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7
APPROXIMATE METHODS

The results obtained for normal distributions in the two previous
chapters were exact for the specified prior distribution. In
dealing with samples for distributions other than normal it is
often necessary to resort to approximations to the posterior
density even when the prior distribution is exact. In this chapter
we shall mainly be concerned with binomial, multinomial and
Poisson distributions, but begin by describing an approximate
method of wide applicability,

7.1. The method of maximum likelihood

Let x be any observation with likelihood function p(x|6)
depending on a single real parameter 6. The value of 6, denoted
by 8(x), or simply &, for which the likelihood for that observa-
tion is a maximum is called the maximum likelihood estimate of 6.
Notice that & is a function of the sample values only: it is an
example of what we have previously called a statistic (§5.5).
The definition generalizes to a likelihood depending on several
parameters p(x|6y, 6,, ..., 6,): the set (8,, 8,, ..., 8,) for which
the likelihood is a maximum form the set of maximum likeli-
hood estimates, J;, of §; (i = 1, 2, ..., 5). The estimate is parti-
cularly important in the special case where x = (X, X,, ..., X,,)
is a random sample of size » from a distribution with density
Sf(x:|6). Then N
p(x]0) = I1 fix|6) )

In this case the logarithm of the likelihood can be written as
a sum:

L(x|0) = Inp(x|6) = % Inf(x|6). @

Important properties of the log-likelihood, L(x|8), can be
deduced from the strong law of large numbers (theorem 3.6.3)
in the following way. In saying that x is a random sample we
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imply that the sample values have the same density f(x,|6) for
some 0 fixed, for all i. Denote this value of & by 6,. We refer to
it as the true value of 6. It is, of course, unknown. Then, for
each 0, the quantities, Inf(x;|0), are independent random vari-
ables with a common distribution, depending on 6, and, by the
strong law, their mean converges strongly to their common
expectation, By definition this expectation is

&l fxi] 0)) = f 10 f(x.] 6). £ 60)dx, ®

where the suffix has been added to the expectation sign to
indicate the true value, 6,, of 8. Hence the law says that with
probability one

lim {(rL(x|6)} = &ofln fx:| O)). @
Similarly, provided the derivatives and expectations exist,
lim {n~1orL(x|6)/00"} = &{&"In f(x:]6)/067}. ®)
n—>w0

Equation (4) may be expressed in words by saying that, for
large n, the log-likelihood behaves like a constant times n, where
the constant is the expectation in (3). Similar results apply in
the case of several parameters.

Theorem 1. If a random sample of size n is taken from f(x;|0)
then, provided the prior density, n(0), nowhere vanishes, the
posterior density of 0 is, for large n, approximately normal with
mean equal to the maximum likelihood estimate and variance, o3,

iven b
given by oot = —L(x|0)/o6% ©)
It is not possible to give a rigorous proof of this theorem at the
mathematical level of this book. The following ‘proof’ should
convince most readers of the reasonableness of the result.
The posterior density is proportional to

exp{L(x|6) +In7(6)},
and since we have seen that L(x|6) increases like #, it will ulti-
mately, as n — oo, dwarf In7(6) which does not change with n,
Hence the density is, apart from a constant, approximately
exp{L(x|0)} = exp{L(x|0)+3(0—0)*?L(x|H)/e6+ R},
t 82L(x]5)/60” denotes the second derivative with respect to 6 evaluated at 6,
9 LSII
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on expanding L(x|6) by Taylor’s theorem about 8, where R is
a remainder term. Since the likelihood, and hence the log-
likelihood, has a maximum at & the first derivative vanishes there.
Also the second derivative will be negative there and may there-
fore be written — o, 2. Furthermore, since it does not involve 6,
the first term may be incorporated into the omitted constant of
proportionality and we are left with

exp{—3(0-0)*c}+ R}, ()
From the discussions of the normal density in §2.5 it is clear
that the term exp{— (60— §)2/02} is negligible if |6 —6|> 30,,; so
that since o, 2 is, by (5), of order », this term is only appreciable

if @ differs from & by something of the order of n-%. In that case
the remainder term, R, which may be written

10— 0PFLx| 66"

for some 6, is of order % times # (by (5)). Hence it is of order
n~* and is negligible compared with the other term in (7).
Hence, inserting the constant of proportionality, the posterior
density is approximately

(2na,)texp{—4(6-0)/a3), ®)
which establishes the result. Notice that o2 is, under the assump-
tions made here, of order n-1,

Theorem 2. If a random sample of size n is taken from
f(x!'| 01’ 02’ eery 03)

then, provided the joint prior density, m(0,, 0,, ..., 0,) nowhere
vanishes, the joint posterior density is, for large n, approximately
multivariate normal with means equal to the maximum likelihood
estimates 8, and a dispersion matrix whose inverse has typical

Elemient - 62L(X| 013 02: sees 08)/801 80_1" (9)
This is the extension of theorem 1 to the case of several para-

meters. The proof proceeds as in that case. The important terms
in the Taylor series expansion of L(x|6,, 0,, ..., 6,) are

[ NS
D e

1(075 - 01) (03 - 6;1) 92L(X| 01, 929 ceey 9s)/301 807', (10)

Y
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and a comparison with the multivariate normal density (equa-
tion 3.5.17) establishes the result.

The matrix, whose typical element is given by (9), will be
called the information matrix. It is the inverse of the dispersion
matrix of the posterior density (compare the definition of
precision in §5.1). Similarly (6) is called the information.

General remarks

Although known to earlier writers, the method of maximum
likelihood has only become widely used through the work of
R. A. Fisher, who obtained its principal properties. The main
advantages of the method are that it produces a description
of the posterior distribution which, because it is normal, is
easy to handle, and which has a particularly simple mean and
variance. (We shall see below that these are easy to compute.)
Fisher used the method to provide a point estimate of 6. We
shall not have much to say in this book about the problem of
point estimation; by which is usually meant the problem of
finding a single statistic which is, in some sense, near to the true
value of a parameter (see §5.2); our reason for not doing so is
that posterior distributions cannot be adequately described by
one statistic.t But the problem is much discussed by some
statisticians and, in large samples, is adequately solved by the
maximum likelihood estimate, though other approximations are
available. There is, as we shall see below, a close relationship
between 2%®) and o2 above: so that § and its variance do
provide, because of the normality, an adequate description, in
large samples, of the posterior density.

In the definition of 4 the word ‘maximum’ is used in the sense
of “largest value’: that is, L(x|8) > L(x|0) for all 6. The esti-
mate is therefore not necessarily determined by equating the
first derivative to zero. This latter process will only yield the
local maxima (or minima). An example where this process is
inapplicable is provided by the uniform distribution discussed
below. (In the ‘proof” it has been assumed that the first deriva-
tive is zero at the maximum.)

t If we wished to use a single statistic we could take the mean of the posterior
distribution. But this would not be helpful without, in addition, at least the
variance.

g-2
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Notice that the method has little or nothing to recommend it
in small samples. There are two reasons for this. First, the
posterior distribution is not necessarily normal. Secondly, the
prior distribution is relevant in small samples because the infor-
mation provided by it may be comparable with the information
provided by the sample, and any method based on the likelihood
:alone may be misleading. We have mentioned the diminishing
importance of the prior distribution as the sample size increases
in Poqnexign with the normal distribution (§§5.1, 5.2) but the
point is quite general. Of course, if the prior knowledge is very
vague (as in theorem 5.2.1), even a small sample may contain
virtually all the information. Notice that, in the statement of
the theorems, it has been necessary to assume that the prior
density nowhere vanishes. If it did vanish near 6,, say, then no
amount of evidence would ever convince one that & was near o,
(cf. §5.2) and the posterior density would vanish near 0, even if
0 = 6,. (In the proof Inm(0) would be minus infinity, and
certainly not negligible.)

Example : normal distribution

We begin with situations already studied, in order to see how
the approximation compares with the exact result. In the case
of the.normal mean (§§5.1, 5.2) with known variance the likeli-
hood is given by equation 5.1.9. The log-likelihood is therefore

L(x|0) = C—3(x~0)* (n]o?),

vsfhere C is a constant. Differentiating and equating to zero
gives the result (¥—0)(n/o?) = 0, so that § = X. A second
differentiation gives

oo ® = —PL(x|0)/e6% = (n]o?),

so that the posterior density is approximately N(x, o*/n), which
agrees with theorem 5.2.1, and is exact (corollary to theorem
5.1.1) if the prior distribution of @ is uniform over the real line.

If the variance is also unknown (§5.4) then the logarithm of
the likelihood is, from equation 5.4.3 rearranged in the same
way as the posterior distribution was rearranged to obtain 5.4.4,

C—3nln6,— {vs® + n(% — 6,)%/26,.
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To obtain the maximum likelihood estimates we differentiate
partially with respect to 6; and 6, and equate to zero. The
results are

oL .

o, = ME=0)/0, = 0,

a0,

(1)

Ia% = '&ﬂ[az Gy {v.g2 +n(%— 01)2}1293 -0,

sothat 0, =% and 8, = vs’ln = Z(x;—X)*/n. (12)

The matrix whose elements are minus the second derivatives of
the log-likelihood at the maximum (the information matrix of

(9)) is easily seen to be =1 0
(S ) =
with inverse (02(4” ) 902 /n) . (14)
2

The posterior distribution of 6, is thus approximately N, 0,/n),
or, from (12), n#(6,—X)/s(v/n)t is approximately N(0, 1). This
is in agreement with the exact result (theorem 5.4.1) that
n¥(6,—%)/s has Student’s distribution, since this distribution
tends to normality as n — oo (§5.4), and v/n — 1. The distribu-
tion of 6, is approximately N(8,, 203/n). This agrees with the
exact result (theorem 5.4.2) that vs?/0, is x® with v degrees of
freedom, because the mean and variance of 6, are s* and 2s*/v
(equations 5.3.5 and 6) in large samples and the distribution of
6, tends to normality. This last result was proved in §5.3.
Finally we note that the covariance between 6, and 6, is zero,
which is in exact agreement with the result obtained in §5.4,

Example: binomial distribution

Consider a random sequence of » trials with constant proba-
bility 6 of success. If r of the trials result in a success the
likelihood is (cf. equation 5.5.9)

6r(1 -0y~ (15)
The derivative of the log-likelihood is therefore
rl0—(n—r)/(1-0),
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so that § = r/n, the proportion of successes in the n trials. The

second derivative is —FOE—(n—r)[(1 — O,

which gives o2 = r(n—r)/n3. These results agree with the exact
results of §7.2.

Example : exponential family

The method of maximum likelihood is easily applied to any
member of the exponential family. In the case of a single suf-
ficient statistic for a single parameter the density is (equation
5.5.5)

fx:]6) = Fx)GG)ensivo

and the log-likelihood is, apart from a constant,

ng(0)+1(x)$(6),

where g(6) = InG(6) and #(x) = f‘, u(x;). The posterior density
of @ is therefore approximately r:;mal with mean equal to the
s 78 O)+1(X)$(0) = 0 (16)
and variance equal to

{-ng"(O)—-1x)¢"(O)}*

evaluated at that root. Similar results apply in the case of
several sufficient statistics and parameters.

Solution of maximum likelihood equation
The equation for the maximum of the likelihood,

oL (x| 6)/26 = 0,

or, in the case of the exponential family, (16) above, may not be
solvable in terms of elementary functions. However, there is an
elegant numerical method of solving the equation, in the course
of which o2 is also obtained. This is Newton’s method of
solving an equation. A reference to fig. 7.1.1 will explain the
idea. On a graph of the derivative of the log-likelihood against
¢ a tangent to the graph is drawn at a first approximation, 6,
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to the value of §. The tangent intersects the f-axis at a second
approximation 6% which is typically nearer to 6 than 6 is, and,
in any case, may be used in place of 6® to repeat the process,
obtaining #®, and so on. The sequence {#®} usually converges
to 8. Algebraically the method may be expressed by expanding
in a Taylor series

aL(x|0)/06 = 0 = oL(x|6W)[26 + (B — 6©) 2L(x| 6©)/06% + ...

\
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Fig. 7.1.1. Newton’s method for solution of the maximum likelihood equation.

and retaining only the first two terms. The root of the equation
for 8 so obtained is 6@, that is

0@ — 60 = (3L (x|6W)/20}/{ — 2L(x| 6D)/06%}. 17

1t is not necessary to recalculate the second derivative at each
approximation: the method will still work with a single value
retained throughout. A final recalculation may be advisable
at the termination of the process when # has been obtained
to sufficient accuracy (that is when 6®—6¢- is negligible) in
order to obtain a better value for o2 = {— *L(x|6)/06%}.

The method is equally convenient when several parameters
are involved. The Taylor series expansion gives

oL(x|6)/06; = %](05-2)—35-‘)) {—PL(x|08V)/00,06;}, (18)
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where 80 = (89, 69, ..., 6Y), a set of linear equations for
6® —6M, The matrix which has to be inverted is the informa-
tion matrix at argument 6 instead of at argument 8. At the
final approximation, 6%, this has to be inverted in any case in
order to obtain the dispersion matrix. Thus the method is well
suited, not only to the evaluation of the means, but also to the
evaluation of the dispersion matrix, of the posterior distribu-
tion. Numerical methods for the inversion of matrices are given
in §8.4.

Example

As an illustration of Newton’s method consider random
samples from a -distribution, or equivalently a y*-distribution,
with both the index and the parameter unknown. The density
for a single observation is (equation 2.3.7)

0{"3 —;601 y0p~1
f(x:]6y, 6,) = @, —1)! eTX® (19)

where we have written 6, for A and 6, for n. The likelihood for
a random sample of size n is thus

gg’g n n n
{m} exp { - 015,1 x:+(0,— I)E,1 In x,-} . (20)
This shows that the distribution belongs to the exponential
family and that ¥ = Zx;/nand y = Xlnx,/n are jointly sufficient
statistics. Differentiation of the log-likelihood gives

—3%: n(=%+0,/60) = 0,
31 d @
2, n{1n91+)7—d—%ln(92—1)!} = 0.

The first of these equations is sufficiently simple to enable 8; to
be eliminated and a single equation,

Inf,— lnf+)7—;;—;—ln(92— ! =0, 22)
2

for 8, to be solved by Newton’s method. The derivative of the
left-hand side of (22) is #5* — (d2/d6%)In (8, — 1)! and tables of the
derivatives of the logarithm of the factorial function (see, for
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example, Davis (1933)) enable the calculations to be carried out.
It is necessary, however, to start with a first approximation.
Here this is most easily obtained by using the approximation¥
to dIn(f,—1)!/d6, of Inf,—1/28,, which, on insertion in (22),
gives a value of 6, equal to {2(InXx— )} to use as 65 in the
iteration. The approximation is remarkably good for all values
of 6, except those near zero, so that except in that case, a single
stage of Newton’s procedure should be sufficient. We leave the
reader to verify that the dispersion matrix is the matrix

d2
(d—agln(ﬁz—l)! o1 ) -
01_1 92/3%

with each element divided by nf%{6,d2In(8,—1)!/d6i—1).

These results might be of value if one wished to investigate
whether observed incidents were occurring in a Poisson process
(§2.3). It might be reasonable to suppose the intervals between
successive incidents to be independent (for example if the inci-
dents were failures of a component which was immediately
replaced by a new one when it failed, §4.4), with a distribution
of I'-type. The Poisson process is the case 0, = 1 (theorem 2.3.2),
so one could perform an approximate significance test of the
null hypothesis that 6, = 1 by remarking that the posterior
distribution of 6, is approximately normal with mean 8, and
variance {n(d%In(8,—1)!/d03—0;Y)} = o2, say. The approxi-
mation to d%In(6, — 1)!/d0} of (1/6;) + (1/263), obtained from the
above approximation to the first derivative by another differ-
entiation of Stirling’s formula, shows that o2 is approximately
203%/n. The result will therefore be significant at the 5 % level if
6, exceeds 1+ 20,. Notice that, in agreement with the general
result, o2 is of the order n-1,

Choice of parameter

In the method of maximum likelihood there is no distinction
between the estimation of ¢ and the estimation of a function
of 6, ¢(6). We have the obvious relation that ¢ = ¢(8). The

t This may be obtained by taking logarithms and differentiating both sides of
Stirling’s formula, equation 4.4.15.
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variance of ¢, { — 2L(x| $)/0$% 1, may also be related to the vari-

ance of @ in the following way. Write L for the log-likelihood in
order to simplify the notation. Then

oL _oLdd 4 PL_7L (fiﬁ_’)ﬁr%ff??
o o0 dp "¢ agr T @07 \dp) T o0 dg¥
so that, since aL/96 = 0 at §, the second equation gives
2
791 = (45) 201, (24)

where the derivative is evaluated at the maximum likelihood
value. These results may also be obtained from theorem 3.4.1
since the variances are small, being of order »~l. Thus in
changing from 6 to ¢ the means and variances change in the
usual approximate way. Since the method does not distinguish
between & and ¢, both parameters have an approximately
normal distribution. At first glance this appears incorrect since
if @ is normal then, in general, ¢ will not be normal. But it
must be remembered that these results are only limiting ones as
n — oo and both the distributions of & and ¢ can, and indeed do,
tend to normality. What will distinguish 6 from ¢ in this respect
will be the rapidity of approach to normality: ¢ may be normal
to an adequate approximation for smaller n than is the case
with 6. It often pays, therefore, to consider whether some trans-
form of @ is likely to be more nearly normal than 6 itself and,
if so, to work in terms of it. Of course, there is some transform
of 6 which is exactly normal since any (sufficiently respectable)
distribution can be transformed into any other (compare the
argument used in §3.5 for obtaining random samples from any
distribution), but this transform will involve the exact posterior
distribution and since the point of the approximation is to
provide a simple result this is not useful. What is useful is to take
a simple transformation which results in a more nearly normal
distribution than is obtained with the untransformed para-
meter. No general results seem available here, but an example
is provided by the variance 6, of a normal distribution just dis-
cussed. The distribution of 8,, as we saw in §5.3, has a longer
tail to the right (large 6,) than to the left (small 6,). This suggests
considering Inf, which might remove the effect of the long tail.
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Detailed calculations show that the posterior distribution of
In6, is more nearly normal than that of 6,, though even better
transformations are available. The approximate mean and vari-
ance of the distribution of In&, may be found either by maximum
likelihood directly, equation (9), or from the results for 6,,
equation (14), combined with equation (24). Other examples
will occur in later sections.

Distribution of the maximum likelihood estimate

We saw in §5.1 that when making inferences that involved
using the mean of a normal distribution there were two distinct
results that could be confused (statements (a) and () of that
section). A similar situation obtains here because of the
approximate normality of the posterior distribution. The two
statements are:

(a) the maximum likelihood estimate, f, is approximately
normally distributed about 8, with variance the inverse of

L(0y) = & — PL(x|6,)/06%); 25

(b) the parameter 6 is approximately normally distributed
about & with variance o2,

(6, is the true, unknown, fixed value of 6 as explained before,
equation (3).) Statement (b) is the result of theorem 1, state-
ment (a) can be proved in essentially the same way as that theorem
was proved. Statement (¢) is a result, in frequency proba-
bility, about a statistic, &: (b) is a result, in degrees of belief,
about a parameter 6. In practice (a) and (b) can be confused,
as explained in §5.1, without harm. Actually () is rarely used
in the form given, since 6, is unknown and yet occurs in the
variance (equation (25)). Consequently, (25) is usually replaced
by 1,(0). This still differs from o, 2 because of the expectationf
used in (25) but not in the expression for o2 It is interesting
to note that the use of the expectation makes no difference in
random samples of fixed size from an exponential family: there
L(0) = o;% (See equation (16) and the one immediately
following.)

+ Those who have read the relevant paragraph in §5.6 will notice that the use
of the expectation violates the likelihood principle, and is, on this score, unsatis-
factory.
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Exceptional cases

Tt is necessary to say a few words about the question of rigour
in the proofs of the theorems. A complete proof with all the
necessary details is only possible when certain assumptions are
made about the likelihood: for example, assumptions about the
existence and continuity of derivatives and their expectations.
These assumptions are not always satisfied and the theorem is
not always true; the most common difficulty arises when the
range of possible values of x; depends on 6. The difficulty is the
same as that encountered in discussing sufficiency in §5.5 and
the same example as was used there suffices to demonstrate the

point here. If fx:|6) = 61 (0 < x; < 0),

and is otherwise zero; then the likelihood is 6-" provided
6 > max x; = X, say, and is otherwise zero. Hence the

posteri%or density is approximately proportional to 6-" and
clearly this does not tend to normality as n - co. Indeed, the
maximum value is at @ = X, so that § = X, at the limit of the
range of values of 6 with non-zero probability. If the prior
distribution of @ is uniform over the positive half of the real
line, a simple evaluation of the constant shows that

70|x) = (n—1) X" (0> X,n>1),

with mean (n— 1) X/(n—2) and variance (n— 1) X?/(n—3)(n—2)?
ifn > 3. Asn—> oo the variance is approximately X?/n®, whereas
the theorem, if applicable here, would give a result that is of
order n%, not n~% The estimation of # is much more accurate
than in the cases covered by the theorem. The practical reason
for the great accuracy is essentially that any observation, x;,
immediately implies that & < x; has zero posterior probability ;
since, if @ < x;, x; has zero probability. This is a much stronger
result than can usually be obtained. The mathematical reason
is the discontinuity of the density and its differential with
respect to 0 at the upper extreme of the range of x. Difficulties
can also occur with estimates having smaller accuracy than sug-
gested by the theorem, when dealing with several parameters.
Examples of this phenomenon will not arise in this book.
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7.2. Random sequences of trials

In this section we consider the simple probability situation of
a random sequence of trials with constant probability, 6, of
success, and discuss the inferences about 8 that can be made.
If a random variable, x, has a density

n!
@Dy "

for0 < x < land g, b > —1, it is said to have a Beta-distribu-
tion with parameters a and b. We write it By(a, b), the suffix
distinguishing it from the binomial distribution B(n, p) with
index n and parameter p (§2.1).

Theorem 1. If, with a random sequence of n trials with constant
probability, 0, of success, the prior distribution of 0 is By(a, b),
then the posterior distribution of 0 is B(a+r, b+n—r) where r is
the number of successes.

The proof is straightforward:

m(6) oc 62(1 —6)°, from (1), )
the likelihood is  p(x|6) = 67(1—-6)",
so that (0| x) oc §otr(1 — G)btn-T, (3)

proving the result. (Here x denotes the results of the sequence
of trials. Since r is sufficient 7(f| x) may be written 7(6|r).)

Corollary 1. Under the conditions of the theorem the posterior
distribution of

F= (bl'iifii"l) (120) @)
is F[2(@a+r+1),2(b+n—-r+1)L
From (4) dF|df o (1-6)?
and also 0 = a'F/(b'+a'F),

where a’ = a+r+1, b’ = b+n—r+1. Substitution in (3), not
forgetting the derivative (theorem 3.5.1), gives

w(F|x) oc F*-1)(b' +a' F)*+¥
oc Fo-1)(2b' +2a' F)e+v,




