XCMODEL:
an aCADemic system


Giulio Casciola
and Serena Morigi
Department of Mathematics
University of Bologna




















Conference "ANALISI NUMERICA:
METODI E SOFTWARE MATEMATICO"
Ferrara 20/01/2000




What is XCMODEL?




a research and teaching laboratory to experiment and learn in a graphics-interactive way;

an ideal environment to develop, perfect and compare methods and algorithms in geometric modelling and graphic visualization.





What is
GEOMETRIC MODELLING?



A collection of methods for describing mathematically the object shape.

APPLICATIONS:

CAD/CAM/CAE; Computer Graphics; Robotics; Computer Vision; Entertainment; FEM; Artificial Intelligence; GIS; Animation/ Simulation, ...

FIELDS:

Computational geometry; Analytical geometry; Topology; Linear algebra ; Approximation theory; Numerical Analysis; Computer Science.

XCMODEL
is based on NURBS
History
1989:
Interests and activities on the geometric modelling field begins.
1991:
A preliminary version of XCCURV initially only for spline curves , then for NURBS is realized.
1993:
A preliminary version of XCSURF for NURBS is realized and then evolved for TRIMMED NURBS.
1996:
A robust, and efficient algorithm for the intersection of NURBS surfaces is devised; based on this, a first version of XCBOOL is then realized.
1996:
An optimal ray tracing algorithm for NURBS is devised; based on this, a first version of XCRAYT is then realized.
1998:
XCMODEL project beginning: we intend to realize an integrated system incorporating the other packages for modelling and rendering.
20/01/2000:
Release of the XCMODEL system, Version 1.0.
Scopes





The packages of XCMODEL
[xccurv] 2D modeller
[xcsurf] 3D modeller
[xcbool] solid modeller
[xcssi] surface intersection
[xcdbe] conversion tool for trimmed surfaces
[xctrim] visualization tool for trimmed surfaces
[xcrayt] scene descriptor and renderer
[xhrayt,hrayt] ray-tracer
[xframe,xmovie] visualization tool for images/animations

Technical Requirements
System Architecture
Documentation and Distribution
Education
Courses: Master Thesis:
Credits
Research






SOLID MODELLING WITH NURBS:
G.Casciola, B.Quaquarelli, Primitive solide, Operazioni Booleane e NURBS, Atti del convegno internazionale ICO GRAPHICS '90, Milano febbraio 1990, Mondadori.

SHAPE PRESERVING INTERPOLATION:
G.Casciola, Funzioni spline razionali di base, XIV Congresso UMI, Catania (1991).

VISUALIZATION:
G.Casciola, R.Rossi, Realizzazione di un algoritmo parallelo di ray tracing per ipercubo Intel iPSC/2: strategie adottate e valutazione, Atti del convegno internazionale ICO GRAPHICS '91, Milano marzo 1991, Mondadori.

G.Casciola, S.Morigi, Graphics in parallel computation for rendering 3D modelled scenes, Parallel Computing 21 (1995).

NURBS SURFACES INTERSECTION:
G.Casciola, S.De Santis, R.Quadalti, Algoritmi paralleli per il problema NURBS Surface/Surface Intersection, Dipartimento di Matematica Universitß di Bologna, dicembre 1992.

G.Casciola, S.Morigi, Il problema SSI nella modellazione solida con superfici NURBS, Atti dell'Accademia delle Scienze dell'Istituto di Bologna, (Febbraio 95)

REPARAMETRIZATION OF NURBS CURVES:
G.Casciola, S.Morigi, Riparametrizzazione di curve NURBS, XV Congresso UMI, Padova (1995).

G.Casciola, S.Morigi, Reparametrization of NURBS curves, International Journal Shape Modelling Vol. 2, No.2&3 (1996)

DYNAMIC NURBS:
G.Casciola, G.L.Rubini, Sulle Dynamic NURBS e la simulazione di processi dinamici, Rapporto Tecnico CNR-IAC, Roma 1998.


P-SPLINE CURVES AND SURFACES:
S.Morigi, Modellazione con curve e superfici P-spline (phD Thesis), Quaderni GNIM-CNR (1997)

G.Casciola, M.Lacchini, S.Morigi, Degree elevation for single-valued curves in polar coordinates, Department of Mathematics, n.13, Bologna, Italy (1996)

G.Casciola, S.Morigi, Modelling of curves and surfaces in polar and Cartesian coordinates, Department of Mathematics, n.12, Bologna, Italy (1996)

G.Casciola, S.Morigi, Circle as p-spline curve, Department of Mathematics, n.9, Bologna, Italy (1997).

G. Casciola, S. Morigi, Spline in polar and in Cartesian coordinates, Curves and Surfaces with applications in CAGD, A. LeMÚahutÚ, C. Rabut ed L.L. Schumaker (Eds.) (1997)

G.Casciola, S.Morigi, J.SÓnchez-Reyes, Degree elevation for p-BÚzier curves, Computer Aided Geometric Design, Vol.15 (1998).
This document was translated from LATEX by HEVEA.