terminology it reveals
the startling fact that in 2n = 20 tossings of a perfect coin with proba-
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bility 0.3524 the less fortunate pl ) ;

' s player will never be in the lead. In
cases (with pr.obablhty.O.5379) the accumulated gain of the less f:)?';)ls:
nfzt.e .player will be positive just once or never. By contrast, an equal
division 10:10 of the leads has a probability of only 0.0606. , !

TaBLE 1

DistriBUTION OF LEADS IN 20 TOSSES OF A Con

k=0 | k=2 | k=4 |k=6
= k=8
k=20 | k=18 | k=16 | k=14 | k=12 | # =10
S 0.1762 | 0.0927 | 0.0736 | 0.0655
- . ‘ 0.061
P = 0.3524 | 0.5379 | 0.6851 | 0.8160 0.9391 O'01606

| Do = Uklizo is the probability that % sides of th i

1.ei,3“Pe'ter}11eads during exactly & out of the 20 triafs I’)’ath SR
k.20 18 the probability that one of the pl o

trials, the other for at most 20 — % tria,lse: D e

Formula (5.1), although exact, is not very revealing, and it is pref
era,ble. t'o replace it by a simpler approximation. An e,asy applic pt )
of Stl.rhng’s formula II(9.1) shows that wus,(mn)} — 1 as ) ilon
[This is the content of problem 11(12.20).] It follows that " -

1

(5.4) Dok,on ~ —————
wkt(n — k)b

where the ratio of the two sides tends rapidly to unity as & — « and
n—k — .. The. p¥*obability that the fraction k/n of the time spent
on the positive side lies between 3 and & (3 < a < 1) is given byp

(5.5) > Ponan~— 2. ‘{k <1 h Ij>}_}

in<k<an ™ dn<k<an |T n.

On the right side we recogni i .
integral gnize the Riemann sum approximating the

@ dz
(5.6) —1f oS, Y IS
T AT 2 arc sin ot — 2.
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For reasons of symmetry the probability that E/n < 3 tends to 3 as
n — . Adding this probability to (5.5), we get

Theorem 2.7 (The first arc sine law.) For fized o (0 < a < 1) and
n — o the probability that the fraction k/n of time spent on the positive
side be <a tends to

o dw
5.7 r_lf = 27" arc sin ok,
o fu(t —2)P

In practice formula (5.7) provides an excellent approximation even
for values of n as small as 20. The integrand in (5.7) is represented
by a U-shaped curve tending to infinity at the endpoints 0 and 1. This

09f-————————————— |
08 ——————————————

07 p———————

06 f-————————""
05 ——————=

|
P
[
04 ———— % o
03 ! |
| | Lo
02 L [
[ | | | | |
| |
0.1 | l | I
[ l .
L1 ] 1 1 | 1 |l| >t
SEE % % § B85
33 3 o S & oo

Figure 4. The arc sine law.

shows in a striking fashion that the fraction of time spent on the posi-
tive side is much more likely to be close to zero or to one than to the
“expected” or tnormal” value 5. Figure 4 will reveal:

-
7 Paul Lévy (Sur certains processus stochastiques homogénes, Compositio Mathe-

matica, vol. 7 (1939), pp- 983-339) found the arc sine law for certain continuous

diffusion processes and referred to the connection with the coin-tossing game. A

general arc sine law for the number of positive partial sums in a sequence of mu-
tually independent random variables was proved by P. Erdos and M. Kac, On the
nt random variables, Bulletin of the American

number of positive sums of independe
Mathematical Society, vol. 53 (1947), pp. 1011-1020. It was E. Sparre Andersen

who discovered the combinatorial nature of the arc sine law and its validity for
general classes of random variables.
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’ With probability .0.20 the particle stays for about 97.6 per cent of the

;;rltlesopzn?% ;(Zme side offthe origin. In one out of 10 cases the particle
.4 per cent of the time on th ) i 1

. n the same side. Another illustration

TABLE 2

ILLUSTRATING THE ARC SINE Law

P t
0.9 153.95 days

8 126.10 days

7 99.65 days

-6 75.23 days

5 53.45 days

4 34.85 days

3 19.89 days

2 8.93 days

1 2.24 days

.05 13.5 hours

.02 2.16 hours

.01 32.4 minutes

A coin is tossed once per second for

' t D a total of 365 days; | i
of tlgle during which the less fortunate player is indt}:}?é Sag be’Ii‘:}I;;lf r? e
number such that the event Z < ¢, has probability p, approxin.nately. PR

. ’I.‘hls table shows the probability p that the less fortunate player will
e in the lead f.or 8 total of less than ¢, days of a full year. Using, for
:]);agn}.)le, the significance level p = 0.05 dear to statisticians we’ see
; f m OZLe ou; 6oi' 30 cases the more fortunate player will be in’ the lead
or more than ays and 10 hours. Few i i
han 3 ; people will believe th

perfect coin will pro.duce preposterous sequences in which no ch:rtl; 2
of lead oceurs for millions of trials in succession, and yet this i hg
a good coin will do rather regularly. , vt

In the next section we shall treat another aspect of the same phe-

nomenon, and in section 7 we shall i .
material. shall illustrate the theory by empirical

6. THE NUMBER OF RETURNS TO THE ORIGIN

The explanation of the arc sine 1 ies i

; f aw lies in the fact that frequentl;
many trials are required before the particle returns to the ori(éin é enOTmPUSIY
sp%a‘mrku;g, the path crosses the z-axis very rarely - Heometrieally

e foel intuitively that if Peter and Paul t i

' : aul toss a coin for a long ti
::;gi:.oﬁjlws (moments wl.len the cumulative scores are equal) shoguldugs 7'2071': ;L}lle
Drobab;fit 0:3 2n. 2?11,{ this is ntft 80. Actually the number of ties increaseg iz

y only as ( .L}f_, that is, with increasing duration of the game the frequency
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of ties docreases rapidly, and the “waves” increase in length. In analyzing this
situation we shall consider the number of returns to zero. It should be borne in
mind that the number of times when the particle actually crosses from the positive
cide into the negative or conversely is roughly one-half the number of returns.
Theorem 1. Let 25, be the probability that up to and including time 2n the particle

returns to zero exactly v times.  Then

1 2n —r
) —
®.1) of) = 22"_r( ) n> 1L
In particular 259 = 258 = ugn and
(6.2) 20 =2 > > 40 >

In words (6.2) states that, independently of the duration 2n of the game, it is more
likely that no return or exactly one return to zero has occurred than any other number.

Proof. We recall that by formulas (4.4) and (4.5) there exist exactly as many
paths of length 2v with no return to zero as there are paths with a return to zero ab
the last step. Consider now paths of length 27 in which the rth and last return
ocewrred at some time 2n — 2v < 2n. The section of length 2» starting at this last
return can be chosen in as many ways as we can choose an alternative section
starting at the same point (2n —2v, 0) of the z-axis and leading to (2n, 0). In other

oty v orelurns lo zero occuv before time 2n equals the

words: The probability that exar
probability that @ refurn occurs at time 20 and that 1t is preceded by at least r returns.

By theorem 3 of section 4 this means that

(6.3) A =I5 4+ 5D AP
with f$ given by (4.11). It is easily verified that
1 2n — ¥y 1 on —y —1
) — .
(64) f.’:’:l - 22"_‘, ( n ) - 2_211——_—1/—1 ( o ))

and adding for y = r, r+1, ... we get equation (6.1) as asserted. The assertion
(6.2) being a trivial consequence, the theorem is proved.

Tt is again desirable to replace the exact formula (6.1) by a simpler approxima-
tion. For that purpose we rewrite (6.1) in the form

1 2 -
(1——)(1——)...(1—T 1)

n n n

1 2 —
(DD 5

2n 2n 2n
As was pointed out in the proof of the are gine law, we have w_s.n(ﬁr,)* — lasn — ©.
Trom the Taylor expansion of the logarithm, T1(8.10), we see that log (1 — »/n)

may be approximated by —v/n with an error of the order of magnitude (v/n)% Tt
follows that with an error of the magnitude #*/n* we have the approximation

(65) 2(2’; = U2n

(6.6) log {efrind =
B 0 ¥4 n N —— P —

. n” } 2nu:lu 4n
Qor

6.7

) = e,
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The proba,blhty Of ewer thﬂ. retur D \4 D ooo 2
few nk urns a,mel Z(Zn) —I_ Z( ) + + Z is tl us
) n n ’
a/ppl oxlmated by a.( Itlenlann sum to the lntegl al over 7 ¢+ extended frOm 0 to
k n, the relative (or pel(enta e) error involved b 11 of ¢ oraer o Y
/ g ) emg h d f agnltudc

Theorem 2. For each fixed o 1
n 2. > 0 the probability that up to and 4 X ;
2n the particle returns to the origin fewer than w(2n)} times tenIZis asn itl CZM%’? e

(6.8) fl@) = (2/m)} fo %1 gg.

In par t’l«cul(n, the pr Obabll’tt’l that there occur jewer n 0.67 3 7 r for
Y
f tha . 45(2n) elurns 18, Jo

fll::ti(ﬁ?pi; )Vil,% S;elct—i’i);l( 1S }th(ic reader will find a table of the normal distribution
' =y a)}; from it th . X
Jo) = 20800 —F1 for o w10 the values fle) may be obtained using

L . . .
retue;l;l : E;)l:efs to:selili 1;)1,000 times: with probability % there will be fewer than 68
cthor ronde, with probabiliy  the mton eeemi ot & g of the lesd. In
. i uration ‘wave”

i(zcut;ve chang?s of lead is about 300. For 1,000,00% t{t)ss?nag‘;eth:erzzgi?ntwo anj
inczzﬁl;zrést];as 11ncreased only by a factor 10, and the mean duration of o w;lumher

about 3000. The longer the series of trials, the —
zero and the longer the waves. , oo

The probability that in 10,000 tossings of a coin the lead never changes is about

0.0085, and with the same probabilit; i
e T 000 s probability there will be fewer than 10 changes of lead

7. AN EXPERIMENTAL ILLUSTRATION

Figure 5 re_presents the result of an experiment simulating 10.0
tosseg of a coin; it is the material tabulated in example 1(6 %) :1‘1(10
};.op line contains the graph of the first 550 trials, and the ile‘\.\'t twe
ines re.presgnt the entire record of 10,000 trials on a smaller scal -
the z-direction. The scale in the y-direction is the sam the o
oy e on the two
; g};e;;‘?i{ﬁlg at the graph. most people feel surprised by the length

ves between successive crossings of the z-axis (i.e., succe 3
ch?:ilges of %ead). Nevertheless, the graph represents a c‘ogpal'atis'i)‘lf?
;1;: d g:se ;1‘11?’;0273323 was ;hé)ssn lats f{he mildest among three availabl‘:‘

. 18 asked to loo ;
direction, that is, to take the terminala::otiii :L:n;(:'iggph[Zlnglwtr'ewﬁse
the reversed path is given by (2.2)] Theoret-i[::-mlh,lr the s}ér?ca 4
graphed and the reversed series are equivalent, and e;ch represglsjcsa:

8 Readers acquainted with the imi
¢ central limit theorem are warned t
ber1 of. re1furn§ is m')t normally distributed. In (6.8) there appearz a th et
mal distribution with mean (2/x)} and variance 1 — 2/x runcated nor-
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Tiguee 5. The record of 10,000 tosses of an ideal coin (described in section 7).
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random walk. The reversed random walk has the following charac-
teristics. Starting from the origin

the “particle”’ stays af the

negative side positive side

first 7804 steps next 8 steps
next 2 steps next 54 steps
next 30 steps next 2 steps
next 48 steps next 6 steps

next 2046 steps

total of 70 steps
fraction of time: 0.007

total of 9930 steps
fraction of time: 0.9930

This looks absurd, and yet the probability that in 10,000 tosses of a
perfect coin the lead is on one side for more than 9930 trials and at
the other for fewer than 70 trials is slightly greater than 0.1. In other
words, on the average more than one record out of ten will look worse
than the one just described. By contrast, the probability of a record
showing a better balance of leads than that of figure 5 is smaller,
namely about 0.072.

The record of figure 5 contains 142 returns to the origin among which
there are 78 actual changes of lead. The reversed series described
above contains 14 returns of which 8 are changes of lead. Sampling
of expert opinion has revealed that even trained statisticians feel that
142 equalizations in 10,000 tosses of a coin is a surprisingly small num-
ber, and 14 appears quite out of bounds. Actually the probability of
more than 140 equalizations is about 0.157 while the probability of fewer
than 14 equalizations is about 0.115. Thus, contrary to intuition, find-
ing only 14 equalizations is not surprising at all; as far as the number
of changes of lead is concerned, the reversed series stands on a par with

the original series of figure 5.

8. MISCELLANEOUS COMPLEMENTS
(a) Analytical Verification of Identities
It is easily verified that

8. rg = (—1)" (‘j) fon = (—=1) ! (i)

The basic identity (4.10) can now be regarded as a special case of equa-
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1 p = —1. Thesame formula showsin addition

I

tion I1(12.9) for a

—

that D usrtign—gr =
r=0
Formula (2.8) may be rewritten in terms of fo instead of Lopyo
and reduces to the special case of II(12.9) for a = b= 3. Alter-
natively, formula (2.8) may be derived from (4.10) using the identity
i =) t=rt (0 — )L

(b) The Position of the Maxima: The Second Arc Sine Law

We shall say that the path {s1, s2, .. -, sz} has its first mazvmum at
the place k if :

(8.2) sp >0, sp>81, -0y Sk > Sk—1y Sk 2 Sk4ly  rres Sk 2 Sz

In particular, the first maximum isat the place 0if s; < Ofor1 < j < .
By formula (4.6) the probability that a path of length x = 2n has its
first maximum at 0 equals ua,. It follows that also for a path of length
z = 2n — 1 the probability of the first maximum at 0 equals uan.

The event ‘“first maximum at the last place” is the same as §; < S
forj=0,1,...,x—1. For the reversed path (2.2) this means s;* > 0,
85 >0, ..., $z* > 0, and the probability of this is given by (4.5),
namely Lus, for = 2n and also forz = 2n + 1.

A path of length 2n with a first maximum at k consists of two sec-
tions: The initial section has its first maximum at the last, or kth,
place, and the second section has its first maximum at the initial, or
gero-th, place. Conversely, any two sections with the stated proper-
ties may be combined to give a path with its first maximum at the kth
place. We have thus the

Theorem. The probability that a path of length 2n has its first maxt-
mum at the place v equals '
if »=2k k=12 ...,m)

8.3 FUakUan—
(8.3) gUkban—2k . ,=92%k+1 (=0,1,...,n—1)

and g tf v = 0.

The remarkable fact is that the probability of finding the first maxi-
mum at either 2 or 2k + 1 equals the probability Par,2n N (5.1) that the
particle spends 2k out of 2n time units on the positive side. It follows
that the arc sine approximation applies and we can conclude that there
is a strong tendency for the maxima lo occur near one or the other of the
endpoints.

The surprising circumstance that the probability distribution
{pak,an} of leads and the distribution of the position of the maxima are
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practically the same is no peculiarity of the coin-tossing game. An
analogous theorem has been proved by E. Sparre Andersen for a. large
c}ass of random variables, and the combinatorial basis of his proof bis
similar to the argument used above.

(¢) A Limit Theorem for First Passages and Returns to the
Origin ?
The estimates used in section 6 may b
es ¥y be used to show that for fixed
probability IS0 of (4.11) satisfies the asymptotic relation y> 0 the

3
(8.4) W~ (2) Y -w¥en-n
w) (2n — y)i ’

the sign ~ indicating that the ratio of the two sides tends to unity as n — o
The n.lethods employed for the limit theorems in sections 5 and 6 now lead to th'
following conclusion: The probability that the yth return to zero (or the first pass .
through v) takes place before time ty? tends, with increasing y, to 1 — f(t™3) P th -
defined in equation (6.8). ’ it e
It follows that with probability near % the yth return to zero will occur after ti

(2.21...)%% so that the average time between consecutive returns is bound to incre:zn :
roughlgj linearly with y. This should come as a surprise to physicists accusto 3§
to taking the average of y ‘““measurements on the same quantity’” as approximaltrilg

}:10 t(}ile “true” value. In the present case a closer analysis reveals that in all likeliIi
W(})I(Z) leoéf Hin;(:;gl;?eyz measurements will be of the same order of magnitude as the

9 This is theorem 3 of chapter XII, section 5, i iti
, , in the first edition. Advanced
- ) apter X e L ance
Oerzefr;are advised that 1 — f(¢t7%) is the so-called positive stable distribution of

_—
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arise, and therefore (2.4) is to be replaced by the simpler equation

(2.5) Po(t 4+ k) = Po(t)(1 — M) + o(h),
which leads to
(2.6) Plo(t) = —APo(D).

From (2.6) and Py(0) = 1 we get Po(t) = e-_’“.‘ Subsifi_tut.mg this
Po(t) into (2.4) with n = 1, we get an ortllmary ('llﬁex'eptlatl qulﬁt-ll:}ﬂ
for Pi(f). Sinece P1(0) = 0, we find easily that PI{FJ = Xe™, in
agreement with the Poisson distribl.ttim_l (1.1). Proceeding in the same
way, we find successively all terms of (1.1).

3. THE PURE BIRTH PROCESS

In the Poisson process the probability of a change during {.t, t+h)
is independent of the number of changes dm‘mg. (0,t). The sx_mplex:si;
generalization consists of dropping thig assumption. A's_sume insteac
that, when n changes oceur during (0, ?), the probability of a new
change during (4, t4h) equals N,k plus terms uf' sfma,llel' order of ma,g-
nitude than h; the single constant X\ characterizing the process is re-

: he sequence Ap, M, Aa, -« .-
ph;{’;ei; ]g}ntveniex?t to introduce a more flexible terminology. Instead
of saying that n changes oceur during (0, #), we shall say thr:,t the system
is in state E,. A new change then becomes a t-ra-;w-z’imn E, — Eupp.
In a pure birth process transitions from E, are possible only to Eyy1.
Such a process is characterized by the following

Postulates. If af time i the system is in state En (n = 0, 1,2, ...,
then the probability that during (¢, i+h) a 1'.rrmsi{;§on to Eny1 occurs equals
A + o(h); the probability of any other change is o(h).

The salient feature of this assumption is that the time which the
system spends in any particular state plays no role; trhere. are Ffud'den
ciw,uges of state but no aging as long as the system remains within a

single state. _ o

Again let P,(t) be the probability that at time ¢ the §ystem is in
state B,. The functions P,(t) satisfy a system of dﬂerentml e:qua.thns
which can be derived by the argument of the preceding section, with
the only change that (2.2) is replaced by

3.1)  Pu(t+ k) = Pa)d — M) + Pai(®Ma—ah + 0(h).
In this way we get the basic system of differentzal equations
P’n(t) = —)\nPn(t) + xn—an—l(t) (n = 1);

(3.2) P’o(t) = -—)\()Po(t)'
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We can calculate Py(?) first and then, by recursion, all P,(t). If the
state of the system represents the number of changes during (0, ¢),
then the initial state is Ey so that Py(0) = 1 and hence Py(f) = ¢ M.
However, the system need not start from state E, [see example (3.b)].
If at time zero the system is in E;, then we have

(3.3) P;(0) =1, P,0)=0 for n 1.
These initial conditions uniquely determine the solution {P,(t)} of
(3.2):  (In particular, Po(t) = P1(f) =...= P;_1(t) = 0.) Explicit

formulas for P,(f) have been derived independently by many authors
but are of no interest to us. It is easily verified that for arbitrarily
prescribed N, the system {P,(f)} has all required properties, except
that under certain conditions ZP,(f) < 1. This phenomenon will be
discussed in section 4.

Examples. (a) Radioactive transmutations. A radioactive atom,
say uranium, may by emission of particles or y-rays change to an atom
of a different kind. Each kind represents a possible state of the sys-
tem, and as the process continues, we get a succession of transitions
Ey — Ey — Ey —...— E,. According to accepted physical theories,
the probability of a transition E, — E,.; remains unchanged as long
as the atom is in state F,, and this hypothesis is expressed by our
starting supposition. The differential equations (3.2) therefore describe
the process (a fact well known to physicists). If E,, is the terminal
state from which no further transitions are possible, then \,, = 0 and
the system (3.2) terminates withn = m. (Forn > m we get automati-
cally P,(t) = 0.)

(b) The Yule process. Consider a population of members which can
(by splitting or otherwise) give birth to new members but cannot die.
Assume that during any short time interval of length & each member has
probability M + o(h) to create a new one; the constant A determines
the rate of increase of the population. If there is no interaction among
the membérs and at time ¢ the population size is n, then the probability
of an increase during (¢, t+4) is n\k + o(k). The probability P,(t)
that the population numbers exactly » elements therefore satisfies (3.2)
with A, = 2}, that is, o

(3.4) P'a(t) = —n\Pa(t) + (n — DAPa_y(0) (n > 1).

If < is the population size at time ¢ = 0, then the initial conditions (3.3)
apply. It is easily verified that for n > ¢ the solution is given by

(3.5) P(t) = (" N 1.) (1 — My
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and, of course, P,(t) = 0 for n < 1. This distribution is a special case
of the negative binomial distribution: using the definition VI(8.1) we
may rewrite (3.5) as Pu(l) = fln—71; 1, e™M). Tt follows [cf. example
IX(3.c)] that the population size at time t is the sum of ¢ independent
random variables each having the distribution obtained from (3.5) on
replacing ¢ by 1. These i variables represent the progenies of the ¢
original members of our population.

This type of process was first studied by Yule? in connection with
the mathematical theory of evolution. The population consists of the
species within a genus, and the creation of a new element is due to
mutations. The assumption that each species has the same probability
of throwing out a new species neglects the difference in species sizes.
Since we have also neglected the possibility that a species may die out,
formula (3.5) can be expected to give only a crude approximation.
Furry ¢ used the same model to deseribe a process connected with cosmic
rays, but again the approximation is rather crude. The differential
equations (3.4) apply strictly to a population of particles which can
split into exact replicas of themselves, provided, of course, that there
is no interaction among particles.

* 4. DIVERGENT BIRTH PROCESSES

The solution {P,(t)} of the infinite system of differential equations
(3.2) subject to initial conditions (3.3) can be calculated inductively,
starting from P(f) = ¢—Mt, The distribution {Pn(t)} is therefore
uniquely determined. From the familiar formulas for solving linear
differential equations it follows also that P,(t) > 0. The only question

7 (. Udny Yule, A mathematical theory of evolution, based on the econclusions
of Dr. J. €. Willis, T.R.S., Philosophical Transactions of the Royal Society, London,
Series B, vol. 213 (1924), pp. 21-87. Yule does not introduce the differential
equations (3.4) but derives P(t) by a limiting process similar to the one used in
chapter VI, section b, for the Poisson process. Much more general, and more
flexible, models of the same type were devised and applied to epidemics and popu-
lation growth in an unpretentious and highly interesting paper by Lieutenant
Colonel A. G. M'Kendrick, Applications of mathematics to medical problems,
Proceedings Edinburgh Mathematical Society, vol. 44 (1925), pp. 1-34 1t is very
unfortunate that this remarkable paper passed practieally unnoticed. In particu-
lar, it was unknown to the present author when he introduced various stochastic
models for population growth in Die Grundlagen der Velterraschen Theorie des
Kampfes ums Dasein in wahrseheinlichkeitsthearetischer Behandlung, Acta Bio-
theoretica, vol. 5 (1938), pp. 11-40.

# On Auctuation phenomena in the passage of high-energy electrons through lead,
Physical Reviews, vol. 52 (1937), p. 569.

* This section treats a special topic and may be omitted.
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%eft open is whether {P,(t)} is an honest probability distribution, that
is, whether or not ’

(4.1) ZP,(t) =1

for all t. We .shall see that this is not always so: if the coefficients A
increase sufficiently fast, then it may happen that !

(4.2) ZP,() < 1.

At first sight this possibility appears surprising and, perhaps, disturb-
ing, but it finds a ready explanation. The left side in (4.23 may be
interpreted as the probability that during time ¢ only a finite number
o.f cha:nges takes place. Accordingly, the difference between the two
sides in (4.2) accounts for the possibility of infinitely many changes
or a sort of explosion. For a better understanding of this phenomeiori
let us compare our probabilistic model of growth with the familiar
deterministic approach.

The. quantity A, in (3.2) could be called the average rate of growth
at a time when the population size is n. For example, in the special
case.(3.4) we have A, = n\, so that the average rate of, growth is pro-
portional to the actual population size. If growth is not subject to
chance fluctuations and has a rate of increase proportional to the in-

stantarl_egu§ population size, then x() varies in accordance with the
deterministic differential equation

dx(t)
dt

(4.3)

= Az(f).

It follows that at time ¢ the population size is
(4.4) z(t) = ieM,

where 2 = @(O) ‘is the initial population size. The connection between
(3.4) z.md (4.3) is not purely formal. It is readily seen that (4.4) actu-
311y g;)ves ;clhe expected value of the distribution (3.5), so that (4.3)
escribes the expected population size, whereas (3.4) tak '
chance fluctuations. = (9:4) fakkes aceount of
Let us now consider a deterministic growth process where the rate
of growth increases faster than the population size. To a rate of
growth proportional to z%(t) there corresponds the differential equation

d
" _ a2

(4.5)
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whose solution is

(4.6) z(t) = T

Note that () increases over all bounds as ¢ — 1/A. In other words,
the assumption that the rate of growth increases as the square of the
population size implies an infinite growth within a finite time interval.
Similarly, if in (3.4) the \,, increase too fast, there is a finite probability
that infinitely many changes take place in a finite time interval. A
precise answer about the conditions when such a divergent growth
occurs is given by the

Theorem. In order that (4.1) may hold for all t it is necessary and
sufficient that the sertes

1

(4.7 2 ~
diverge.

Proof. Letting
4.8) Si(t) = Po(t) +...+ Pi(?),
we get from (3.2)
4.9 S'x(t) = —MPr(?)
and hence for k > ¢

t
(4.10) 150 = [ P dr.
0
Since all terms in (4.8) are non-negative, the sequence Sy(f)—for
fixed —can only increase with k, and therefore the right side in (4.10)
decreases monotonically with k. Call its limit u(¢). Then for & > <

t
(4.11) VA f Py() dr 2> p(?)
0
and hence
4.12 fts<)d>(t><1+1+ +1)
(4.12) | Samdr 2 w0 S+ T

Because of (4.10) we have S,(f) < 1, so that the left side in (4.12) is
at most £. If the series (4.7) diverges, the second factor on the right
in (4.12) tends to infinity, and the inequality can hold only if (i) = 0
for all t. In this case the right side in (4.10) tends to zero as k — oo,

XVIL5] THE BIRTH AND DEATH PROCESS 407

and therefore S,(f) — 1, so that (4.1) holds. Conversely,? integrating
(4.8) and using (4.10) we see that the left side of (4.12) is less than
N T EMTTR L AL I the series (4.7) converges, this expres-
sion is bounded and hence it is impossible that S, () — 1 for all ¢.

5. THE BIRTH AND DEATH PROCESS

The pure birth process of section 3 provides a satisfactory description
of radioactive transmutations, but it cannot serve as a realistic model
for changes in the size of populations whose members can die (or drop
out). This suggests generalizing the model by permitting transitions
from the state E, not only to the next higher state £, ; but also to
the next lower state E,_;. (More general processes will be defined in
section 9.} Accordingly we start from the following

Postulates. The system changes only through transitions from states
to their next neighbors (from Eyn to Enyy or En_y if n > 1, but from E,
to Ey only). If al any time ¢ the system is in state E,, the probability
that during (t, t+h) the transition E, — E,, occurs equals A\,h + o(h)
and the probability of En — Bn_y (if n > 1) equals uoh + o(h). The
probability that during (t, t-+h) more than one change occurs is o(h).

It is easy to adapt the method of section 2 to derive differential
equations for the probabilities P,(t) of finding the system at time ¢ in
state E,. To calculate P,(t + h), note that at time ¢ + h the system
can be in state E, only if one of the following conditions is satisfied:
(1) At time ¢ the system is in E, and during (¢, t4+A) no change occurs;
(2) at time £ the system is in E,_; and a transition to E, occurs; (3) aig
time ¢ the system is in Ey 3 and a transition to E, occurs; (4) during
(t, t+h) two or more transitions occur. By assumption, the probability
of the last event is o(h). The first three contingencies are mutually ex-
clusive, so that their probabilities add. Therefore

(5-1) P'n(t+ h) = P'n(t){]- - Anh - ﬂnh} +
+ An—lhpn—l(t) + Mn+1th+1 (t) + O(h)

Transposing the term P,(f) and dividing the equation by A, we get on
the left the difference ratio of P,(f). Letting h — 0, we get

(52) P’n(t) == —O\n + ﬂn)Pn(t) "l‘ >\n—1Pn—1(t) + ,U'n+1Pn+1(t)-

9 By a regrettable oversight the following three lines were missing in the first
printing of the first edition and part of the preceding argument was repeated instead.
The error was corrected after a few months, (The present discussion is continued
in section 10.)



