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Surface reconstruction from large unorganized data sets is very challenging, especially if the data present
undesired holes. This is usually the case when the data come from laser scanner 3D acquisitions or if they
represent damaged objects to be restored. An attractive field of research focuses on situations in which these
holes are too geometrically and topologically complex to fill using triangulation algorithms.

In this work a local approach to surface reconstruction from point-clouds based on positive definite Radial
Basis Functions (RBF) is presented that progressively fills the holes by expanding the neighbouring informa-
tion. The method is based on the algorithm introduced in [7] which has been successfully tested for the smooth
multivariate interpolation of large scattered data sets. The local nature of the algorithm allows for real time
handling of large amounts of data, since the computation is limited to suitable small areas, thus avoiding the
critical efficiency problem involved in RBF multivariate interpolation. Several tests on simulated and real data
sets demonstrate the efficiency and the quality of the reconstructions obtained using the proposed algorithm.
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1 Introduction

The digitalization and reconstruction of 3D shapes has numerous applications in areas that
include manufacturing, virtual simulation, medicine, entertainment, consumer marketing
and archaeology. Methods to digitize and reconstruct the shapes of complex objects have
evolved rapidly in recent years. The speed and accuracy of digitizing technologies allows
us to take detailed measurements of the objects, but in order to capture the complete shape
of an object, many thousands of samples must be acquired. The resulting mass of data re-
quires algorithms that can efficiently and reliably generate computer models from these
samples.
The reconstruction of a 3D model is usually obtained from scattered data points sampled
from the surface of the physical 3D object. The acquisition of the data is realized through
3D scanning systems which are able to capture a dense and accurate sampling usually orga-
nized into range images, i.e. sets of distances from the sensor to the object being scanned.
Each range image needs to be filtered to remove artifacts and noise, and to fill the holes.
Using laser light scanners, in fact, gives rise to range images which can be noisy and af-
fected by artifacts, depending on their material and on the presence of partially reflecting
surfaces. Moreover, they can present simple or topologically complex holes. Most of them
can be naturally filled by the overlapping range images process, since the most fundamen-
tal cause of holes is occlusion - recesses too deep to be observed using a particular angle.
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However, holes can also be caused by low reflectance, constraints on scanner placement, or
simply missing views. This is frequently observed in the scanning of works of art, which
have a lot of self-occlusions and details. Works of art also impose significant restrictions on
the scanner placement. Moreover, the holes can correspond to missing or damaged parts of
the object when the scanning process is used, e.g. , in a computer aided restoration session.
Surface reconstruction from dense range data has been an active area of research for several
years. The strategies have proceeded along two basic directions: reconstruction from unor-
ganized points, and reconstruction that preserves the underlying structure of the acquired
data. These two strategies can be further subdivided, according to whether they operate by
reconstructing piecewise linear or smoother surfaces, or by reconstructing an implicit func-
tion. Examples of implicit surface reconstruction include the method of Hoppe [6], Bajaj
[1] and, more recently, Beatson et al. [2], which use RBF to fit a signed distance function
followed by an isosurface extraction.
Most of these approaches are not particularly concerned with the hole filling problem. In
fact, they lead to a natural filling of the holes, which works well for simple holes in nearly
flat surfaces, but not for convoluted geometric holes. In many applications it is important
to be able to reconstruct this missing information for post-processing, as well as for pre-
sentation in a more plausible way. One widely used approach to hole filling consists in
triangulating each connected component of the surface boundary, thereby filling the holes
with a patch. Recently, in the pioneering work [3], the authors specifically address situa-
tions in which the holes are too topologically complex to fill using triangulation algorithms,
and they propose solving the hole filling problem via isotropic diffusion of volumetric data
(i.e., iterative Gaussian convolution of some distance function to the known data). The ap-
proach proposed by these authors produces watertight digital models, but it does not seem
to give intuitive answers to the hole filling tests presented. We refer to this paper for an
excellent and detailed description of the nature of the holes in scanning statues, and for a
review of the literature on this subject.
In this work we consider a method which is designed for multivariate interpolation (ap-
proximation) of general data sets. It is based on an algorithm presented in an earlier paper
[7] which makes local use of radial basis function interpolants. This local approach allows
for real time handling of large amounts of data, since the computation is limited to suitable
small areas, thus avoiding the critical efficiency problem involved in RBF multivariate in-
terpolation (see e.g. [10] and references herein). Here we adapt the algorithm to the specific
application of surface reconstruction from 3D scanning range data by including an efficient
hole filling procedure, which progressively fills the holes by expanding the neighbouring
information. The locality of the proposed method allows us to fill in a selected way only
desiderated areas, without forcing a convex watertight model which can be obtained using
a unique interpolant function.
The paper is organized as follows. In Section 2 we discuss some theoretical results on inter-
polation with RBF, which will be assumptions to derive a fast and robust local reconstruc-
tion method given in Section 3. In Section 4, we present the new hole filling method and
we discuss some relating theoretical aspetcs. The corresponding algorithm, integrated in
the reconstruction procedure, is described in Section 5. Results follow in Section 6, where
the efficiency and the capabilities of our approach are demonstrated by considering real
data sets.

2 Interpolation with positive definite Radial Basis Functions

The interpolation problem can be stated as follows. Given a set of distinct nodes
� ������
	����
���������� ���

, and a set of function values � � ������	����
�� ��� � , the radial basis
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function interpolant !#" � ����$%� � on
�

is given by:

!'& ��( � �)* 
���+ *�, &.- �0/1� * -32 (.4 (1)

where the function , "65 7 4.89( $ � �
is called radial basis function, and the points

� *
are referred to as centers of the radial basis functions. The coefficients + � 4 + 2 4;:;:;:�4 + � are
determined by the interpolation conditions!'& �<�=( � �>�
4 ? �A@ 4;:�:�4CB (2)

which lead to the linear systemDFEHG IKJ �ML
(3)

with
D�EHG I � & , &.- �<��/ � * -32 (N( �NOP� G * O � . In order that the system (3) be solvable, the inter-

polation matrix
DQEHG I

must be non-singular. In this work, we require that the matrix
DREHG I

is positive definite. In this case, following, e.g., the definition in [12], the function , &.-TSP- (
is said to be positive definite in

� �U�
, which we abbreviate by , &.-HSK- (WVYX#Z � .

Well known
X#Z � radial basis functions are the inverse multiquadrics. However, in this

case, the interpolation matrix in (3) is non-sparse, and even modestly large data sets can
lead to very ill-conditioned linear systems. Furthermore, the evaluation of the interpolant
function (1) can become computationally expensive. In order to overcome these problems,
Wendland [14] and Whu [13] have proposed compactly supported radial basis functions,
which are positive definite on

� �Q�
according to their given order of smoothness. Although

they represent an effort in the direction of localization, they still suffer from the inherent in-
ability of the radial basis functions to interpolate very large data sets in a numerically stable
and accurate way. In fact, the reconstruction may be poor, since it strongly depends on the
radius of the support of these functions, which has to be scaled to adapt it to the different
densities of the scattered data set. Moreover, improving the smoothness of , improves the
reproduction quality but, at the same time, also blows up the condition of

D[EHG I
.

For the purpose of this work, we considered inverse multiquadrics and compactly supported
Wendland’s functions, thus in the following we investigate the critical aspects of stability
and accuracy for these classes of functions in greater details. For this aim, we first introduce
the following two measures which characterize the density of the data set

�
: the separation

distance \ E , which measures the closest pair of points in
�

, and the fill distance ] E , which
represents the radius of the largest inner empty sphere, given by:

\ E � @^ _a`�b�NOP�dc * O � - �<�e/1� * -32 4 ] E �gfChjikmlon _p`�b�NOP�qO � - �r/1�<� -32 :
If we denote by \ E & ��( and ] E & ��( the previous quantities relative to the set

�ts ���u	
, for

each
�vV �

, we get the following relation:\ E & ��(Ww _p`�b�NO * O � - �r/�� * -32 w ]x& ��(.:
The measures \ E & ��( and ] E & ��( are critical to the study of stability and accuracy of radial
basis function interpolants. Concerning the conditions for the numerical stability of system
(3), these can easily be derived from standard theory of numerical stability. In fact, the
sensitivity of the solution

J
with respect to variations in the data is given by the condition

number, which, in our case of symmetric positive definitive matrix, is given by the ratio y z
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between the biggest and the smallest matrix eigenvalue.
Thus the stability analysis consists in finding good bounds for { and | . In particular, it
is necessary to find lower bounds on | that are as tight as possible. This depends on the
separation distance of the set

�
.

On the other hand, if the data are values of a function
�

belonging to a function space}
, the accuracy of the reconstruction is evaluated by the error of the interpolant defined

by the solution of (3) with
� � � � & � � ( . When

}
is defined via , itself in a natural way

[11], its characteristics depend on the d-variate generalized Fourier transform ~ of , . If ~
decays at least algebraically at infinity, then

}
contains a certain Sobolev space, if ~ decays

exponentially, then
}

consists of �6� functions. In any case, the space
}

carries a specific
seminorm �>S'� � and the interpolation error can be bounded by� � & ��(�/ !'& ��( � w � � � ��S X & ��(.4 (4)

where the power function
X & ��( is the norm of the error functional on

}
, evaluated at

�
.

Note that
X

depends on
��4 � 4 , 4 and

}
, but not on

�
.

Theoretical and numerical results have revealed a strict connection between the error and
the sensitivity described by

X & ��( and | , respectively. Schaback proved in [11] that the
accuracy and the condition number of the interpolation matrix cannot both be kept small.
This effect is a sort of uncertainty principle, and it takes the formX 2 & ��(W� |�& ��(.4 (5)

where |x& ��( is the smallest eigenvalue of the matrix
D E��'� k�� G I .

Let us recall some well known results for a better comprehension of the choices we made in
the design of our RBF interpolation method. According to [11] the known upper and lower
bounds for

X & ��( and |�& ��( take the formsX & ��( 2 w�� &�] E & ��(N( and |�& ��(W��� &�\ E & ��(N(.4 respectively (6)

where
��43� " � ���A$ � �Q�

are continuous and decreasing functions for small arguments.
We refer to [11] for a list of known examples of functions

�
and
�

related to some special
RBF. Considering the uncertainty principle (5), we then obtain the two-sided bounds� &�\ E & ��(N(Ww |x& ��(Ww�X 2 & ��(Ww�� &�] E & ��(N(.: (7)

These bounds can be made more useful for practical applications if conditions can be given
under which ] E & ��( can be bounded from above, in terms of \ E & ��( . This is the case if we
deal with a set of centers

� ���
which is quasi-uniform, i.e. if there are ���97 and ]0�97 ,

such that@ : ] E & ��(Ww ]^ : \ E � �2 _p`�b �NOP�qc * O � - �<�e/1� * -32 � ]pS�� : (8)

In this case we call ] the density and � the uniformity of
�

with respect to
�

. For example,
a regular square grid has uniformity � �A@��'� ^ , while a triangular grid has � ��� ���o� [4].
As proved in [11], for quasi-uniform sets of centers with density ] and quasi-uniformity � ,
we have two-sided bounds� &�]�� (�w |x& ��(�w9X 2 & ��(Ww�� &�] ( (9)
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for all
��V �

with \j& ��(0� ]�� , and
� &�] (�w � &�] � ¡ ( for sufficiently small arguments.

For inverse multiquadrics (with constant ¢ ) these bounds decay exponentially, as we have� &�] ( �¤£ &�¥o¦P§.¨ª© ( , and
� &�] ( �«£ &�]<¦ � ¥o¦j¬ � ¨ª© ( [8]. For compactly supported radial basis

functions , V¤X#Z �U­ � 2N® of minimal degree, the results from [12] state that
� &�] ( �£ &�\ ¦ � ¦ 2N® ¦ �E (

, and
� &�] ( ��£ &�] ® � � ¨ 2 ( . Thus the condition number of the interpolation

matrix only grows polynomially, in terms of the separation distance, if the latter tends to
zero.
The previous analysis highlights that, when we interpolate on a set of centers, the best
possible situation for balancing the stability and the approximation behaviour is when the
uniformity of the set is maximized. This suggests a criterion for selecting suitable subsets
of
�

, on which a good compromise between stability and accuracy can be achieved. This
is, in fact, the main feature of the proposed RBF interpolation method, which performs
local interpolations on well selected quasi-uniform subsets of

�
, and obtains a global re-

construction by suitably weighting the local contributions.

3 The local approach to the reconstruction

In this section we describe a local method which is designed for the reconstruction of large
general data sets. The reconstruction method is based on a technique presented in an earlier
paper [7], that is here adapted to the construction of a digital surface model from range data
acquired from a physical object.
Our local approach to the reconstruction exploits the characteristics of flexibility and ac-
curacy which have made the radial basis functions a well established tool for multivariate
interpolation, overcoming the drawbacks presented by RBF global interpolation methods,
such as instability and unacceptable computational cost. The method is a variant of the well
known modified Shepard’s method proposed by Renka [9], and uses RBF interpolants as
nodal functions.
We consider the set

� ���M��� �Q�
, where, for convenience,

�
is assumed to be the convex

hull of
�

, and the corresponding set of function values � � ���'�
	���
�� G°¯°¯°¯ G � .
For each

� ® V � 4²± �³@ 4 S;S;S 4CB , we associate a set
� ® � ��� � V � 4N?�Vg´ ® 	�4 where´ ® is the set of indexes of

B¶µF/ @
suitable neighbours of

� ® , as well as
� ® itself, and we

determine an RBF nodal function · ® & ��( in the form:

· ® & ��( � )� lo¸º¹ + � , &.- �0/ �<� -32 (.4 (10)

by solving on
� ® the local interpolation problem:

· ® & �<��( � �>�
4�?HVY´ ® :
In order to achieve a real local approach, it is necessary to limit the influence of · ® & ��( by
means of a weight function which decreases with the inverse of the distance from

� ® . To
further control the locality of the reconstruction, Renka in [9], has suggested to associate
with each

� ® a parameter »>¼ ¹ , named radius of influence, that truncates the contribution
of the

±
-th nodal function outside of the circle with this radius. To choose the radius of

influence » ¼ ¹ , a certain number
B ¼ of points closed to

� ® is considered, then » ¼ ¹ is taken
as the distance from the farthest of these

B ¼ points.
B ¼1& �9B[µ½( is thus a parameter which

has to be small enough to guarantee the locality of the method.
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Therefore, we define, for each
� ® , the

±
-th nodal weight function as¾ ® & ��( � ¾ ® & ��(¿ ���
�� ¾ � & ��( 4 ¾ ® & ��( ��À &q»�¼ ¹ / » ® & ��(N( �»�¼ ¹ » ® & ��( Á�Â 4 (11)

where » ® & ��( � - �1/�� ® -32 and »�¼ ¹ is the radius of influence around the point
� ® . Thus

the value
� ® at

� ® influences only the evaluation of points within this radius. It can be
shown (see [5]) that the positive weights

¾ ® & ��( satisfy the cardinality relations
¾ ® & � � ( �Ã � ® 4N?C43± �A@ 4;:�:�:�4CB and constitute a partition of unity, namely

¿ �® 
�� ¾ ® & ��( �A@ .
Finally, for each evaluation point

�
, the reconstruction is obtained by a weighted combi-

nation of a few local contributions, namely the nodal functions whose radius of influence
contains

�
. More precisely,Ä & ��( � )® l �eÅ ¾ ® & ��( · ® & ��(.: (12)

where
B k is the set of indexes of all the nodes

� ® s.t. - �r/ � ® -32#ÆÇ»>¼ ¹ .
Note that the choice of the radial function , &.-WSP- (FV �#È�& � �F� ( leads to

Ä V �RÉ�& � (.4 where! � _p`Êb �NËx4ªÌ�	 . Moreover, for each
�ÍV �

, the global approximation error Î²& ��( is given
by:

ÎÏ& ��( � � � & ��(�/ Ä & ��( � w �)® 
�� ¾ ® & ��( ¥ ® & ��(.4 (13)

¥ ® & ��( being the interpolation error (4) of the RBF interpolant · ® & ��( on the set
� ® . The

choice of the sets
� ® is therefore crucial for the effectiveness of the reconstruction algo-

rithm and must be made with great care. In fact, as we are interested in the reconstruction
of dense range data, a naive choice for

� ® , given considering
� ® and its nearest neigh-

bours, would certainly lead to instability problems. According to the theoretical results of
the previous section, we have therefore made a better choice obtained by selecting suitable
neighbours of

� ® , such that the set
� ® consists of quasi equi-spread points, thus satisfying

the quasi-uniformity conditions (8). This strategy yields an interpolation matrix
D[E ¹ G I with

minimum condition number still maintaining a good approximation behaviour. Moreover,
since each point

� * V � is associated with a nodal function · * & ��( , the points discarded in
the choice of

� ® also give a contribution to the final reconstruction, thus avoiding any loss
of information.
In the case of noisy data, or data which are affected by considerable acquisition errors, a
local RBF least squares approximation is a better choice for the nodal function · ® & ��( . For
this aim, we select a subset Ð ® � � ® of

B[Ñ
points, including

� ® itself, which represents
the centers of the radial basis functions considered. Given Ð ® � ��� * V � ®mÒºÓ V�Ô ® 	 ,
we consider the matrix Õ E ¹ G I � & , &.- �<��/ � * -32 (N( � lo¸ ¹ G * l×Ö ¹ , and we solve the following
minimization problem_p`�bØ -3Õ E ¹ G IKJ / L ® -32 4 (14)

where
L ® is the vector of the function values

��� � 	�4N? VÙ´ ® , and the entries of
J

are the
coefficients of the RBF approximant:· ® & ��( � )* l×Ö ¹ + * , &.- �r/ � * - 2 (.4 (15)
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Note that the choice of the centers guarantees that the matrix Õ E ¹ G I is full rank, as its
columns are in the column space of

D E ¹ G I .
4 The hole filling method

The reconstruction method described in the previous section, for its local nature, preserves
the topology of the data sets, that is, roughly speaking, any hole in the data set produces
an hole in the reconstruction. This can be considered an advantage both when the original
shape presents some empty regions, (think for example to eye holes in a carnival mask),
and when it is necessary to preserve missing regions in an ancient sculpture. But, if we are
in the case of lacunary data that we want to restore, the local approach just described can
be easily expanded with an efficient method for filling these holes. This will be the subject
of the current section.
We now deal with the problem of the reconstruction of an RBF function on a data set & � 4 � (
which presents an empty, lacunary or damaged region. Let us call this region for simplicity
the hole. The reconstruction method exploits only the available information on the hole
surroundings that we denote by Õ � � , thus the processing is limited to the vicinities
of the hole. The simplest approach we can consider, is a global reconstruction on Õ using
relation (1); this would lead us to two main drawbacks. First, the gap in the data domain
would produce a fill distance parameter ]<Ú large with respect to \>Ú , thus losing the quasi
uniformity conditions. This would give rise to the well known problems regarding accuracy
and stability in the reconstruction. Moreover, the global method would fill the gap without
allowing any kind of control on the shape of the reconstructed region.
From the above considerations, we propose a multilayer technique which incrementally
expands the information on the hole boundary until the gap has been completely filled.
This approach reaches the following goals: it maintains the quasi-uniformity conditions for
each local interpolant, and enables a local control on the reconstruction by suitably setting
the local nodal function parameters.
The key idea of the multilayer method is the following. We build a uniform grid, with an
estimated grid data density Û�Ü , and we overlap it on the boundary data Õ , thus filling
completely the missing part in the data domain

�
. This set of grid points is denoted byÝ

. In order to incrementally extend the original data set & � 4 � ( for including the new set& Ý 4 � Ü ( , we proceed with a decomposition of Õ s Ý into a nested sequence of layers:Õ �MÞàß � Þ � � Þ 2 � S;S;S Þ �àá�â Õ s Ý 4
according to the hole width and to the grid data density. This layer structure, shown in
Fig.1, allows us to fill the hole by splitting up the reconstruction into

B Þ
steps. Each stepã , for ã �A@ 4;:;:;:�4CB Þ , consists of the following three phases.ä First we construct the set � áæå�çªá å�èæé by evaluating, using relation (12), an estimate of

the reconstruction
Ä & �x�=( for each point

�x�
in
ÞëêQì>Þàê ¦ � , that is:Ä & � � ( � )® l �íÅïî ¾ ® & � � ( · ® & � � (.4 � � V Þ ê ì>Þ ê ¦ � (16)

where
B k î is the set of indexes of the nodes

� ® V Þàê ¦ � whose radius of influence
contains the point

�x�
, and · ® & ��( are the corresponding nodal functions.ä In the second phase, the data set is enlarged by including the set & Þ ê ì>Þ ê ¦ � 4 � áæå�çªá å�èæé ( .ä Then, for each point
� ® V ÞëêQì>Þàê ¦ � , the new nodal function · ® & ��( is computed by

solving the corresponding local interpolation problem.
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L

L

L

L1

2

3

4

Fig. 1. Scheme of the layer structure; the white dots represent points in ð , while the black are points in ñ .

After the processing of all the layers the original data set has been completed, thus allowing
us for the evaluation of the reconstruction everywhere.
Determining the layer points represents a critical aspect to the success of the method. As
previous mentioned, the local nature of our method allows us to deal always with small
sets
� ® for each

� ® V Õ , characterized by a predefined separation distance \ E ¹ , and a fill
distance ] E ¹ of the same order of magnitudo. In order to maintain these good properties
also for the new points in the layers, the set

Ý
has been built with the following grid data

density: Û Ü " � _p`�bk×¹�l Ú ] E ¹ :
Then the subdivision of

Ý
into layers is obtained by requiring that each point

� ® V Ý is
considered into a given layer

ÞHê
if there is at least a point in

ÞHê ¦ � whose distance from
� ®

is less than ÛÏÜ . This choice, in fact, guarantees that the point is in the radius of influence
of some of its neighbours and that the error given by (13) is limited.
The multilayer procedure causes inevitably a propagation of the local interpolation error
into the hole region. This is due to the fact that the reconstructed values at each step are not
all belonging to the original data set, but they are computed using relation (16) and therefore
are affected by a reconstruction error. This error is a convex combination of the errors gen-
erated by the local interpolation functions · ® & ��( . A theoretical study of the propagation
of this error is, at first glance, very discouraging. In fact, the upper bound of the differ-
ence between the local reconstructions of exact and perturbed data, given in the following
proposition, shows that the propagation of the perturbation error can be very large.

Proposition 1 Let & � � 43� � (.4N� � V � ® 43� � V � be a set of interpolation points and & � � 4'ò� � (.4N� � V� ® 43�>�QV ò� the associated perturbed data set. Using relation (10), the error on the local
interpolation function

ò· ® & ��( , is bounded by:

� · ® & ��(u/ ò· ® & ��( � w - D ¦ �EHG I - � )� l>¸º¹ � , &.- �0/ �<� -32 ( ��- L ® / ò L ® - � (17)

Proof� · ® & ��(u/ ò· ® & ��( � w ¿ � l>¸
¹ � + �</ ò+ � ��� , &.- ��/ �<� -32 ( �w _pó>ô � lo¸ ¹ & + � / ò + � ( ¿ � l>¸ ¹ � , &.- �0/ � � - 2 ( � �� - c / òc - � ¿ � l>¸º¹ � , &.- ��/ �<� -32 ( �
The result follows replacing relation (3). õ
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This theoretical result suggests that, in order to limit the growth factor in relation (17)
( - D ¦ �EHG I - � ¿ � lo¸ ¹ � , &.- �9/ö� � - 2 ( � ), the selection of the radial basis functions and of the
dimension of the local interpolation problems is really crucial. In our work we are able to
maintain a limited growth factor by keeping the system dimension as small as possible, and
acting on the inverse multiquadrics constant and on the support of the compactly supported
RBF. Moreover this allows us to have a good local control on the shape reconstruction.
Our experimental results support our choices revealing a limited error in the reconstruction
of test data sets (see section 6) and obtaining a plausible reconstruction by expanding the
shape of the boundary data.
In the next section, an efficient hole filling procedure which implements the multilayers
method has been integrated in the basic reconstruction algorithm in order to manage any
number of holes.

5 The reconstruction algorithm with hole filling

The basic algorithm for the reconstruction of a surface
Ä & ��( , starting from a set & � 4 � ( ofB � � � � distinct points, consists of a preprocessing and two main phases. In the prepro-

cessing the data
�

are scaled in 5 7 4 @ï÷�ø 5 7 4 @ï÷ , and they are suitably organized and stored
in a grid data structure. Following [9], we used a uniform 2D grid of cells as efficient data
structure, which allowed us to design a fast procedure for performing a nearest-neighbour
search. Algorithm 1 describes the main steps of our approach.

Algorithm 1 (Surface Reconstruction)
INPUT: ù�úUûºü<ý
ûºþ�ÿ½û=þ�� û���û��
OUTPUT: �Wù���ý
û	��

��

COEFFICIENT PHASE: Compute the coefficients of the local interpolant � ¹ ù��æý
û������.û������ªûºþ
for each � ¹ 
UúUû

Construct a set � ¹ of þ ÿ indexes s.t. ú ¹ ����� ¹�� � ���"!#
Uú%$��&!�
Qþ('�)�*,+æù�� ¹ ý �.-0/21 ��354�67�
Compute the radius of influence 8 � 4 of � ¹ using þ � points;

Interpolation step:

Build the matrix 9 3 4;: <=
�> ?A@CB;DE@FB�ûG9 3 4H: <I�J�íù�KL� îCM � ! K�NNýO)�ûQP�
=� ¹
Solve the linear system: 9 3 4;: <&R��
S ¹

endfor

EVALUATION PHASE: Evaluate the reconstructed surface

for each evaluation point �I
T�� :

Construct a set þVU of indexes of all the nodes � ¹ s.t. KL� M � ¹ K NAW 8 � 4
Evaluate � ¹ ù���ý
ûYXZ�[
Uþ#U using (10)

Compute the weight \ ¹ ù���ý , X2��
QþVU , using (11) with ][�J^
Compute �Wù���ý_� ¿ ¹G` @ba \ ¹ ù���ýc� ¹ ù��>ý

endfor

In the first phase (COEFFICIENT PHASE) the most important step is the construction of
the sets

� ® � � , as already underlined in the previous section. For this aim, we look forB[µP/ @
points in the area around

� ® (
B ¥ ?�d ]�& � ® ( ), such that the separation distance of

� ® is
greater than a given constant \ : From an implementation point of view, this means selecting
the corresponding set of indexes

´ ® . In our implementation, \ is the same for each
� ® .

Then we compute the influence radii »�¼ ¹ of
� ® , chosen large enough to include

B ¼ points
of
�

. Finally, in order to compute the coefficients of the nodal functions · ® & ��( , we solve



10 G.Casciola, D.Lazzaro, L.B.Montefusco, S.Morigi / Fast surface reconstruction

the linear system
DQE ¹ G IKJ � L ® , where the elements of

L ® are the function values cor-
responding to the nodes in

� ® . The coefficient matrix
D E ¹ G I is symmetric and positive

definite. Thus the linear system is solved by applying a Cholesky factorization.
The second phase (EVALUATION PHASE) provides the values of the reconstructed func-
tion

Ä
on a set of points e� �¤� � 2 . For each evaluation point f the algorithm detects the

set
Bhg

of indexes of all the nodes
� ® , whose radii of influence »o¼ ¹ include f , and it com-

putes the local contributions (10) in f . Thus the reconstructed surface
Ä &Yf ( is evaluated by

weighting all the nodal functions according to (12). In order to obtain a reconstructed sur-
face using the least square criterion, a new input parameter

BÏÑ
is required, which indicates

the number of centers to consider for the computation of the local approximant · ® & ��( . In
this case we construct the set Ð ® � � ® given by

� ® and its
B[ÑW/ @

suitable neighbours.
This subset Ð ® can be chosen in several way as, for example, using the farthest star-spread
neighbours of i ® . We then compute the coefficients of the nodal function · ® & ��( by solving
the overdetermined linear system Õ E ¹ G I J �ML ® using a QR algorithm. Therefore, we follow
Algorithm 1, in which the interpolation step is replaced with:

Approximation step:

Construct the set j ¹ of þ#k3ùclÏþ�ÿ3ý indexes of points 
(m ¹
Build the matrix ðn354 : < 
=> ? @CB;D&@Co û.ðn354 : < �J�íù�KL� î M �"!0K N ýp)_
(� ¹ ûqP�
rj ¹
Solve the overdetermined linear system: ðA354 : < R��
S ¹

Note that, in the evaluation phase, the local approximant · ® & ��( is given by (15) instead of
(10).
Now, following Section 4, we extend the previous reconstruction algorithm (Algorithm 1)
by completing it with an efficient hole filling procedure (named Algorithm 2). This has
been designed to be able to manage topological complex holes and restore surface shapes,
preserving the geometry where it exists, while producing smooth transitions to plausible
geometry in unobserved areas.

Algorithm 2 (Surface Reconstruction with hole filling)
INPUT: ù�úUûºü<ý
ûºþ�ÿ½û=þ�� û���û���û=ð î û�)F�s�.û������ªû /Ft
OUTPUT: �Wù���ý
û	��

��

PRELIMINARY PHASE

for each marked hole )u���ïû��v���ªû / t
Overlap a grid of points ñ î on ð î ;
Label points in ñ î in þ(w î layers, s.t. ð î �Jw5xVyzw é y{w N yJ�����Eyzw @}|0~�� ñ î � ð î ;

endfor

COEFFICIENT PHASE: for the set ú
HOLE FILLING PHASE:

for each marked hole ð î )F�s�ïû����v�ªû /Ct
for each layer w_�Cûp���s�.û������Nû�þ(w î

EVALUATION PHASE: compute �.ü |0����|0�c�&� �ú���ú � ��w_�L�Gw_� èæé � ; ü7�rü � �3ü |0����|0�c�&� � ;
COEFFICIENT PHASE: compute � ¹ ù��æý for � ¹ 
r��w_�v�Gw_� èæé �

endfor

endfor

EVALUATION PHASE: for the set ��
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The critical aspect of Algorithm 1 and Algorithm 2 turns out to be the choice of the free pa-
rameters, namely

B µ
,
B ¼ and \ , which influences both the reconstruction quality and the

computational complexity. For the right values of these free parameters we have followed
the guidelines given in the theoretical analysis of Section 2.
Concerning the computational complexity of these algorithms, this is due both to the nu-
merical computation and to the data structure management. The former can be well quanti-
fied in the solution of

B
linear systems of dimension

B µ
(interpolation case) using Cholesky

factorization, i.e. a computational cost of
£ & B S ���ÿ� ( for the coefficient phase, and in the

evaluation of the reconstruction in a generic point f 4 whose cost is
£ & B²µ S_� ( , where

� � � Bhg � .
Regarding the spatial data structure, we can clearly single out a building cost in the prepro-
cessing phase of

£ & B ( , while the complexity of any search inside the fixed grid depends
on the number of cells visited, and therefore on the separation distance \ , on the density ]
and, of course, on the number of searched points

Baµ
for each linear system.

6 Numerical Results

The surface reconstruction algorithm described in this work has been implemented and
tested with several range images acquired with a PICZA PIX-30 touching probe scan-
ner (Dep. of Math., University of Bologna), and with a VIVID 900 laser scanner (ENEA,
Bologna). The scanning technologies considered acquire the shape of an object by gen-
erating regular range images. However, since they present outliers and systematic range
distorsions, they can be considered quasi-uniform data sets.

Fig. 2. Reconstructed angel data set using Algorithm 1.

Fig. 3. Reconstructed angel-h1 data set: (left) Algorithm 1; (right) Algorithm 2

To illustrate the behaviour of our algorithm, we have reported the results from two data sets.
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Fig. 4. Reconstructed angel-h2 data set: (left) Algorithm 1; (right) Algorithm 2

Fig. 5. Reconstructed angel-h3 data set: (left) using Algorithm 1; (right) using Algorithm 2

The first data set (angel) has been acquired using PICZA scanner and it does not present
any holes. This has been used both to test reconstruction Algorithm 1 and to verify the
quality of the hole filling procedure. For this purpose we have removed parts of the data in
different regions to create synthetic holes (angel-h1,angel-h2 and angel-h3) with different
topologies. All the regions considered are characterized by convoluted details, because it
is well known that, for simple and relatively flat holes, the reconstruction by radial basis
functions naturally works pretty well [2].
The second data set (minerva) presents two holes due to the scanner acquisition, one in the
neck and the other under the nose. Moreover, a vertical data zone has intentionally been
removed in order to simulate a restoration by hiding the join between the two parts of the
statue, while this join has been left on the lips and chin. This data set has been acquired by
a VIVID laser scanner and presents inherent noise due to the laser scanner acquisition.
The examples have been obtained using the inverse multiquadric radial basis functions, and
similar results have been produced by Wendland’s compact support radial basis functions.
For each local interpolant/approximant on

� ® the constant ¢ ® of the inverse multiquadric
functions and the support � ® of the Wendland’s basis functions, have been automatically
adapted to be proportional to the support of the local problems according to the formula:+��&� !0��S _pó>ôu� î l E ¹ -�i ® / i � -32 .
This yields a common reproducing quality for all the nodal functions · ® & ��( and therefore
a better quality for the global interpolant/approximant. In our examples, where the data are
scaled in 5 7 4 @ï÷�ø 5 7 4 @ï÷ , the constant +;�&� !,� has been chosen to be 7 : �Z� .
Fig.2 shows the reconstruction of the angel data set obtained with Algorithm 1, using the
interpolation criterion. Algorithm 1 has also been applied to the incomplete angel data sets,
highlighting the algorithm’s ability to preserve a hole in the data sets when desired. The
results of these reconstructions are displayed in Fig.3(left), Fig.4(left) and Fig.5(left). The
corresponding reconstruction, obtained using the hole filling procedure (Algorithm 2), are
given in Fig.3(right), Fig.4(right) and Fig.5(right). The quality of these reconstructions can
be appreciated by comparing them with the reconstructions of the complete data set (Fig.2)
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DATA SET No.Points þ�� þ�ÿ � 3 q �2k �b� �b�Z�F�
angel 13956 9 9 �;� �H' è � � � �H' è � 4.34 1.86 6.36

minerva 17050 9 9 �;� �H' è � � � �H' è � 6.19 1.89 8.28
Table 1
Computational results (in seconds) of Algorithm 1.

DATA SET No.Points þ � þ ÿ ��3 q � k �C��� � � � �Z�C�
angel-h1 13856 9 9 �;� �H' è � � � �G' è � 4.30 2.78 2.06 9.34

angel-h2 13583 9 9 �;� �H' è � � � �G' è � 4.19 11.08 2.56 18.11

angel-h3 13783 9 9 �;� �H' è � � � �G' è � 4.27 5.90 2.25 12.63

minerva (int) 17050 9 9 �;� �;' è � � � �G' è � 6.18 12.16 5.00 23.66

minerva (app) 17050 20 20 �;� �H' è � � � �G' è � 8.17 14.05 5.02 27.23
Table 2
Computational results (in seconds) of Algorithm 2.

and the corresponding reconstruction errors have always been below
�2 

.

Fig. 6. Reconstructed minerva data set: (left) Alg. 1; (center) Alg. 2 (int.); (right) Alg. 2 (app.)

Similarly, we applied Algorithm 1 to the minerva data set using the interpolation procedure
to preserve the inherent noise and the holes of the original data (Fig.6(left)). The surface
obtained using Algorithm 2 with interpolation is shown in Fig.6(center), while Fig.6(right)
is an example of removing the noise in the reconstruction using the approximation pro-
cedure. Obviously the amount of smoothing applied can easily be modified, considering
different choices for the number of centers (

B Ñ
) and the number of points used in the local

approximation (
B6µ

). Note that in Fig.6(right) we used
BpÑ �¢¡

and
B[µ � ^ 7 . The illustra-

tions show the high quality of the reconstruction.
Another key aspect of the proposed algorithms is their efficiency, due to the local nature of
the method. Tables 1 and 2 quantify the computational time of the main phases of Algo-
rithm 1 and 2, respectively, running on a PC Intel Pentium IV, 2.4GHz, with 1Gb of RAM.
In the £}¤}¥}¤ column we report the execution time of the algorithms, including the prepro-
cessing phase, while the £ Ñ , £ ©,¦ and £ § report the computational time of the coefficient,
the hole filling and the evaluation phases, respectively. The latter strongly depends on the
evaluation grid used; all the reconstructed surfaces we considered have been evaluated in a� 7×7 ør� 7×7 uniform grid.
In the tables we also report the free parameters

B ¼ ,
B[µ

, the separation distance \ and
the estimated density Û E of the data sets. Note that the latter corresponds to the acquisi-
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tion step of the scanner and its value represents the fill distance of the local interpolation
problems and it has been used to estimate the separation distance \ . This has allowed us to
satisfy the quasi-uniformity conditions (8), guaranteeing a compromise between stability
and quality. In fact, the uniformity parameter � of the sets

� ® turns out to be � w 7 : ¡2¨ for
the angel data set and � w 7 : �Z� for the minerva data set. Note that, in the minerva data set,
we could have considered a slightly bigger value for \ yielding a bigger density value, but
the algorithm would have been less efficient.
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