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xmodel: an aCADemi system (�)G. CASCIOLA(��) - S. MORIGI(���)Sunto - xmodel �e un sistema CAD realizzato e utilizzabile in ambito aademio. E'omposto da quattro pahetti: un modellatore 2D, un modellatore 3D, un om-positore di oggetti e un pahetto per la resa realistia di sene; questi sottosistemisono in ostante evoluzione. Il sistema riassume le nostre ompetenze ed esperienzenella modellazione geometria e sulle urve e super�i NURBS aquisite in oltrediei anni di riera. xmodel e i suoi sottosistemi sono stati progettati per essereun laboratorio di riera e di didattia, per sperimentare e imparare; �e un ambi-ente ideale per sviluppare, mettere a punto e onfrontare metodi ed algoritmi dellamodellazione geometria e della gra�a.Abstrat - xmodel is a CAD system realized and usable in an aademi environment.It integrates four pakages: a 2D and a 3D modeller, an objet omposer and arealisti sene renderer; these subsystems an be regarded as being in onstantevolution i.e. a ontinuous work in progress. The system summarises our knowledgeand experiene in geometri modelling and NURBS urves and surfaes aquiredover ten years of researh. xmodel and its subsystems were designed to represent aresearh and teahing laboratory to experiment and learn; it is an ideal environmentto develop, perfet and ompare methods and algorithms in geometri modellingand graphi visualization.1. { Introdutionxmodel is an interative graphis system based on NURBS (Non UniformRational B-Splines) with the power of a professional CAD (Computer AidedDesign) system, but realized and usable in an aademi environment.xmodel was designed to experiment and evaluate new and well-known meth-ods for modelling and graphis visualization. The system has been developed and(�)This work was supported by MURST, Co�n97, Numerial Analysis: Methods and Math-ematial Software.(��)Indirizzo dell'autore: Department of Mathematis, University of Bologna, P.zza di PortaS.Donato 5, Bologna, Italy. asiola�dm.unibo.it(���)Indirizzo dell'autore: Department of Mathematis, University of Bologna, P.zza di PortaS.Donato 5, Bologna, Italy. morigi�dm.unibo.it.



2 g. asiola - s. morigigrown with the ontribution of many graduates and undergraduates in math-ematis and omputer siene. Thus the system has been adopted in manyuniversity ourses in geometri modelling and omputer graphis as a labora-tory to experiment and learn. One of the eduational peuliarities of xmodelmaking it di�erent from a ommerial system whih uses a high level designphilosophy, is that it assumes the users are familiar with the mathematis of therepresentations used in the modelling system and let them interat with everysingle operator or parameter governing the shape of the objet he/she has inmind. As a onsequene, we expet the user to be a researher or a student.xmodel integrates four pakages: a 2D and a 3D free form modeller, an ob-jet omposer and a realisti sene renderer. They over the main steps in themodelling and rendering proess. These subsystems an be regarded as being inonstant evolution, i.e. a ontinuous work in progress.The following setions do not intend to be exhaustive in this desription ofthe wide variety of operators and algorithms for NURBS geometri modellingand rendering. They fous on those new and well-known methods that areimplemented and experimented in xmodel. Moreover, we will not go into detailabout the mathematis or algorithms; rather the reader will be referred to anextensive bibliography for more detailed information.Setion 2 desribes the requirements of the xmodel system. In Setion 3some basi de�nitions about the modelling primitives involved in the system aregiven; Setion 4 onsiders some geometri tools that are fundamental for themore omplex modelling tehniques desribed in Setion 5. Setion 6 deals withthe desription of a virtual sene. Finally the rendering methods implementedin xmodel are presented in Setion 7.2. { xmodel requirementsThe xmodel funtional struture, in Figure 1, shows how the four maininterative graphi subsystems are integrated:� xurv: performs the modelling of 2D NURBS urves [21℄;� xsurf: performs the modelling of 3D NURBS urves and surfaes [22℄;� xbool: performs boolean operations on solids [23℄;� xrayt: performs the desription and rendering of modelled senes by aray-traing algorithm [24℄.The ellipses represent xmodel input/output data. The arrows indiate the data-ow, while the retangular bloks represent the main subsystems whih are to-tally independent of one another. The dashed ar separates the modelling part(left) from the rendering part (right).
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Figure 2: xmodel system arhiteture



4 g. asiola - s. morigi
At the present time, the xmodel system runs on UNIX platforms suh asSun SPARC (Solaris), SGI (Irix), and Intel (Linux), but we expet problems tobe minimal under other environments. The system is a olletion of modulesand libraries entirely implemented in C ANSI programming language.Figure 2 shows the xmodel system arhiteture. The graphial user interfaeof the environment is realized using the xtools library [28℄, built on the top ofXlib, the lowest level library of the XWindow System. The graphi ions inthe user interfae make use of the XPM (XPixMap) library whih allows usto deal with pixmaps. Together with the xtools library, other three librarieshave been implemented in the system: the MATRIX library [25℄, for vetorand matrix omputation, the desriptor library [26℄, for sene setting, and thetrim library [27℄ for the visualization of trimmed NURBS surfaes in real time.The sene desriptor and rendering xrayt pakage makes use of two modules:xhrayt/hrayt for ray-traing and xframe for visualizing the rendered sene. Thesolid omposer xbool module makes use of two independent subsystems: xssi,for surfae/surfae intersetion and xdbe, a onversion tool for trimmed surfaes.Animation is managed by xmovie tool [24℄ that allows for the visualization ofimages and image sequenes. The xmodel software pakage is available [20℄ anda freely distributed version (xmodel ver. 1.0) as well as user's guides, data,models and images, an be downloaded from the web page:http://www.dm.unibo.it/�asiola/html/xmodel.html3. { xmodel modelling primitivesThis setion provides some basi de�nitions of the NURBS modelling prim-itive on whih xmodel is based. The system assumes NURBS as the uniqueanonial form for modelling.To de�ne rational B-splines we make use of homogeneous oordinates. IfP = (x; y; z) is a point in 3D Eulidean spae, we denote a orresponding pointin 4D homogeneous spae by Pw = (wx;wy; wz; w), where w > 0. A B-splineurve of order p in homogeneous spae an be de�ned by the equationw(t) = p+LXi=1 Pwi Ni;p(t)where Pwi are the ontrol points in homogeneous spae,T = (t1; � � � ; tp| {z }p ; tp+1; � � � ; tp+L; tp+L+1; � � � ; t2p+L| {z }p )



xmodel: an aCADemi system 5is a nondereasing sequene of real numbers alled knots, and Ni;p(t) are theorder p B-splines de�ned over the knot vetor T . The NURBS urve (t) assoi-ated with w(t) is obtained by the projetion of w(t) into a 3D spae, that is, bydividing the �rst three oordinates of eah point by its homogeneous oordinate,thus obtaining the following de�nition:(t) = Pp+Li=1 wiPiNi;p(t)Pp+Lj=1 wjNj;p(t) = p+LXi=1 PiRi;p(t);with Ri;p(t) = wiNi;p(t)Pp+Lj=1 wjNj;p(t)rational basis funtions. Projetions of NURBS surfaes of order (m;n) areobtained analogouslyrw(u; v) = n+HXi=1 m+KXj=1 PwijNi;n(u)Nj;m(v)or, equivalently,r(u; v) = Pn+Hi=1 Pm+Kj=1 wijPijNi;n(u)Nj;m(v)Pn+Hi=1 Pm+Kj=1 wijNi;n(u)Nj;m(v) = n+HXi=1 m+KXj=1 PijRi;n;j;m(u; v)Ri;n;j;m(u; v) = wijNi;n(u)Nj;m(v)Pn+Hi=1 Pm+Kj=1 wijNi;n(u)Nj;m(v)where wij > 0 are the weights, Pij are the ontrol points,U = (u1; � � � ; un| {z }n ; un+1; � � � ; un+H ; un+H+1; � � � ; u2n+H| {z }n );V = (v1; � � � ; vm| {z }m ; vm+1; � � � ; vm+K ; vm+K+1; � � � ; v2m+K| {z }m ):are nondereasing sequenes of knots, and Ni;n(u); Nj;m(v) are the order n andm B-splines, respetively, de�ned over the knot vetors U and V .For a detailed disussion of the properties of NURBS urves and surfaes werefer the reader to [66℄.One of the main reasons for the hoie of NURBS for xmodel is their widerange of expression. A detail disussion of the widespread aeptane and pop-ularity of NURBS in CAD/CAM and graphis systems is given in [62℄.xmodel has general harateristis, whih is unusual for ommerial CADsystems. For example, xmodel allows the user to set the urve (surfae) order



6 g. asiola - s. morigiup to a value of ten. As a result the algorithms implemented are as generalas possible. xmodel provides some prede�ned knot vetors suh as "equallyspaed", "uniform" (the interior knots are equally spaed and the exteriors o-inide), "periodi", "hord length" [35℄, but also "manually", where the user setsany knot position and multipliity. xmodelmanages ollapsed ontrol points andthe relative degenerate parametrizations. The rational urves and surfaes areomputed via non-rational urves and then by projetion; a spline is omputedby its B-splines representation, applying the well known reurrene relation pro-vided by Cox-de Boor [11, 33℄.The most useful NURBS paradigm is limited by the requirement that thesurfaes are de�ned over retangular regions and this leads to topologial ret-angular pathes. This limit of NURBS surfaes is overome by the trimmedNURBS, that is NURBS surfaes de�ned on arbitrary restrited parametri do-mains. A trimmed NURBS surfae an be de�ned by a NURBS surfae and aset of trimming urves in the parametri spae of the surfae. This set of pla-nar, losed, non-interseting urves an be onveniently represented as NURBSurves, whih are simply redued to a losed polygonal when the degree is equalto 1.A trimmed NURBS surfae is given by the restrition of r(u; v) to a subdo-main D � U � V of the parametri spae, named trimmed region. This domainD is de�ned as the set of regions on U � V whose boundaries are spei�ed bytrimming urves. This allows us to identify the part of the surfae that remainswhen disarding all the holes de�ned by the trimming urves.In xmodel the trimmed domain is represented by a 2D CSG tree equivalentto the CSG tree presented in [36, 13℄, but di�erently represented. Eah nodeof the CSG tree struture is an embedded non-interseting losed urve thatde�nes a limited region built starting from the 2D tree. Regions at the samelevel are disjoint to eah other. At alternate levels these regions are ombinedusing union and di�erene boolean operators. The trimmed region looks like aset of islands and lakes, where the islands represent part of the trimmed region,while the lakes are the holes in it. The algorithm used, forms a union of islands(Ri), and subtrats from eah island all of its lakes (Sij) starting from a 2D tree:D = I[i=1(Ri\( Li[j=1Sij));where I is the number of islands and Li is the number of the lakes Sij hildren ofisland i. The trimmed region that is obtained an be determined by lassifyinga single point. Conventions an be assumed to onsider alternate levels of thetree to be island and lake regions, starting from an island/lake top level.Another approah implemented in xmodel for representing a trimmed do-main D is based on the idea of deomposing U � V �D using a list of planarsubregions, whose union de�nes the entire omplementary domain U � V �D,



xmodel: an aCADemi system 7thus allowing the user to manage a set of surfaes, de�ned on an irregular do-main, that does not ontain any trimming urves. This approah is implementedas a partiular ase of a 2D CSG with all �rst-level hildren starting from anisland top level.The representation sheme used in xmodel for modelling a solid objet is theso-alled B-rep (Boundary representation). In this sheme a 'primitive solid' isdetermined by its boundary, that onsists of a single losed surfae, in order toseparate the spae into two parts, one of whih will be enlosed. Aording toonvention, the boundary surfae must be parametrized in suh a way that thesurfae normal vetor indiates the area outside the solid. For example, spheres,ylinders, et. are inluded in this de�nition, as well as losed sulptured solids.Primitive solids an also be ombined by boolean operations, suh as intersetion,union and di�erene, in order to reate a omplex solid.The boundary of a solid objet S is de�ned in terms of trimmed surfaes asfollows: bS = k[i=1 ri(Di)where Di is the trimmed region assoiated with the surfae ri. A primitive solidis then de�ned by k = 1 and D1 = U � V . The boundary of the solid S is alosed surfae.As aademi system xmodel does not provide any ontrol on the topologyof the built objets, thus it does not ensure that the solid reated orrespondsto a phisially realizable objet.4. { Basi geometri toolsIn this setion we present four tools for urves whih are fundamental in splineurve and surfae modelling in general and in xmodel in partiular; these areknot-insertion, knot-removal, degree elevation and reparametrization. Note thatall these tools only a�et urve or surfae representations, while geometriallythe urves or surfaes remain unhanged.4.1. { Knot-insertion. { This is the proess of expressing a partiular urvew(t) in terms of a related spline representation that has one or more additionalknots. This proess is also known as re�nement, sine new knots (s � 1) areinserted into the original knot vetor T to produe a proper re�nement T .Then ontrol points Qwi exist suh thatw(t) = p+L+sXi=1 Qwi N i;p(t):



8 g. asiola - s. morigiIn 1980, Boehm [8℄ and Cohen et al. [29℄ independently found two di�erentalgorithms to ompute the new ontrol points Qwi . EÆient algorithms for im-plementing both the speial ase of single knot insertion [8℄ and the general ase[10, 54℄ have been proposed. Performanes are analyzed in [9, 31℄. In xmodelthis tool is used in:� evaluating points and derivatives on urves and surfaes;� subdividing urves and surfaes (splitting);� adding ontrol points in order to inrease exibility in shape ontrol (in-terative design and hierarhial design);� deomposition of spline urves and surfaes into their onstituent (Bezier)polynomial piees;� onverting a periodi knot vetor into a uniform one;� merging two or more knot vetors in order to obtain a set of urves whihare de�ned on a ommon knot vetor (see setion 5);� obtaining polygon (polyhedral) approximations to urves (surfaes) by re-�ning knot vetors; this makes the ontrol polygon (net) onverge to theurve (surfae).4.2. { Knot-removal. { This is the reverse proess of knot insertion. We ansay that, given a knot vetor T , a knot t is removable if w(t) has a preise rep-resentation in the B-spline basis N i;p(t) de�ned over the knot vetor T withoutt. A knot-removal algorithm must determine if a knot is removable and howmany times (s � 1), then ompute the new ontrol points Qwi suh that the newurve representation is w(t) = p+L�sXi=1 Qwi N i;p(t):Details an be found in [75℄. In xmodel knot-removal is used to obtain the mostompat representation of the urve/surfae in:� adjusting knot vetor after ontrol point insertion/displaement;� joining spline urves together to form omposite urves.



xmodel: an aCADemi system 94.3. { Degree elevation. { This tool allows us to represent a spline urve w(t)as a urve with an elevated degree s > p� 1:w(t) = s+1+LXi=1 Qwi Ni;s+1(t):EÆient but mathematially ompliated methods to ompute the new ontrolpoints Qwi are given by Prautzsh in [68℄, by Cohen et al. in [30, 32℄ and byPrautzsh and Piper [69℄. The algorithm provided by Prautzsh and Piper isthe most eÆient for the general ase, but Cohen et al. also give simple andeÆient algorithms for low-degrees, suh as linear to quadrati and quadrati toubi. All these algorithms raise the degree by 1. In 1994 Piegl and Tiller [64℄presented another algorithm whih is mathematially simpler, and ompetitivewith that given in [69℄, partiularly in the ase where the degree is to be raisedby more than 1. In xmodel degree elevation is used to:� make ompatible setion urves in the "surfae from urves" modellingtehnique (see setion 5.3);� obtain "bi-p-i" parametri surfaes (where e.g. p=4 for biubi) in sur-faes from urves modelling tehniques (see setion 5.3), where the orderof the pro�le and trajetory urves may be required to be the same.4.4. { Reparametrization. { Let (t) be a parametri urve on t 2 [a; b℄ andassume that t = f(s) is a salar-valued funtion on s 2 [; d℄ satisfying:� f 0(s) > 0 for all s 2 [; d℄,� a = f() and b = f(d),the omposition of (t) and f(s), given by (s) = (f(s)) is alled a reparametriza-tion of (t). (s) is geometrially the same urve as (t), but parametrially theyare di�erent.In xmodel we onsider only reparametrization funtions that keep the urve aNURBS. In partiular, for a rational linear reparametrization funtion in [2℄ and[52℄, an expliit expression for the reparametrized NURBS urve is given.The most ommon and useful parametrization is the ar length. Suh a parametriza-tion is unfortunately almost never possible for NURBS, unless for straight lines[37℄. Therefore xmodel o�ers several reparametrization tehniques that best �tthe ar length parametrization [18℄.A reparametrization an be required beause of the e�ets that the hange ofweights and ontrol points have on the parametrization of the urve. Moreover,any numerial method, or simply the rendering proedure, is a�eted by theirpartiular parametrization in terms of omputational omplexity and numerialstability.



10 g. asiola - s. morigi5. { Modellingxmodel o�ers a set of design tools for modelling urves, surfaes and solidobjets that an be lassi�ed into four lasses: basi onstrutors, shape modi-�ers, surfaes from urves and objet omposer. Basi onstrutors build modelsinteratively or automatially, together with the possibility of using, as initialshapes, lassial primitive objets, suh as spheres, torus, boxes or more omplexobjets like revolution surfaes. Interative modelling tools for shape modi�a-tion aim to modify the shape of an existing objet. In addition, we an de�neoperators on urves to reate surfaes. Finally, boolean operators are availablefor building omplex objets.Eah of these tools an be used alone or in pipeline fashion in order to getthe �nal geometri model ready to be rendered.5.1. { Basi onstrutors. { In this setion we deal with the apabilitiesof xmodel alled "shape approximation" and "data �tting" to reate 2D or 3Dshapes ab initio.- Shape approximation -B-splines provide a geometrially intuitive basis, one in whih the shape of theurve or surfae has a preditable and omprehensible relationship to the oeÆ-ients (i.e. ontrol points). This is a speial approximation sheme named shapeapproximation, whih is extremely attrative for geometri design. Aording tothis approximation sheme, an individual ontrol point only has a loal e�et,and does not a�et a design beyond the loalized region of inuene. In xmodel,design tools are provided to give 2D points for a ontrol polygon (for urves) and3D points for a ontrol net (for surfaes) interatively and a set of parameters tode�ne the urve or surfae shape approximation of the ontrol polygon or net.- Data �tting -In this paragraph we deal with �tting, i.e. the onstrution of NURBS urvesand surfaes whih �t a rather arbitrary set of geometri data, suh as pointsand derivative vetors. We distinguish two types of �tting, interpolation andapproximation by the least square tehnique. There are several mathematialmethods for interpolating or approximating a single-valued funtion from a givenset of values, but their appliation to urve �tting sometimes results in a urvethat is very di�erent from what the designer intended. Input to a �tting problemonsists of geometri data, suh as points and derivatives. Output is a NURBSurve or surfae, i.e. ontrol points, knots and weights. Furthermore, either theorder p (or (m;n) for surfaes) must be the input or the algorithm must seletan appropriate order. Very little has been published on setting the weights inthe �tting proess. Most often, all the weights are simply set to 1. Finally, thereare many methods for hoosing the knots, most of them heuristi.The �tting algorithms an be global or loal. With a global algorithm, a systemof equations is set up and resolved. Sine the given data onsists only of points



xmodel: an aCADemi system 11and derivatives, and the ontrol points are the only unknowns (order, knots andweights have been preseleted or preomputed), the system is linear and heneeasy to solve. Loal algorithms are more geometri in nature, onstruting theurve or surfae segment-wise, using only loal data at eah step. These algo-rithms are usually omputationally less expensive than global methods and andeal with loal data anomalies better; however, ahieving desired levels of globalontinuity is not a standard matter and loal methods often result in multipleinternal knots. In what follows we present the global and loal methods for urveand surfae interpolation and approximation implemented in xmodel.� Global urve interpolation to point and derivative dataLet Qli; i = 1; : : : ; n and l = 0; : : : ; li, be the interpolation points andderivative vetors; we want to interpolate these data with a p-th orderNURBS urve. Note that if li = 0 8i, then we have a Lagrange in-terpolation, otherwise we have an Hermite interpolation. If we assign aparameter value ti, to eah Q0i , selet an appropriate knot vetor T andselet a positive weight vetor W , we an set up the (p + L) � (p + L)system of linear equationsp+LXi=1 PiRli;p(ti) = Qli i = 1; : : : ; n l = 0; : : : ; liwith L =Pni=1(li + 1)� p. The ontrol points Pi are the unknowns. Theproblem of hoosing the ti, T and W remains, and their hoie a�etsthe shape and parametrization of the urve. xmodel provides four meth-ods of hoosing the ti: hord length, uniform, entripetal and exponential[51, 55℄. The knot vetor T is omputed in a heuristi way, so that theShoenberg-Whitney and Karlin-Ziegler onditions are satis�ed in orderto have a unique solution for the interpolation problem [58℄. The positiveweight vetorW haraterizes a rational interpolation from a non-rationalby setting manually or equal weights respetively. In the ase of Hermiteinterpolation, derivative vetors have to be spei�ed as input data. For themore ommon ase of �rst derivative vetors, xmodel provides the Akimatehnique [1℄ for an automati derivative omputation. In the ubi asethere is the possibility of interpolating the given points with a periodiurve or with a rational C1 urve. In the latter ase the NURBS weightsan be used as tension parameters [44℄.� Global surfae interpolation to point dataGiven a set of (n+H)� (m+K) data points Qkl k = 1; : : : ; n+H andl = 1; : : : ;m + K, we want to onstrut a non rational (m;n)-order 3D



12 g. asiola - s. morigispline surfae interpolating these points, i.e.n+HXi=1 m+KXj=1 PijNi;n(uk)Nj;m(vl) = Qkl:(1)In xmodel this is ahieved by setting rw(uk; vl) = Qwkl, with all weightsequal. Again, the �rst thing to do is to ompute reasonable values for the(uk; vl) and the knot vetors U and V . A ommon way is to use one of theprevious methods for urves to ompute parameters ul1; : : : ; uln+H for eahl, and then to obtain eah uk by averaging aross all ulk for l = 1; : : : ;m+K[62℄. Using the parameter points omputed, we get the U and V vetorsin exatly the same way as with urves. Clearly the equations (1) repre-sent a linear system for the unknowns Pij . However, sine the surfae istensor produt, the Pij an be obtained more simply and eÆiently as asequene of urve interpolations. At the moment, xmodel provides onlybiubi spline surfae interpolation.� Loal urve interpolation to point and derivative dataLet Qli; i = 1; : : : ; n and l = 0; 1, be the interpolation points and �rstderivative vetors given. By loal urve interpolation we mean a methodwhih onstruts n polynomials or rational urve segments i(t); i =0; : : : ; n � 1, suh that Q0i and Q0i+1 are the end points of i(t). Neigh-boring segments are joined with some presribed level of ontinuity, andthe onstrution proeeds segment-wise. xmodel provides, at the moment,only a loal method, whih interpolates point and �rst derivative data witha rational globally C1 (ubi over quadrati). The NURBS weights playthe role of tension parameters and for wi ! 1 8i, the urve onvergesto the polygonal de�ned by the interpolation points. It is a NURBS adap-tation of an algorithm by Gregory and Sarfraz [44℄.� Weighted and onstrained least square urve �ttingLet Qi; i = 1; : : : ; n, be the points to be approximated. If we assigna parameter value ti, to eah Qi, hoose a urve order p, an appropriateknot vetor T , and selet a positive NURBS weight vetor W , we an setup the n� (p+ L) overdetermined system of linear equationsp+LXi=1 PiRi;p(ti) = Qi i = 1; : : : ; n:Most often, all these weights are simply set to 1. Indeed, for approximation,there is little reason to do otherwise.Optionally the �rst and last given points an be onstrained (preisely



xmodel: an aCADemi system 13interpolated) or the urve an be onstrained to be losed and periodi.We also allow a positive weight to be assigned to eah unonstrained item.Inreasing a weight inreases the tightness of the approximation to thatitem, whereas dereasing the weight looses the approximation to that item.Notie that these weights have nothing to do with weights in the NURBSsense. xmodel also provides a method to approximate the weighted andonstrained data in the least-squares sense.5.2. { Shape modi�ers. { The purpose of some methods implemented inxmodel is to provide tools whih allow a user to interatively make loal mod-i�ation to an existing NURBS urve or surfae. A NURBS urve or surfae isde�ned by its ontrol points, weights, knots and orders; modifying one or moreof these parameters, an a�et and hange the shape of the urve or surfae [66℄.Sine xmodel is an eduational system and assumes the user are experiment-ing and learning, it allows the user to modify all these parameters interatively.Generally CAD systems on the market do not allow the user to modify suhparameters; they apply many prede�ned shape operators to the urve or sur-fae. Following [60, 61℄, xmodel implements some of these operators, suh asonstraining a urve point to pass over a given point by one ontrol point repo-sitioning, by one weight modi�ations or by two weight modi�ation, warping,attening, et. The result of applying a transformation to the whole splineurve or surfae, gives rise to a spline de�ned by the transformed ontrol pointstogether with the original knot vetor and urve (surfae) order. FormallywA(t) = p+LXi=1 APwi Ni;p(t)is the result of applying the transformation matrix A to the urve w(t). Inthe ase where A is an aÆne transformation, this strategy produes exatly thesame urve (surfae) whih would have been produed if A had been applied toeah point on the urve (surfae).In 1988 Forsey and Bartels [39℄ proposed the Hierarhial Spline Surfaes(HSS) enabling a surfae to be re�ned and detail added, using a hierarhy, whoselevels orrespond to the di�erent levels of re�nement of the surfae pathes. Thisproposal enables us to restrit the inuene of re�nement to the relevant partof the surfae. In xmodel we implemented the HSS idea by using the trimmedNURBS surfaes power and preisely de�ning a "retangular trimmed NURBSsurfaes hierarhy" [19℄.5.3. { Surfae from urves. { As interative tehniques for the sulptur-ing of surfae shapes on a two dimensional display involve obvious diÆulties,additional tools are available for the designer to model the desired surfae usingoperators on urves. The most frequently used tehniques, suh as skinning,sweeping, and swinging, are adopted in xmodel.



14 g. asiola - s. morigiNURBS skinning is a speial surfae interpolation tehnique by whih anordered set of NURBS urves (alled setion urves) is interpolated to forma NURBS surfae. The setion urves have to be made ompatible, i.e. samedegree and knot vetor, by means of the basi geometri tools desribed in setion4. If this is the ase they will also have the same number of ontrol points, andthey an be de�ned as follows:wj (u) = n+HXi=1 QwijNi;n(u); j = 1; : : : ;m+K:For eah index i, their ontrol verties Qwij ; j = 1; : : : ;m +K; in v diretionare interpolated using global urve interpolation tehnique in homogeneous spae(see setion 5.1) obtaining the following urveswi (v) = m+KXj=1 PwijNj;m(v); i = 1; : : : ; n+H;that pass through Qwij at ertain ui values.The ontrol polygons of the interpolation urves together form a ontrol meshthat de�nes a skinned surfae:r(u; v)w = n+HXi=1 m+KXj=1 PwijNi;n(u)Nj;m(v):The above skinning algorithm is a fairly straightforward generalization to ratio-nal urves of the skinning algorithm for polynomial B-spline urves desribed in[78, 79℄, whih has the desirable property that the reated surfae is as smoothas the setion urves. Now, as for the rational ase, the algorithm works inthe homogeneous spae, even if, for example, a rational urve is C1 in 3D, itsassoiated urve in 4D may be only C0, that is, the algorithm an produe aC0 surfae in 4D whose assoiated surfae in 3D will exhibit disontinuities.This smoothness problem is addressed in [47℄ and [62℄. The positioning of thesetion urves in the spae is another ritial problem disussed in [79℄: unevenlypositioned setion urves an lead to unsatisfatory surfae shapes.NURBS sweeping tehnique is a speial ase of skinning that uses a onstantsetion urve and sweeps it along another urve (alled spine or trajetory urve)in order to reate a NURBS surfae. The positioning points for sweeping anbe hosen as the spine knot points (ui); i = 1; : : : ;m +K. Automatially thesystem will plae the setion urves in the 3D spae in suh a way that thepositioning points are mathed and eah 2D plane on whih eah setion urvelies is aligned to the normal of the spine at that point. Then the setion urvesan be arbitrarily rotated on their planes until the desired position is obtained.



xmodel: an aCADemi system 15The swept surfae will also interpolate the spine urve whenever the referenepoint with whih the setion urve is mathed to the spine knot points lies onthe setion urve itself.A revolution surfae is generated using a NURBS urve whih lies in theplane. A full revolution surfae is obtained by revolving this urve 2� aroundthe z axis. The resulting surfae has the formr(u; v) = 9Xi=1 m+KXj=1 PijRi;4(u)Rj;m(v):NURBS swinging is a generalization of the revolution tehnique, where thetrajetory urve is not neessarily irular. Given a pro�le urve P(u) in thex; z plane P(u) = p+LXi=1 PiRi;p(u)with Pi = (Pxi ; 0; Pzi)T , and a trajetory urve T(v) in the x; y planeT(v) = q+LXj=1 TjRj;q(v)with Tj = (Txj ; Tyj ; 0)T , swinging the pro�le around the z axis along the tra-jetory urve yields the surfae:r(u; v) = [sPx(u)Tx(v); sPx(u)Ty(v); Pz(u)℄with ontrol points and weights:Qij = [sPxiTxj ; sPxiTyj ; Pzi ℄Twij = wi � wj ;where s is an arbitrary saling fator.5.4. { Objet omposer. { Solid onstrutions an be aomplished byombining, using a set of boolean operations, two or more solids; this proessis known as the set operation algorithm. Consider, for example, the two solidsA and B, respetively de�ned by their boundary surfaes. The boundaries ofthe solids ASB, ATB, A � B are determined starting from bA and bB, andtrimming away the portion of the pathes that does not belong to the resultingsolid. The boundary of the resulting solid is given by the equations known asthe boundary formula [70℄:b(ASB) = (bAT B)S(bBT A)b(ATB) = (bAT iB)S(bBT iA)b(A�B) = (bAT B)S(bBT iA)



16 g. asiola - s. morigiwhere iX and X represent, respetively, the interior and the omplement of thesolid X .In [13℄ and [14℄, a set operation algorithm is given, that operates on solidsmodelled with trimmed pathes. The proposal given in [14℄ is onsidered andadapted for NURBS surfaes in [15℄ and implemented in the xmodel system.The basi idea in [14℄ onsists in avoiding the intersetions between trimmedpathes by onsidering the intersetions between the pathes over the wholedomain. In this way, we an then determine the resulting trimmed regions (2DCSG tree) from the intersetion between the trimmed regions of the solids andthe trimmed regions obtained by the path/path intersetion operations.A detailed desription of the set operation algorithm implemented in the sys-tem is tehnially omplex. In the following, we will give a brief desription ofthe basi steps involved in this proess: the untrimmed surfae/surfae interse-tion (SSI), the 2D and 3D Point Membership Classi�ation (PMC), and the 2Durve/urve intersetion (CCI).- SSI -The SSI proedure implemented in xmodel is a modi�ed version of the proposalgiven in [3℄; details an be found in [17℄. The method exploits the advantageso�ered by the two most frequently used SSI approahes, urve following andsubdivision, in order to get a good balane between robustness and eÆieny.The urve following method begins by �nding some points of intersetion.Then, the intersetion urve is followed using a numerial method [3, 4℄. Thesubdivision method divides the problem into smaller problems by approximatingthe path into simpler linear or quadrati sub-pathes [48, 14℄. The pathesare interseted, resulting in urves that are then re�ned by another numerialmethod. The proposed modi�ed algorithm roughly proeeds through the fourmain steps that follow:� Adaptive mesh generation; approximate adaptively eah of the surfaes bya grid of isoparametri urves, approximated by pieewise linear urveswithin a given tolerane. From this grid we easily obtain a surfae trian-gulation;� Initial intersetion point generation; ompute the intersetions between thegrid segments of a surfae and the triangles of the other surfae, in orderto obtain at least one starting point for eah intersetion urve;� Following an intersetion urve; starting from an initial point on the in-tersetion urve, move along the urve by steps. This is done by �rst�nding an estimate for the next point on the intersetion urve, and thenevaluating an exat intersetion within a given tolerane;� Sorting; �nally, link together the urve intersetion segments found in thepreeding step in order to obtain lose intersetion urves.



xmodel: an aCADemi system 17- 2D and 3D PMC -PMC is a funtion that takes, as its input, a point P and a losed set S, andreturns one of three possible outomes: P is inside S, P is on the boundary ofS, or P is outside S. The set operation algorithm makes extensive use of PMCin both two and three dimensions. During the onstrution of the 2D CSG treeresulting from a boolean operation, a single 3D point is lassi�ed with respetto the opposing solid. The result will be used for further 2D lassi�ations inorder to build a olletion of half-spaes whih, ultimately, beome the leaves ofthe 2D CSG tree [13, 14℄.A ommon onept is used for both 2D and 3D lassi�ation: a ray is ex-tended from the point to be lassi�ed, and the number of intersetions of the raywith the boundary of the set determines the membership status of the point.An even number of intersetions means that the point is outside the set,while an odd number implies that the point is inside.While the onept is the same, its implementation is very di�erent for two orthree dimensions. In the 2D ase, the ray is interseted with polygons or urvedboundaries. In the 3D ase, the boundary onsists of trimmed pathes, and aray/path method is required [57℄.- CCI -This problem an either be takled geometrially, that is, using subdivision teh-niques for the urves, thus exploiting the onvex-hull property of the NURBSurves [50, 72℄, or numerially. In xmodel the geometri approah is imple-mented.6. { Sene desriptionOne the geometri models of the objets have been reated, the modellingof a realisti sene is based on positioning, orientating the objets in the sene,haraterizing their materials, and de�ning the light soures illuminating them.This an be realized by applying an illumination model and some textures.An illumination model is designed to determine the intensity of light reetedby an observer's eye at eah point (pixel) in an image. In a global illumina-tion model the intensity of the light reeted from a point to the observer isdetermined by the light that reahes a point by reetion from, or transmissionthrough, other objets in the sene, as well as the light inident from any lightsoures.The illumination model implemented in the system is based on the global illumi-nation model proposed by Whitted [77℄. This model derives from the tehniquesintrodued previously by Phong [12℄ and Blinn [7℄.The two traditional methods of texturing implemented in xmodel are texturemaps and proedural textures. By a texture mapping, an image is mapped ontoan objet. This map is realized by positioning the objet to be mapped on



18 g. asiola - s. morigithe image spae and applying an orthogonal projetion [7, 38℄. A proeduraltexture is an analytial funtion de�ned in 3D spae, that is, a funtion thatassigns some visual properties to every point in the 3D texture spae. Theresult of the appliation of a proedural texture on an objet is given by plaingthe objet in the texture spae.7. { RenderingThe rendering of NURBS surfaes as well as urves is a very important taskin an interative graphis system, suh as xmodel. We distinguish between lowand high level rendering quality.7.1. { Low level or real time rendering. { A low level rendering quality algo-rithm uses a pieewise planar approximation of the surfae in order to produereasonable images in a reasonable time. xmodel provides two strategies: a uni-form approximation and an adaptive approximation within a given tolerane.The adaptive approximation adopted by the system is not the well known reur-sive proedure that subdivides the surfae until it is "at enough". In fat thisproedure is very time and spae onsuming. Instead we have implemented theadaptive mesh generation proposed in [3℄ as the initial step for an SSI method.This onsists in a surfae approximation using an adaptive grid of isoparametriurves within a given tolerane.If the surfae is trimmed, one the adaptive mesh for the whole surfae hasbeen omputed, we need to merge the trimming urves and the mesh to yieldlosed domain polygons and then triangulate them. The triangulation algorithmimplemented in xmodel was inspired by [63℄ and [67℄. The latter proposal isnot parametrization dependent and proeeds with di�erent toleranes for thetrimming urves and the surfae. Our implementation di�ers in the adaptiveapproximation and in the domain polygon triangulation; in this latter ase weadopted a simple but faster heuristi approah than a Delaunay triangulation.One a suitable, planar approximation for the surfae is obtained, xmodel pro-vides four di�erent low level rendering quality methods:� a wire frame representation of the grid surfae;� a wire frame representation of the grid surfae following the strategy ofdrawing eah grid segment with a di�erent grey level in aordane withthe distane from the observer (depth ueing);� a wire frame representation of the grid surfae following the hidden linestrategy. The implemented hidden line method was derived from [59℄ thenimproved in [53℄. An optimization performane strategy was proposed in[16℄. This proposal onsists of a quasi exat hidden line algorithm highlysuitable for a real time visualization.



xmodel: an aCADemi system 19� a shading algorithm (Gouraud or Phong) of planar approximation. Itonsists in evaluating the illumination model at various loations: oneper vertex for Gouraud shading, and one per pixel for Phong shading[12, 38℄.7.2. { High level or realisti rendering. { High quality rendering algorithmsuse an exat representation. xmodel provides a ray traing algorithm speializedfor NURBS surfaes. The basi problem in a ray-traing surfae algorithm is theray/path intersetion. If the surfae is trimmed, it follows a step to determinewhether the intersetion point lies inside or outside a trimmed region using a2D PMC algorithm. In xmodel three methods for ray/path intersetion areimplemented:� Toth [76℄Toth's algorithm is based on interval Newton iteration. It works robustlyon any parametri surfae for whih bounds onto the surfae and its �rstderivative an be obtained.� Bezier Clipping [57℄This algorithm uses the onvex-hull property in a powerful manner, bydetermining parameter ranges whih guarantee that they do not inludepoints of intersetion. Bezier Clipping has the avor of a geometriallybased interval Newton method, and thus may be ategorized as partly asubdivision based algorithm and partly a numerial method.� Toth speed [56, 74℄A new approah, following one of our ideas, was alled Toth speed. It is aombination of the Toth and Bezier Clipping algorithms that outperformstheir performanes. The idea is to redue the appliation of the intervalNewton iterations of the Toth method, trying to �nd the solution usinga simple Newton, in the knowledge that, if a solution exists, it is unique.If this fails, an interval Newton iteration is applied. Moreover, when theToth algorithm is fored to use binary subdivision, our method uses BezierClipping.Our ray traing implementation exploits a ertain number of optimizationtehniques [42℄ in order to speed up performane, suh as subdividing a 3D seneinto a uniform grid of voxels [41℄, subdividing the NURBS surfaes in rationalBezier pathes, further subdividing eah rational Bezier path until a given attolerane is reahed and introduing a seond level of subdivision of the surfaebounding boxes [56℄.In Fig.3, some modelling examples produed using xmodel system by under-graduates in Computer Siene at the University of Bologna, are shown.
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Figure 3: Senes modelled and rendered with the xmodel system
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