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xzemodel: an aCADemic system (*)

G. CASCIOLA(**) - S. MORIGI(***)

SUNTO - zcmodel & un sistema CAD realizzato e utilizzabile in ambito accademico. E’
composto da quattro pacchetti: un modellatore 2D, un modellatore 3D, un com-
positore di oggetti e un pacchetto per la resa realistica di scene; questi sottosistemi
sono in costante evoluzione. Il sistema riassume le nostre competenze ed esperienze
nella modellazione geometrica e sulle curve e superficic NURBS acquisite in oltre
dieci anni di ricerca. zcmodel e i suoi sottosistemi sono stati progettati per essere
un laboratorio di ricerca e di didattica, per sperimentare e imparare; € un ambi-
ente ideale per sviluppare, mettere a punto e confrontare metodi ed algoritmi della
modellazione geometrica e della grafica.

ABSTRACT - zcmodelis a CAD system realized and usable in an academic environment.
It integrates four packages: a 2D and a 3D modeller, an object composer and a
realistic scene renderer; these subsystems can be regarded as being in constant
evolution i.e. a continuous work in progress. The system summarises our knowledge
and experience in geometric modelling and NURBS curves and surfaces acquired
over ten years of research. zcmodel and its subsystems were designed to represent a
research and teaching laboratory to experiment and learn; it is an ideal environment
to develop, perfect and compare methods and algorithms in geometric modelling
and graphic visualization.

1. — Introduction

xzemodel is an interactive graphics system based on NURBS (Non Uniform
Rational B-Splines) with the power of a professional CAD (Computer Aided
Design) system, but realized and usable in an academic environment.

zemodel was designed to experiment and evaluate new and well-known meth-
ods for modelling and graphics visualization. The system has been developed and
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grown with the contribution of many graduates and undergraduates in math-
ematics and computer science. Thus the system has been adopted in many
university courses in geometric modelling and computer graphics as a labora-
tory to experiment and learn. One of the educational peculiarities of xemodel
making it different from a commercial system which uses a high level design
philosophy, is that it assumes the users are familiar with the mathematics of the
representations used in the modelling system and let them interact with every
single operator or parameter governing the shape of the object he/she has in
mind. As a consequence, we expect the user to be a researcher or a student.
xemodel integrates four packages: a 2D and a 3D free form modeller, an ob-
ject composer and a realistic scene renderer. They cover the main steps in the
modelling and rendering process. These subsystems can be regarded as being in
constant evolution, i.e. a continuous work in progress.

The following sections do not intend to be exhaustive in this description of
the wide variety of operators and algorithms for NURBS geometric modelling
and rendering. They focus on those new and well-known methods that are
implemented and experimented in xecmodel. Moreover, we will not go into detail
about the mathematics or algorithms; rather the reader will be referred to an
extensive bibliography for more detailed information.

Section 2 describes the requirements of the zecmodel system. In Section 3
some basic definitions about the modelling primitives involved in the system are
given; Section 4 considers some geometric tools that are fundamental for the
more complex modelling techniques described in Section 5. Section 6 deals with
the description of a virtual scene. Finally the rendering methods implemented
in zcmodel are presented in Section 7.

2. — zemodel requirements

The zcmodel functional structure, in Figure 1, shows how the four main
interactive graphic subsystems are integrated:

e zccurv: performs the modelling of 2D NURBS curves [21];
e zcsurf: performs the modelling of 3D NURBS curves and surfaces [22];
e zcbool: performs boolean operations on solids [23];

e zcrayt: performs the description and rendering of modelled scenes by a
ray-tracing algorithm [24].

The ellipses represent zemodel input/output data. The arrows indicate the data-
flow, while the rectangular blocks represent the main subsystems which are to-
tally independent of one another. The dashed arc separates the modelling part
(left) from the rendering part (right).
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At the present time, the zemodel system runs on UNIX platforms such as
Sun SPARC (Solaris), SGI (Irix), and Intel (Linux), but we expect problems to
be minimal under other environments. The system is a collection of modules
and libraries entirely implemented in C ANSI programming language.

Figure 2 shows the zcmodel system architecture. The graphical user interface
of the environment is realized using the ztools library [28], built on the top of
Xlib, the lowest level library of the XWindow System. The graphic icons in
the user interface make use of the XPM (XPixMap) library which allows us
to deal with pixmaps. Together with the ztools library, other three libraries
have been implemented in the system: the MATRIX library [25], for vector
and matrix computation, the descriptor library [26], for scene setting, and the
trim library [27] for the visualization of trimmed NURBS surfaces in real time.
The scene descriptor and rendering zcrayt package makes use of two modules:
zhrayt/hrayt for ray-tracing and zframe for visualizing the rendered scene. The
solid composer zcbool module makes use of two independent subsystems: zcssi,
for surface/surface intersection and zedbe, a conversion tool for trimmed surfaces.
Animation is managed by zmouvie tool [24] that allows for the visualization of
images and image sequences. The zcmodel software package is available [20] and
a freely distributed version (zcmodel ver. 1.0) as well as user’s guides, data,
models and images, can be downloaded from the web page:

http://www.dm.unibo.it/~ casciola/html/zecmodel. html

3. — xzcmodel modelling primitives

This section provides some basic definitions of the NURBS modelling prim-
itive on which zcmodel is based. The system assumes NURBS as the unique
canonical form for modelling.

To define rational B-splines we make use of homogeneous coordinates. If
P = (z,y, z) is a point in 3D Euclidean space, we denote a corresponding point
in 4D homogeneous space by P¥ = (wz,wy,wz,w), where w > 0. A B-spline
curve of order p in homogeneous space can be defined by the equation

p+L

e (t) = D P Niy(t)

where P}’ are the control points in homogeneous space,

T=(t, - tp,tpy1, s tpyLytprn1s s tapiL)
H,—/ N 7

p p
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is a nondecreasing sequence of real numbers called knots, and N; ,(t) are the
order p B-splines defined over the knot vector 7. The NURBS curve c(t) associ-
ated with ¢*(t) is obtained by the projection of c¢* (¢) into a 3D space, that is, by
dividing the first three coordinates of each point by its homogeneous coordinate,
thus obtaining the following definition:

+L
Stk wlPNpt A

c(t) = ’ P;R;

() ST N0 2: -

with
wiN; p(t)

Z”ﬂ w;Njp(t)

rational basis functions. Projections of NURBS surfaces of order (m,n) are
obtained analogously

Ri,p(t)

n+H m+K

r(u,0) = Y ZP N ()N ()

i=1 j=1

or, equivalently,

S Zm+K wijPiiNipn(u)Njm(v) ’i i (4, )
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r(u,v) =

wij Ny ()N m (v)
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where w;; > 0 are the weights, P;; are the control points,

Rinjm(u,v) =

U= (Ul,'",U,n,un+1,"',Un+H,Un+H+1,'",U2n+H),
N’ . ~ /
n n
V= (’Ul,‘",’Um,’Um+1,"‘,’Um+K,Um+K+1,"',’U2m+K)-
——— ~ —~ /
m m

are nondecreasing sequences of knots, and N; ,,(u), N;,(v) are the order n and
m B-splines, respectively, defined over the knot vectors U and V.

For a detailed discussion of the properties of NURBS curves and surfaces we
refer the reader to [66].

One of the main reasons for the choice of NURBS for zemodel is their wide
range of expression. A detail discussion of the widespread acceptance and pop-
ularity of NURBS in CAD/CAM and graphics systems is given in [62].

xzemodel has general characteristics, which is unusual for commercial CAD
systems. For example, zcmodel allows the user to set the curve (surface) order
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up to a value of ten. As a result the algorithms implemented are as general
as possible. zcmodel provides some predefined knot vectors such as ”equally
spaced”, "uniform” (the interior knots are equally spaced and the exteriors co-
incide), "periodic”, ”chord length” [35], but also ”manually”, where the user sets
any knot position and multiplicity. zemodel manages collapsed control points and
the relative degenerate parametrizations. The rational curves and surfaces are
computed via non-rational curves and then by projection; a spline is computed
by its B-splines representation, applying the well known recurrence relation pro-
vided by Cox-de Boor [11, 33].

The most useful NURBS paradigm is limited by the requirement that the
surfaces are defined over rectangular regions and this leads to topological rect-
angular patches. This limit of NURBS surfaces is overcome by the trimmed
NURBS, that is NURBS surfaces defined on arbitrary restricted parametric do-
mains. A trimmed NURBS surface can be defined by a NURBS surface and a
set of trimming curves in the parametric space of the surface. This set of pla-
nar, closed, non-intersecting curves can be conveniently represented as NURBS
curves, which are simply reduced to a closed polygonal when the degree is equal
to 1.

A trimmed NURBS surface is given by the restriction of r(u,v) to a subdo-
main D C U x V of the parametric space, named trimmed region. This domain
D is defined as the set of regions on U x V' whose boundaries are specified by
trimming curves. This allows us to identify the part of the surface that remains
when discarding all the holes defined by the trimming curves.

In zemodel the trimmed domain is represented by a 2D CSG tree equivalent
to the CSG tree presented in [36, 13], but differently represented. Each node
of the CSG tree structure is an embedded non-intersecting closed curve that
defines a limited region built starting from the 2D tree. Regions at the same
level are disjoint to each other. At alternate levels these regions are combined
using union and difference boolean operators. The trimmed region looks like a
set of islands and lakes, where the islands represent part of the trimmed region,
while the lakes are the holes in it. The algorithm used, forms a union of islands
(R;), and subtracts from each island all of its lakes (S;;) starting from a 2D tree:

I

b =@

Ch

1=

1

where [ is the number of islands and L; is the number of the lakes S;; children of
island i. The trimmed region that is obtained can be determined by classifying
a single point. Conventions can be assumed to consider alternate levels of the
tree to be island and lake regions, starting from an island/lake top level.
Another approach implemented in zecmodel for representing a trimmed do-
main D is based on the idea of decomposing U x V — D using a list of planar
subregions, whose union defines the entire complementary domain U x V — D,
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thus allowing the user to manage a set of surfaces, defined on an irregular do-
main, that does not contain any trimming curves. This approach is implemented
as a particular case of a 2D CSG with all first-level children starting from an
island top level.

The representation scheme used in zemodel for modelling a solid object is the
so-called B-rep (Boundary representation). In this scheme a ’primitive solid’ is
determined by its boundary, that consists of a single closed surface, in order to
separate the space into two parts, one of which will be enclosed. According to
convention, the boundary surface must be parametrized in such a way that the
surface normal vector indicates the area outside the solid. For example, spheres,
cylinders, etc. are included in this definition, as well as closed sculptured solids.
Primitive solids can also be combined by boolean operations, such as intersection,
union and difference, in order to create a complex solid.

The boundary of a solid object S is defined in terms of trimmed surfaces as
follows:

k
i=1

where D; is the trimmed region associated with the surface r;. A primitive solid
is then defined by ¥ = 1 and D; = U x V. The boundary of the solid S is a
closed surface.

As academic system zcmodel does not provide any control on the topology
of the built objects, thus it does not ensure that the solid created corresponds
to a phisically realizable object.

4. — Basic geometric tools

In this section we present four tools for curves which are fundamental in spline
curve and surface modelling in general and in zcmodel in particular; these are
knot-insertion, knot-removal, degree elevation and reparametrization. Note that
all these tools only affect curve or surface representations, while geometrically
the curves or surfaces remain unchanged.

4.1. — Knot-insertion. — This is the process of expressing a particular curve
c(t) in terms of a related spline representation that has one or more additional
knots. This process is also known as refinement, since new knots (s > 1) are
inserted into the original knot vector T to produce a proper refinement 7.
Then control points Q}’ exist such that

p+L+s

()= Y QINiy(t).

i=1
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In 1980, Boehm [8] and Cohen et al. [29] independently found two different
algorithms to compute the new control points Q. Efficient algorithms for im-
plementing both the special case of single knot insertion [8] and the general case
[10, 54] have been proposed. Performances are analyzed in [9, 31]. In zemodel
this tool is used in:

e evaluating points and derivatives on curves and surfaces;
¢ subdividing curves and surfaces (splitting);

e adding control points in order to increase flexibility in shape control (in-
teractive design and hierarchical design);

e decomposition of spline curves and surfaces into their constituent (Bezier)
polynomial pieces;

e converting a periodic knot vector into a uniform one;

e merging two or more knot vectors in order to obtain a set of curves which
are defined on a common knot vector (see section 5);

e obtaining polygon (polyhedral) approximations to curves (surfaces) by re-
fining knot vectors; this makes the control polygon (net) converge to the
curve (surface).

4.2. — Knot-remowval. — This is the reverse process of knot insertion. We can
say that, given a knot vector T, a knot # is removable if ¢*(¢) has a precise rep-
resentation in the B-spline basis N; ,(#) defined over the knot, vector T' without
t. A knot-removal algorithm must determine if a knot is removable and how
many times (s > 1), then compute the new control points Q} such that the new
curve representation is

p+L—s

()= > QN 0.

Details can be found in [75]. In zemodel knot-removal is used to obtain the most
compact representation of the curve/surface in:

e adjusting knot vector after control point insertion/displacement;

e joining spline curves together to form composite curves.
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4.3. — Degree elevation. — This tool allows us to represent a spline curve c%(t)
as a curve with an elevated degree s > p — 1:

s+1+L

()= > QPNisi(t).
i=1

Efficient but mathematically complicated methods to compute the new control
points QY are given by Prautzsch in [68], by Cohen et al. in [30, 32] and by
Prautzsch and Piper [69]. The algorithm provided by Prautzsch and Piper is
the most efficient for the general case, but Cohen et al. also give simple and
efficient algorithms for low-degrees, such as linear to quadratic and quadratic to
cubic. All these algorithms raise the degree by 1. In 1994 Piegl and Tiller [64]
presented another algorithm which is mathematically simpler, and competitive
with that given in [69], particularly in the case where the degree is to be raised
by more than 1. In zcmodel degree elevation is used to:

e make compatible section curves in the ”surface from curves” modelling
technique (see section 5.3);

e obtain ”bi-p-ic” parametric surfaces (where e.g. p=4 for bicubic) in sur-
faces from curves modelling techniques (see section 5.3), where the order
of the profile and trajectory curves may be required to be the same.

4.4. — Reparametrization. — Let c(t) be a parametric curve on ¢ € [a,b] and
assume that t = f(s) is a scalar-valued function on s € [e, d] satisfying:

e f1(s) > 0 for all s € [¢,d],
e a = f(c)and b= f(d),

the composition of ¢(t) and f(s), given by ¢(s) = ¢(f(s)) is called a reparametriza-
tion of ¢(t). c(s) is geometrically the same curve as c(t), but parametrically they
are different.

In zemodel we consider only reparametrization functions that keep the curve a
NURBS. In particular, for a rational linear reparametrization function in [2] and
[52], an explicit expression for the reparametrized NURBS curve is given.

The most common and useful parametrization is the arc length. Such a parametriza-
tion is unfortunately almost never possible for NURBS, unless for straight lines
[37]. Therefore xzcmodel offers several reparametrization techniques that best fit
the arc length parametrization [18].

A reparametrization can be required because of the effects that the change of
weights and control points have on the parametrization of the curve. Moreover,
any numerical method, or simply the rendering procedure, is affected by their
particular parametrization in terms of computational complexity and numerical
stability.
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5. — Modelling

xemodel offers a set of design tools for modelling curves, surfaces and solid
objects that can be classified into four classes: basic constructors, shape modi-
fiers, surfaces from curves and object composer. Basic constructors build models
interactively or automatically, together with the possibility of using, as initial
shapes, classical primitive objects, such as spheres, torus, boxes or more complex
objects like revolution surfaces. Interactive modelling tools for shape modifica-
tion aim to modify the shape of an existing object. In addition, we can define
operators on curves to create surfaces. Finally, boolean operators are available
for building complex objects.

Each of these tools can be used alone or in pipeline fashion in order to get
the final geometric model ready to be rendered.

5.1. — Basic constructors. — In this section we deal with the capabilities
of zemodel called ”shape approximation” and ”data fitting” to create 2D or 3D
shapes ab initio.

- Shape approximation -

B-splines provide a geometrically intuitive basis, one in which the shape of the
curve or surface has a predictable and comprehensible relationship to the coeffi-
cients (i.e. control points). This is a special approximation scheme named shape
approximation, which is extremely attractive for geometric design. According to
this approximation scheme, an individual control point only has a local effect,
and does not affect a design beyond the localized region of influence. In zemodel,
design tools are provided to give 2D points for a control polygon (for curves) and
3D points for a control net (for surfaces) interactively and a set of parameters to
define the curve or surface shape approximation of the control polygon or net.

- Data fitting -

In this paragraph we deal with fitting, i.e. the construction of NURBS curves
and surfaces which fit a rather arbitrary set of geometric data, such as points
and derivative vectors. We distinguish two types of fitting, interpolation and
approximation by the least square technique. There are several mathematical
methods for interpolating or approximating a single-valued function from a given
set of values, but their application to curve fitting sometimes results in a curve
that is very different from what the designer intended. Input to a fitting problem
consists of geometric data, such as points and derivatives. Output is a NURBS
curve or surface, i.e. control points, knots and weights. Furthermore, either the
order p (or (m,n) for surfaces) must be the input or the algorithm must select
an appropriate order. Very little has been published on setting the weights in
the fitting process. Most often, all the weights are simply set to 1. Finally, there
are many methods for choosing the knots, most of them heuristic.

The fitting algorithms can be global or local. With a global algorithm, a system
of equations is set up and resolved. Since the given data consists only of points
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and derivatives, and the control points are the only unknowns (order, knots and
weights have been preselected or precomputed), the system is linear and hence
easy to solve. Local algorithms are more geometric in nature, constructing the
curve or surface segment-wise, using only local data at each step. These algo-
rithms are usually computationally less expensive than global methods and can
deal with local data anomalies better; however, achieving desired levels of global
continuity is not a standard matter and local methods often result in multiple
internal knots. In what follows we present the global and local methods for curve
and surface interpolation and approximation implemented in zemodel.

e Global curve interpolation to point and derivative data

Let Q!, i=1,...,nand | = 0,...,l; be the interpolation points and
derivative vectors; we want to interpolate these data with a p-th order
NURBS curve. Note that if I; = 0 Vi, then we have a Lagrange in-
terpolation, otherwise we have an Hermite interpolation. If we assign a
parameter value Z;, to each Q?, select an appropriate knot vector 7' and
select a positive weight vector W, we can set up the (p+ L) x (p + L)
system of linear equations

p+L
Y PR, ,(t)=Q, i=1,...,n 1=0,....
i=1

with L = )", (l; + 1) — p. The control points P; are the unknowns. The
problem of choosing the ¢;, T and W remains, and their choice affects
the shape and parametrization of the curve. xzemodel provides four meth-
ods of choosing the #;: chord length, uniform, centripetal and exponential
[51, 55]. The knot vector T' is computed in a heuristic way, so that the
Schoenberg-Whitney and Karlin-Ziegler conditions are satisfied in order
to have a unique solution for the interpolation problem [58]. The positive
weight vector W characterizes a rational interpolation from a non-rational
by setting manually or equal weights respectively. In the case of Hermite
interpolation, derivative vectors have to be specified as input data. For the
more common case of first derivative vectors, zemodel provides the Akima
technique [1] for an automatic derivative computation. In the cubic case
there is the possibility of interpolating the given points with a periodic
curve or with a rational C' curve. In the latter case the NURBS weights
can be used as tension parameters [44].

e Global surface interpolation to point data
Given a set of (n+ H) x (m + K) data points Qi k=1,...,n+ H and
I =1,...,m+ K, we want to construct a non rational (m,n)-order 3D
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spline surface interpolating these points, i.e.

n+H m+K

(1) D> PN (W) Ny (1) = Quu-

i=1 j=1

In zemodel this is achieved by setting r (@, 7;) = Q}j, with all weights
equal. Again, the first thing to do is to compute reasonable values for the
(uk,v;) and the knot vectors U and V. A common way is to use one of the
previous methods for curves to compute parameters ﬂll, cee ,ﬂil +H for each
l, and then to obtain each w;, by averaging across all Efc forl=1,... m+K
[62]. Using the parameter points computed, we get the U and V' vectors
in exactly the same way as with curves. Clearly the equations (1) repre-
sent a linear system for the unknowns P;;. However, since the surface is
tensor product, the P;; can be obtained more simply and efficiently as a
sequence of curve interpolations. At the moment, xzemodel provides only
bicubic spline surface interpolation.

Local curve interpolation to point and derivative data

Let Q, i=1,...,n and [ = 0,1, be the interpolation points and first
derivative vectors given. By local curve interpolation we mean a method
which constructs n polynomials or rational curve segments c;(t), i =
0,...,n — 1, such that QY and Q?,, are the end points of ¢;(¢). Neigh-
boring segments are joined with some prescribed level of continuity, and
the construction proceeds segment-wise. zcmodel provides, at the moment,
only a local method, which interpolates point and first derivative data with
a rational globally C'' (cubic over quadratic). The NURBS weights play
the role of tension parameters and for w; — oo Vi, the curve converges
to the polygonal defined by the interpolation points. It is a NURBS adap-
tation of an algorithm by Gregory and Sarfraz [44].

Weighted and constrained least square curve fitting

Let Q;, i = 1,...,n, be the points to be approximated. If we assign
a parameter value %;, to each Q;, choose a curve order p, an appropriate
knot vector T', and select a positive NURBS weight vector W, we can set
up the n x (p + L) overdetermined system of linear equations

p+L

Z P,RW(L) = Q, 1= ]., ey
i=1

Most often, all these weights are simply set to 1. Indeed, for approximation,
there is little reason to do otherwise.
Optionally the first and last given points can be constrained (precisely
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interpolated) or the curve can be constrained to be closed and periodic.
We also allow a positive weight to be assigned to each unconstrained item.
Increasing a weight increases the tightness of the approximation to that
item, whereas decreasing the weight looses the approximation to that item.
Notice that these weights have nothing to do with weights in the NURBS
sense. zcmodel also provides a method to approximate the weighted and
constrained data in the least-squares sense.

5.2. — Shape modifiers. — The purpose of some methods implemented in
xemodel is to provide tools which allow a user to interactively make local mod-
ification to an existing NURBS curve or surface. A NURBS curve or surface is
defined by its control points, weights, knots and orders; modifying one or more
of these parameters, can affect and change the shape of the curve or surface [66].
Since zcmodel is an educational system and assumes the user are experiment-
ing and learning, it allows the user to modify all these parameters interactively.
Generally CAD systems on the market do not allow the user to modify such
parameters; they apply many predefined shape operators to the curve or sur-
face. Following [60, 61], zcmodel implements some of these operators, such as
constraining a curve point to pass over a given point by one control point repo-
sitioning, by one weight modifications or by two weight modification, warping,
flattening, etc. The result of applying a transformation to the whole spline
curve or surface, gives rise to a spline defined by the transformed control points
together with the original knot vector and curve (surface) order. Formally

p+L
ch(t) =) APPN;, (1)

i=1

is the result of applying the transformation matrix A to the curve c*(¢). In
the case where A is an affine transformation, this strategy produces exactly the
same curve (surface) which would have been produced if A had been applied to
each point on the curve (surface).

In 1988 Forsey and Bartels [39] proposed the Hierarchical Spline Surfaces
(HSS) enabling a surface to be refined and detail added, using a hierarchy, whose
levels correspond to the different levels of refinement of the surface patches. This
proposal enables us to restrict the influence of refinement to the relevant part
of the surface. In zemodel we implemented the HSS idea by using the trimmed
NURBS surfaces power and precisely defining a ”rectangular trimmed NURBS
surfaces hierarchy” [19].

5.3. — Surface from curves. — As interactive techniques for the sculptur-
ing of surface shapes on a two dimensional display involve obvious difficulties,
additional tools are available for the designer to model the desired surface using
operators on curves. The most frequently used techniques, such as skinning,
sweeping, and swinging, are adopted in zcmodel.
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NURBS skinning is a special surface interpolation technique by which an
ordered set of NURBS curves (called section curves) is interpolated to form
a NURBS surface. The section curves have to be made compatible, i.e. same
degree and knot vector, by means of the basic geometric tools described in section
4. If this is the case they will also have the same number of control points, and
they can be defined as follows:

n+H
¢f(w) = Y QiNia(w), j=1,...,m+K.
i=1
For each index i, their control vertices Qj%, j =1,...,m + K, in v direction

are interpolated using global curve interpolation technique in homogeneous space
(see section 5.1) obtaining the following curves

m+K
()= > PYEN;m(v), i=1,...,n+H,
j=1

that pass through Q;} at certain u; values.
The control polygons of the interpolation curves together form a control mesh
that defines a skinned surface:

n+H m+K

r(u,0)" = Y Y PENin(u)Njm(v).

i=1 j=1

The above skinning algorithm is a fairly straightforward generalization to ratio-
nal curves of the skinning algorithm for polynomial B-spline curves described in
[78, 79], which has the desirable property that the created surface is as smooth
as the section curves. Now, as for the rational case, the algorithm works in
the homogeneous space, even if, for example, a rational curve is C' in 3D, its
associated curve in 4D may be only C?, that is, the algorithm can produce a
C° surface in 4D whose associated surface in 3D will exhibit discontinuities.
This smoothness problem is addressed in [47] and [62]. The positioning of the
section curves in the space is another critical problem discussed in [79]: unevenly
positioned section curves can lead to unsatisfactory surface shapes.

NURBS sweeping technique is a special case of skinning that uses a constant
section curve and sweeps it along another curve (called spine or trajectory curve)
in order to create a NURBS surface. The positioning points for sweeping can
be chosen as the spine knot points ¢(u;),i = 1,...,m + K. Automatically the
system will place the section curves in the 3D space in such a way that the
positioning points are matched and each 2D plane on which each section curve
lies is aligned to the normal of the spine at that point. Then the section curves
can be arbitrarily rotated on their planes until the desired position is obtained.
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The swept surface will also interpolate the spine curve whenever the reference
point with which the section curve is matched to the spine knot points lies on
the section curve itself.

A revolution surface is generated using a NURBS curve which lies in the
plane. A full revolution surface is obtained by revolving this curve 27 around
the z axis. The resulting surface has the form

9 m+K

I‘(U,’U) = Z Z Pini74(U)Rj7m(’l)).

i=1 j=1

NURBS swinging is a generalization of the revolution technique, where the
trajectory curve is not necessarily circular. Given a profile curve P(u) in the

x, z plane
p+L

P(u) = Z PiR;p(u)

with P; = (P,,,0, P.,)T, and a trajectory curve T(v) in the x,y plane

q+L

T(v) = Z TjRj,q(v)

with T; = (ij,Tyj,O)T, swinging the profile around the z axis along the tra-
jectory curve yields the surface:

r(u,v) = [sPy(u)T;(v), sPy (w)Ty(v), P.(u)]
with control points and weights:
Qij = [P, Ty, 8Py, Ty, , P.,]"
wi; = w; Wy,
where s is an arbitrary scaling factor.

5.4. — Object composer. — Solid constructions can be accomplished by
combining, using a set of boolean operations, two or more solids; this process
is known as the set operation algorithm. Consider, for example, the two solids
A and B, respectively defined by their boundary surfaces. The boundaries of
the solids A|JB, A( B, A — B are determined starting from bA and bB, and
trimming away the portion of the patches that does not belong to the resulting
solid. The boundary of the resulting solid is given by the equations known as
the boundary formula [70]:

b(AUB) = (bAeB) J(bB N cA)

b(ANB) = (bANiB) J(bBiA)
b(A — B) = (bA(eB) J(bBNiA)
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where ¢ X and cX represent, respectively, the interior and the complement of the
solid X.

In [13] and [14], a set operation algorithm is given, that operates on solids
modelled with trimmed patches. The proposal given in [14] is considered and
adapted for NURBS surfaces in [15] and implemented in the zemodel system.

The basic idea in [14] consists in avoiding the intersections between trimmed
patches by considering the intersections between the patches over the whole
domain. In this way, we can then determine the resulting trimmed regions (2D
CSG tree) from the intersection between the trimmed regions of the solids and
the trimmed regions obtained by the patch/patch intersection operations.

A detailed description of the set operation algorithm implemented in the sys-
tem is technically complex. In the following, we will give a brief description of
the basic steps involved in this process: the untrimmed surface/surface intersec-
tion (SSI), the 2D and 3D Point Membership Classification (PMC), and the 2D
curve/curve intersection (CCI).

- SSI -

The SSI procedure implemented in zcmodel is a modified version of the proposal
given in [3]; details can be found in [17]. The method exploits the advantages
offered by the two most frequently used SSI approaches, curve following and
subdivision, in order to get a good balance between robustness and efficiency.

The curve following method begins by finding some points of intersection.
Then, the intersection curve is followed using a numerical method [3, 4]. The
subdivision method divides the problem into smaller problems by approximating
the patch into simpler linear or quadratic sub-patches [48, 14]. The patches
are intersected, resulting in curves that are then refined by another numerical
method. The proposed modified algorithm roughly proceeds through the four
main steps that follow:

e Adaptive mesh generation; approximate adaptively each of the surfaces by
a grid of isoparametric curves, approximated by piecewise linear curves
within a given tolerance. From this grid we easily obtain a surface trian-
gulation;

o Initial intersection point generation; compute the intersections between the
grid segments of a surface and the triangles of the other surface, in order
to obtain at least one starting point for each intersection curve;

e Following an intersection curve; starting from an initial point on the in-
tersection curve, move along the curve by steps. This is done by first
finding an estimate for the next point on the intersection curve, and then
evaluating an exact intersection within a given tolerance;

e Sorting; finally, link together the curve intersection segments found in the
preceding step in order to obtain close intersection curves.
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- 2D and 3D PMC -

PMC is a function that takes, as its input, a point P and a closed set S, and
returns one of three possible outcomes: P is inside S, P is on the boundary of
S, or P is outside S. The set operation algorithm makes extensive use of PMC
in both two and three dimensions. During the construction of the 2D CSG tree
resulting from a boolean operation, a single 3D point is classified with respect
to the opposing solid. The result will be used for further 2D classifications in
order to build a collection of half-spaces which, ultimately, become the leaves of
the 2D CSG tree [13, 14].

A common concept is used for both 2D and 3D classification: a ray is ex-
tended from the point to be classified, and the number of intersections of the ray
with the boundary of the set determines the membership status of the point.

An even number of intersections means that the point is outside the set,
while an odd number implies that the point is inside.

While the concept is the same, its implementation is very different for two or
three dimensions. In the 2D case, the ray is intersected with polygons or curved
boundaries. In the 3D case, the boundary consists of trimmed patches, and a
ray/patch method is required [57].

- CCI -
This problem can either be tackled geometrically, that is, using subdivision tech-
niques for the curves, thus exploiting the convex-hull property of the NURBS
curves [50, 72], or numerically. In zemodel the geometric approach is imple-
mented.

6. — Scene description

Once the geometric models of the objects have been created, the modelling
of a realistic scene is based on positioning, orientating the objects in the scene,
characterizing their materials, and defining the light sources illuminating them.
This can be realized by applying an illumination model and some textures.

An illumination model is designed to determine the intensity of light reflected
by an observer’s eye at each point (pixel) in an image. In a global illumina-
tion model the intensity of the light reflected from a point to the observer is
determined by the light that reaches a point by reflection from, or transmission
through, other objects in the scene, as well as the light incident from any light
sources.

The illumination model implemented in the system is based on the global illumi-
nation model proposed by Whitted [77]. This model derives from the techniques
introduced previously by Phong [12] and Blinn [7].

The two traditional methods of texturing implemented in xzemodel are texture
maps and procedural textures. By a texture mapping, an image is mapped onto
an object. This map is realized by positioning the object to be mapped on
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the image space and applying an orthogonal projection [7, 38]. A procedural
texture is an analytical function defined in 3D space, that is, a function that
assigns some visual properties to every point in the 3D texture space. The
result of the application of a procedural texture on an object is given by placing
the object in the texture space.

7. — Rendering

The rendering of NURBS surfaces as well as curves is a very important task
in an interactive graphics system, such as zcmodel. We distinguish between low
and high level rendering quality.

7.1. — Low level or real time rendering. — A low level rendering quality algo-

rithm uses a piecewise planar approximation of the surface in order to produce
reasonable images in a reasonable time. zcmodel provides two strategies: a uni-
form approximation and an adaptive approximation within a given tolerance.
The adaptive approximation adopted by the system is not the well known recur-
sive procedure that subdivides the surface until it is ”flat enough”. In fact this
procedure is very time and space consuming. Instead we have implemented the
adaptive mesh generation proposed in [3] as the initial step for an SSI method.
This consists in a surface approximation using an adaptive grid of isoparametric
curves within a given tolerance.
If the surface is trimmed, once the adaptive mesh for the whole surface has
been computed, we need to merge the trimming curves and the mesh to yield
closed domain polygons and then triangulate them. The triangulation algorithm
implemented in zemodel was inspired by [63] and [67]. The latter proposal is
not parametrization dependent and proceeds with different tolerances for the
trimming curves and the surface. Our implementation differs in the adaptive
approximation and in the domain polygon triangulation; in this latter case we
adopted a simple but faster heuristic approach than a Delaunay triangulation.
Once a suitable, planar approximation for the surface is obtained, xemodel pro-
vides four different low level rendering quality methods:

e a wire frame representation of the grid surface;

e a wire frame representation of the grid surface following the strategy of
drawing each grid segment with a different grey level in accordance with
the distance from the observer (depth cueing);

e a wire frame representation of the grid surface following the hidden line
strategy. The implemented hidden line method was derived from [59] then
improved in [53]. An optimization performance strategy was proposed in
[16]. This proposal consists of a quasi exact hidden line algorithm highly
suitable for a real time visualization.
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e a shading algorithm (Gouraud or Phong) of planar approximation. It
consists in evaluating the illumination model at various locations: once
per vertex for Gouraud shading, and once per pixel for Phong shading
[12, 38].

7.2. — High level or realistic rendering. — High quality rendering algorithms
use an exact representation. zecmodel provides a ray tracing algorithm specialized
for NURBS surfaces. The basic problem in a ray-tracing surface algorithm is the
ray/patch intersection. If the surface is trimmed, it follows a step to determine
whether the intersection point lies inside or outside a trimmed region using a
2D PMC algorithm. In zemodel three methods for ray/patch intersection are
implemented:

e Toth [76]
Toth’s algorithm is based on interval Newton iteration. It works robustly
on any parametric surface for which bounds onto the surface and its first
derivative can be obtained.

e Bezier Clipping [57]
This algorithm uses the convex-hull property in a powerful manner, by
determining parameter ranges which guarantee that they do not include
points of intersection. Bezier Clipping has the flavor of a geometrically
based interval Newton method, and thus may be categorized as partly a
subdivision based algorithm and partly a numerical method.

e Toth speed [56, 74]

A new approach, following one of our ideas, was called Toth speed. It is a
combination of the Toth and Bezier Clipping algorithms that outperforms
their performances. The idea is to reduce the application of the interval
Newton iterations of the Toth method, trying to find the solution using
a simple Newton, in the knowledge that, if a solution exists, it is unique.
If this fails, an interval Newton iteration is applied. Moreover, when the
Toth algorithm is forced to use binary subdivision, our method uses Bezier
Clipping.

Our ray tracing implementation exploits a certain number of optimization
techniques [42] in order to speed up performance, such as subdividing a 3D scene
into a uniform grid of voxels [41], subdividing the NURBS surfaces in rational
Bezier patches, further subdividing each rational Bezier patch until a given flat
tolerance is reached and introducing a second level of subdivision of the surface
bounding boxes [56].

In Fig.3, some modelling examples produced using zcmodel system by under-
graduates in Computer Science at the University of Bologna, are shown.
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Figure 3: Scenes modelled and rendered with the xemodel system
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