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x
model: an aCADemi
 system (�)G. CASCIOLA(��) - S. MORIGI(���)Sunto - x
model �e un sistema CAD realizzato e utilizzabile in ambito a

ademi
o. E'
omposto da quattro pa

hetti: un modellatore 2D, un modellatore 3D, un 
om-positore di oggetti e un pa

hetto per la resa realisti
a di s
ene; questi sottosistemisono in 
ostante evoluzione. Il sistema riassume le nostre 
ompetenze ed esperienzenella modellazione geometri
a e sulle 
urve e super�
i NURBS a
quisite in oltredie
i anni di ri
er
a. x
model e i suoi sottosistemi sono stati progettati per essereun laboratorio di ri
er
a e di didatti
a, per sperimentare e imparare; �e un ambi-ente ideale per sviluppare, mettere a punto e 
onfrontare metodi ed algoritmi dellamodellazione geometri
a e della gra�
a.Abstra
t - x
model is a CAD system realized and usable in an a
ademi
 environment.It integrates four pa
kages: a 2D and a 3D modeller, an obje
t 
omposer and arealisti
 s
ene renderer; these subsystems 
an be regarded as being in 
onstantevolution i.e. a 
ontinuous work in progress. The system summarises our knowledgeand experien
e in geometri
 modelling and NURBS 
urves and surfa
es a
quiredover ten years of resear
h. x
model and its subsystems were designed to represent aresear
h and tea
hing laboratory to experiment and learn; it is an ideal environmentto develop, perfe
t and 
ompare methods and algorithms in geometri
 modellingand graphi
 visualization.1. { Introdu
tionx
model is an intera
tive graphi
s system based on NURBS (Non UniformRational B-Splines) with the power of a professional CAD (Computer AidedDesign) system, but realized and usable in an a
ademi
 environment.x
model was designed to experiment and evaluate new and well-known meth-ods for modelling and graphi
s visualization. The system has been developed and(�)This work was supported by MURST, Co�n97, Numeri
al Analysis: Methods and Math-emati
al Software.(��)Indirizzo dell'autore: Department of Mathemati
s, University of Bologna, P.zza di PortaS.Donato 5, Bologna, Italy. 
as
iola�dm.unibo.it(���)Indirizzo dell'autore: Department of Mathemati
s, University of Bologna, P.zza di PortaS.Donato 5, Bologna, Italy. morigi�dm.unibo.it.



2 g. 
as
iola - s. morigigrown with the 
ontribution of many graduates and undergraduates in math-emati
s and 
omputer s
ien
e. Thus the system has been adopted in manyuniversity 
ourses in geometri
 modelling and 
omputer graphi
s as a labora-tory to experiment and learn. One of the edu
ational pe
uliarities of x
modelmaking it di�erent from a 
ommer
ial system whi
h uses a high level designphilosophy, is that it assumes the users are familiar with the mathemati
s of therepresentations used in the modelling system and let them intera
t with everysingle operator or parameter governing the shape of the obje
t he/she has inmind. As a 
onsequen
e, we expe
t the user to be a resear
her or a student.x
model integrates four pa
kages: a 2D and a 3D free form modeller, an ob-je
t 
omposer and a realisti
 s
ene renderer. They 
over the main steps in themodelling and rendering pro
ess. These subsystems 
an be regarded as being in
onstant evolution, i.e. a 
ontinuous work in progress.The following se
tions do not intend to be exhaustive in this des
ription ofthe wide variety of operators and algorithms for NURBS geometri
 modellingand rendering. They fo
us on those new and well-known methods that areimplemented and experimented in x
model. Moreover, we will not go into detailabout the mathemati
s or algorithms; rather the reader will be referred to anextensive bibliography for more detailed information.Se
tion 2 des
ribes the requirements of the x
model system. In Se
tion 3some basi
 de�nitions about the modelling primitives involved in the system aregiven; Se
tion 4 
onsiders some geometri
 tools that are fundamental for themore 
omplex modelling te
hniques des
ribed in Se
tion 5. Se
tion 6 deals withthe des
ription of a virtual s
ene. Finally the rendering methods implementedin x
model are presented in Se
tion 7.2. { x
model requirementsThe x
model fun
tional stru
ture, in Figure 1, shows how the four mainintera
tive graphi
 subsystems are integrated:� x

urv: performs the modelling of 2D NURBS 
urves [21℄;� x
surf: performs the modelling of 3D NURBS 
urves and surfa
es [22℄;� x
bool: performs boolean operations on solids [23℄;� x
rayt: performs the des
ription and rendering of modelled s
enes by aray-tra
ing algorithm [24℄.The ellipses represent x
model input/output data. The arrows indi
ate the data-
ow, while the re
tangular blo
ks represent the main subsystems whi
h are to-tally independent of one another. The dashed ar
 separates the modelling part(left) from the rendering part (right).
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At the present time, the x
model system runs on UNIX platforms su
h asSun SPARC (Solaris), SGI (Irix), and Intel (Linux), but we expe
t problems tobe minimal under other environments. The system is a 
olle
tion of modulesand libraries entirely implemented in C ANSI programming language.Figure 2 shows the x
model system ar
hite
ture. The graphi
al user interfa
eof the environment is realized using the xtools library [28℄, built on the top ofXlib, the lowest level library of the XWindow System. The graphi
 i
ons inthe user interfa
e make use of the XPM (XPixMap) library whi
h allows usto deal with pixmaps. Together with the xtools library, other three librarieshave been implemented in the system: the MATRIX library [25℄, for ve
torand matrix 
omputation, the des
riptor library [26℄, for s
ene setting, and thetrim library [27℄ for the visualization of trimmed NURBS surfa
es in real time.The s
ene des
riptor and rendering x
rayt pa
kage makes use of two modules:xhrayt/hrayt for ray-tra
ing and xframe for visualizing the rendered s
ene. Thesolid 
omposer x
bool module makes use of two independent subsystems: x
ssi,for surfa
e/surfa
e interse
tion and x
dbe, a 
onversion tool for trimmed surfa
es.Animation is managed by xmovie tool [24℄ that allows for the visualization ofimages and image sequen
es. The x
model software pa
kage is available [20℄ anda freely distributed version (x
model ver. 1.0) as well as user's guides, data,models and images, 
an be downloaded from the web page:http://www.dm.unibo.it/�
as
iola/html/x
model.html3. { x
model modelling primitivesThis se
tion provides some basi
 de�nitions of the NURBS modelling prim-itive on whi
h x
model is based. The system assumes NURBS as the unique
anoni
al form for modelling.To de�ne rational B-splines we make use of homogeneous 
oordinates. IfP = (x; y; z) is a point in 3D Eu
lidean spa
e, we denote a 
orresponding pointin 4D homogeneous spa
e by Pw = (wx;wy; wz; w), where w > 0. A B-spline
urve of order p in homogeneous spa
e 
an be de�ned by the equation
w(t) = p+LXi=1 Pwi Ni;p(t)where Pwi are the 
ontrol points in homogeneous spa
e,T = (t1; � � � ; tp| {z }p ; tp+1; � � � ; tp+L; tp+L+1; � � � ; t2p+L| {z }p )
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 system 5is a nonde
reasing sequen
e of real numbers 
alled knots, and Ni;p(t) are theorder p B-splines de�ned over the knot ve
tor T . The NURBS 
urve 
(t) asso
i-ated with 
w(t) is obtained by the proje
tion of 
w(t) into a 3D spa
e, that is, bydividing the �rst three 
oordinates of ea
h point by its homogeneous 
oordinate,thus obtaining the following de�nition:
(t) = Pp+Li=1 wiPiNi;p(t)Pp+Lj=1 wjNj;p(t) = p+LXi=1 PiRi;p(t);with Ri;p(t) = wiNi;p(t)Pp+Lj=1 wjNj;p(t)rational basis fun
tions. Proje
tions of NURBS surfa
es of order (m;n) areobtained analogouslyrw(u; v) = n+HXi=1 m+KXj=1 PwijNi;n(u)Nj;m(v)or, equivalently,r(u; v) = Pn+Hi=1 Pm+Kj=1 wijPijNi;n(u)Nj;m(v)Pn+Hi=1 Pm+Kj=1 wijNi;n(u)Nj;m(v) = n+HXi=1 m+KXj=1 PijRi;n;j;m(u; v)Ri;n;j;m(u; v) = wijNi;n(u)Nj;m(v)Pn+Hi=1 Pm+Kj=1 wijNi;n(u)Nj;m(v)where wij > 0 are the weights, Pij are the 
ontrol points,U = (u1; � � � ; un| {z }n ; un+1; � � � ; un+H ; un+H+1; � � � ; u2n+H| {z }n );V = (v1; � � � ; vm| {z }m ; vm+1; � � � ; vm+K ; vm+K+1; � � � ; v2m+K| {z }m ):are nonde
reasing sequen
es of knots, and Ni;n(u); Nj;m(v) are the order n andm B-splines, respe
tively, de�ned over the knot ve
tors U and V .For a detailed dis
ussion of the properties of NURBS 
urves and surfa
es werefer the reader to [66℄.One of the main reasons for the 
hoi
e of NURBS for x
model is their widerange of expression. A detail dis
ussion of the widespread a

eptan
e and pop-ularity of NURBS in CAD/CAM and graphi
s systems is given in [62℄.x
model has general 
hara
teristi
s, whi
h is unusual for 
ommer
ial CADsystems. For example, x
model allows the user to set the 
urve (surfa
e) order
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iola - s. morigiup to a value of ten. As a result the algorithms implemented are as generalas possible. x
model provides some prede�ned knot ve
tors su
h as "equallyspa
ed", "uniform" (the interior knots are equally spa
ed and the exteriors 
o-in
ide), "periodi
", "
hord length" [35℄, but also "manually", where the user setsany knot position and multipli
ity. x
modelmanages 
ollapsed 
ontrol points andthe relative degenerate parametrizations. The rational 
urves and surfa
es are
omputed via non-rational 
urves and then by proje
tion; a spline is 
omputedby its B-splines representation, applying the well known re
urren
e relation pro-vided by Cox-de Boor [11, 33℄.The most useful NURBS paradigm is limited by the requirement that thesurfa
es are de�ned over re
tangular regions and this leads to topologi
al re
t-angular pat
hes. This limit of NURBS surfa
es is over
ome by the trimmedNURBS, that is NURBS surfa
es de�ned on arbitrary restri
ted parametri
 do-mains. A trimmed NURBS surfa
e 
an be de�ned by a NURBS surfa
e and aset of trimming 
urves in the parametri
 spa
e of the surfa
e. This set of pla-nar, 
losed, non-interse
ting 
urves 
an be 
onveniently represented as NURBS
urves, whi
h are simply redu
ed to a 
losed polygonal when the degree is equalto 1.A trimmed NURBS surfa
e is given by the restri
tion of r(u; v) to a subdo-main D � U � V of the parametri
 spa
e, named trimmed region. This domainD is de�ned as the set of regions on U � V whose boundaries are spe
i�ed bytrimming 
urves. This allows us to identify the part of the surfa
e that remainswhen dis
arding all the holes de�ned by the trimming 
urves.In x
model the trimmed domain is represented by a 2D CSG tree equivalentto the CSG tree presented in [36, 13℄, but di�erently represented. Ea
h nodeof the CSG tree stru
ture is an embedded non-interse
ting 
losed 
urve thatde�nes a limited region built starting from the 2D tree. Regions at the samelevel are disjoint to ea
h other. At alternate levels these regions are 
ombinedusing union and di�eren
e boolean operators. The trimmed region looks like aset of islands and lakes, where the islands represent part of the trimmed region,while the lakes are the holes in it. The algorithm used, forms a union of islands(Ri), and subtra
ts from ea
h island all of its lakes (Sij) starting from a 2D tree:D = I[i=1(Ri\( Li[j=1Sij));where I is the number of islands and Li is the number of the lakes Sij 
hildren ofisland i. The trimmed region that is obtained 
an be determined by 
lassifyinga single point. Conventions 
an be assumed to 
onsider alternate levels of thetree to be island and lake regions, starting from an island/lake top level.Another approa
h implemented in x
model for representing a trimmed do-main D is based on the idea of de
omposing U � V �D using a list of planarsubregions, whose union de�nes the entire 
omplementary domain U � V �D,
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 system 7thus allowing the user to manage a set of surfa
es, de�ned on an irregular do-main, that does not 
ontain any trimming 
urves. This approa
h is implementedas a parti
ular 
ase of a 2D CSG with all �rst-level 
hildren starting from anisland top level.The representation s
heme used in x
model for modelling a solid obje
t is theso-
alled B-rep (Boundary representation). In this s
heme a 'primitive solid' isdetermined by its boundary, that 
onsists of a single 
losed surfa
e, in order toseparate the spa
e into two parts, one of whi
h will be en
losed. A

ording to
onvention, the boundary surfa
e must be parametrized in su
h a way that thesurfa
e normal ve
tor indi
ates the area outside the solid. For example, spheres,
ylinders, et
. are in
luded in this de�nition, as well as 
losed s
ulptured solids.Primitive solids 
an also be 
ombined by boolean operations, su
h as interse
tion,union and di�eren
e, in order to 
reate a 
omplex solid.The boundary of a solid obje
t S is de�ned in terms of trimmed surfa
es asfollows: bS = k[i=1 ri(Di)where Di is the trimmed region asso
iated with the surfa
e ri. A primitive solidis then de�ned by k = 1 and D1 = U � V . The boundary of the solid S is a
losed surfa
e.As a
ademi
 system x
model does not provide any 
ontrol on the topologyof the built obje
ts, thus it does not ensure that the solid 
reated 
orrespondsto a phisi
ally realizable obje
t.4. { Basi
 geometri
 toolsIn this se
tion we present four tools for 
urves whi
h are fundamental in spline
urve and surfa
e modelling in general and in x
model in parti
ular; these areknot-insertion, knot-removal, degree elevation and reparametrization. Note thatall these tools only a�e
t 
urve or surfa
e representations, while geometri
allythe 
urves or surfa
es remain un
hanged.4.1. { Knot-insertion. { This is the pro
ess of expressing a parti
ular 
urve
w(t) in terms of a related spline representation that has one or more additionalknots. This pro
ess is also known as re�nement, sin
e new knots (s � 1) areinserted into the original knot ve
tor T to produ
e a proper re�nement T .Then 
ontrol points Qwi exist su
h that
w(t) = p+L+sXi=1 Qwi N i;p(t):
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iola - s. morigiIn 1980, Boehm [8℄ and Cohen et al. [29℄ independently found two di�erentalgorithms to 
ompute the new 
ontrol points Qwi . EÆ
ient algorithms for im-plementing both the spe
ial 
ase of single knot insertion [8℄ and the general 
ase[10, 54℄ have been proposed. Performan
es are analyzed in [9, 31℄. In x
modelthis tool is used in:� evaluating points and derivatives on 
urves and surfa
es;� subdividing 
urves and surfa
es (splitting);� adding 
ontrol points in order to in
rease 
exibility in shape 
ontrol (in-tera
tive design and hierar
hi
al design);� de
omposition of spline 
urves and surfa
es into their 
onstituent (Bezier)polynomial pie
es;� 
onverting a periodi
 knot ve
tor into a uniform one;� merging two or more knot ve
tors in order to obtain a set of 
urves whi
hare de�ned on a 
ommon knot ve
tor (see se
tion 5);� obtaining polygon (polyhedral) approximations to 
urves (surfa
es) by re-�ning knot ve
tors; this makes the 
ontrol polygon (net) 
onverge to the
urve (surfa
e).4.2. { Knot-removal. { This is the reverse pro
ess of knot insertion. We 
ansay that, given a knot ve
tor T , a knot t is removable if 
w(t) has a pre
ise rep-resentation in the B-spline basis N i;p(t) de�ned over the knot ve
tor T withoutt. A knot-removal algorithm must determine if a knot is removable and howmany times (s � 1), then 
ompute the new 
ontrol points Qwi su
h that the new
urve representation is 
w(t) = p+L�sXi=1 Qwi N i;p(t):Details 
an be found in [75℄. In x
model knot-removal is used to obtain the most
ompa
t representation of the 
urve/surfa
e in:� adjusting knot ve
tor after 
ontrol point insertion/displa
ement;� joining spline 
urves together to form 
omposite 
urves.
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 system 94.3. { Degree elevation. { This tool allows us to represent a spline 
urve 
w(t)as a 
urve with an elevated degree s > p� 1:
w(t) = s+1+LXi=1 Qwi Ni;s+1(t):EÆ
ient but mathemati
ally 
ompli
ated methods to 
ompute the new 
ontrolpoints Qwi are given by Prautzs
h in [68℄, by Cohen et al. in [30, 32℄ and byPrautzs
h and Piper [69℄. The algorithm provided by Prautzs
h and Piper isthe most eÆ
ient for the general 
ase, but Cohen et al. also give simple andeÆ
ient algorithms for low-degrees, su
h as linear to quadrati
 and quadrati
 to
ubi
. All these algorithms raise the degree by 1. In 1994 Piegl and Tiller [64℄presented another algorithm whi
h is mathemati
ally simpler, and 
ompetitivewith that given in [69℄, parti
ularly in the 
ase where the degree is to be raisedby more than 1. In x
model degree elevation is used to:� make 
ompatible se
tion 
urves in the "surfa
e from 
urves" modellingte
hnique (see se
tion 5.3);� obtain "bi-p-i
" parametri
 surfa
es (where e.g. p=4 for bi
ubi
) in sur-fa
es from 
urves modelling te
hniques (see se
tion 5.3), where the orderof the pro�le and traje
tory 
urves may be required to be the same.4.4. { Reparametrization. { Let 
(t) be a parametri
 
urve on t 2 [a; b℄ andassume that t = f(s) is a s
alar-valued fun
tion on s 2 [
; d℄ satisfying:� f 0(s) > 0 for all s 2 [
; d℄,� a = f(
) and b = f(d),the 
omposition of 
(t) and f(s), given by 
(s) = 
(f(s)) is 
alled a reparametriza-tion of 
(t). 
(s) is geometri
ally the same 
urve as 
(t), but parametri
ally theyare di�erent.In x
model we 
onsider only reparametrization fun
tions that keep the 
urve aNURBS. In parti
ular, for a rational linear reparametrization fun
tion in [2℄ and[52℄, an expli
it expression for the reparametrized NURBS 
urve is given.The most 
ommon and useful parametrization is the ar
 length. Su
h a parametriza-tion is unfortunately almost never possible for NURBS, unless for straight lines[37℄. Therefore x
model o�ers several reparametrization te
hniques that best �tthe ar
 length parametrization [18℄.A reparametrization 
an be required be
ause of the e�e
ts that the 
hange ofweights and 
ontrol points have on the parametrization of the 
urve. Moreover,any numeri
al method, or simply the rendering pro
edure, is a�e
ted by theirparti
ular parametrization in terms of 
omputational 
omplexity and numeri
alstability.
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iola - s. morigi5. { Modellingx
model o�ers a set of design tools for modelling 
urves, surfa
es and solidobje
ts that 
an be 
lassi�ed into four 
lasses: basi
 
onstru
tors, shape modi-�ers, surfa
es from 
urves and obje
t 
omposer. Basi
 
onstru
tors build modelsintera
tively or automati
ally, together with the possibility of using, as initialshapes, 
lassi
al primitive obje
ts, su
h as spheres, torus, boxes or more 
omplexobje
ts like revolution surfa
es. Intera
tive modelling tools for shape modi�
a-tion aim to modify the shape of an existing obje
t. In addition, we 
an de�neoperators on 
urves to 
reate surfa
es. Finally, boolean operators are availablefor building 
omplex obje
ts.Ea
h of these tools 
an be used alone or in pipeline fashion in order to getthe �nal geometri
 model ready to be rendered.5.1. { Basi
 
onstru
tors. { In this se
tion we deal with the 
apabilitiesof x
model 
alled "shape approximation" and "data �tting" to 
reate 2D or 3Dshapes ab initio.- Shape approximation -B-splines provide a geometri
ally intuitive basis, one in whi
h the shape of the
urve or surfa
e has a predi
table and 
omprehensible relationship to the 
oeÆ-
ients (i.e. 
ontrol points). This is a spe
ial approximation s
heme named shapeapproximation, whi
h is extremely attra
tive for geometri
 design. A

ording tothis approximation s
heme, an individual 
ontrol point only has a lo
al e�e
t,and does not a�e
t a design beyond the lo
alized region of in
uen
e. In x
model,design tools are provided to give 2D points for a 
ontrol polygon (for 
urves) and3D points for a 
ontrol net (for surfa
es) intera
tively and a set of parameters tode�ne the 
urve or surfa
e shape approximation of the 
ontrol polygon or net.- Data �tting -In this paragraph we deal with �tting, i.e. the 
onstru
tion of NURBS 
urvesand surfa
es whi
h �t a rather arbitrary set of geometri
 data, su
h as pointsand derivative ve
tors. We distinguish two types of �tting, interpolation andapproximation by the least square te
hnique. There are several mathemati
almethods for interpolating or approximating a single-valued fun
tion from a givenset of values, but their appli
ation to 
urve �tting sometimes results in a 
urvethat is very di�erent from what the designer intended. Input to a �tting problem
onsists of geometri
 data, su
h as points and derivatives. Output is a NURBS
urve or surfa
e, i.e. 
ontrol points, knots and weights. Furthermore, either theorder p (or (m;n) for surfa
es) must be the input or the algorithm must sele
tan appropriate order. Very little has been published on setting the weights inthe �tting pro
ess. Most often, all the weights are simply set to 1. Finally, thereare many methods for 
hoosing the knots, most of them heuristi
.The �tting algorithms 
an be global or lo
al. With a global algorithm, a systemof equations is set up and resolved. Sin
e the given data 
onsists only of points
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 system 11and derivatives, and the 
ontrol points are the only unknowns (order, knots andweights have been presele
ted or pre
omputed), the system is linear and hen
eeasy to solve. Lo
al algorithms are more geometri
 in nature, 
onstru
ting the
urve or surfa
e segment-wise, using only lo
al data at ea
h step. These algo-rithms are usually 
omputationally less expensive than global methods and 
andeal with lo
al data anomalies better; however, a
hieving desired levels of global
ontinuity is not a standard matter and lo
al methods often result in multipleinternal knots. In what follows we present the global and lo
al methods for 
urveand surfa
e interpolation and approximation implemented in x
model.� Global 
urve interpolation to point and derivative dataLet Qli; i = 1; : : : ; n and l = 0; : : : ; li, be the interpolation points andderivative ve
tors; we want to interpolate these data with a p-th orderNURBS 
urve. Note that if li = 0 8i, then we have a Lagrange in-terpolation, otherwise we have an Hermite interpolation. If we assign aparameter value ti, to ea
h Q0i , sele
t an appropriate knot ve
tor T andsele
t a positive weight ve
tor W , we 
an set up the (p + L) � (p + L)system of linear equationsp+LXi=1 PiRli;p(ti) = Qli i = 1; : : : ; n l = 0; : : : ; liwith L =Pni=1(li + 1)� p. The 
ontrol points Pi are the unknowns. Theproblem of 
hoosing the ti, T and W remains, and their 
hoi
e a�e
tsthe shape and parametrization of the 
urve. x
model provides four meth-ods of 
hoosing the ti: 
hord length, uniform, 
entripetal and exponential[51, 55℄. The knot ve
tor T is 
omputed in a heuristi
 way, so that theS
hoenberg-Whitney and Karlin-Ziegler 
onditions are satis�ed in orderto have a unique solution for the interpolation problem [58℄. The positiveweight ve
torW 
hara
terizes a rational interpolation from a non-rationalby setting manually or equal weights respe
tively. In the 
ase of Hermiteinterpolation, derivative ve
tors have to be spe
i�ed as input data. For themore 
ommon 
ase of �rst derivative ve
tors, x
model provides the Akimate
hnique [1℄ for an automati
 derivative 
omputation. In the 
ubi
 
asethere is the possibility of interpolating the given points with a periodi

urve or with a rational C1 
urve. In the latter 
ase the NURBS weights
an be used as tension parameters [44℄.� Global surfa
e interpolation to point dataGiven a set of (n+H)� (m+K) data points Qkl k = 1; : : : ; n+H andl = 1; : : : ;m + K, we want to 
onstru
t a non rational (m;n)-order 3D
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e interpolating these points, i.e.n+HXi=1 m+KXj=1 PijNi;n(uk)Nj;m(vl) = Qkl:(1)In x
model this is a
hieved by setting rw(uk; vl) = Qwkl, with all weightsequal. Again, the �rst thing to do is to 
ompute reasonable values for the(uk; vl) and the knot ve
tors U and V . A 
ommon way is to use one of theprevious methods for 
urves to 
ompute parameters ul1; : : : ; uln+H for ea
hl, and then to obtain ea
h uk by averaging a
ross all ulk for l = 1; : : : ;m+K[62℄. Using the parameter points 
omputed, we get the U and V ve
torsin exa
tly the same way as with 
urves. Clearly the equations (1) repre-sent a linear system for the unknowns Pij . However, sin
e the surfa
e istensor produ
t, the Pij 
an be obtained more simply and eÆ
iently as asequen
e of 
urve interpolations. At the moment, x
model provides onlybi
ubi
 spline surfa
e interpolation.� Lo
al 
urve interpolation to point and derivative dataLet Qli; i = 1; : : : ; n and l = 0; 1, be the interpolation points and �rstderivative ve
tors given. By lo
al 
urve interpolation we mean a methodwhi
h 
onstru
ts n polynomials or rational 
urve segments 
i(t); i =0; : : : ; n � 1, su
h that Q0i and Q0i+1 are the end points of 
i(t). Neigh-boring segments are joined with some pres
ribed level of 
ontinuity, andthe 
onstru
tion pro
eeds segment-wise. x
model provides, at the moment,only a lo
al method, whi
h interpolates point and �rst derivative data witha rational globally C1 (
ubi
 over quadrati
). The NURBS weights playthe role of tension parameters and for wi ! 1 8i, the 
urve 
onvergesto the polygonal de�ned by the interpolation points. It is a NURBS adap-tation of an algorithm by Gregory and Sarfraz [44℄.� Weighted and 
onstrained least square 
urve �ttingLet Qi; i = 1; : : : ; n, be the points to be approximated. If we assigna parameter value ti, to ea
h Qi, 
hoose a 
urve order p, an appropriateknot ve
tor T , and sele
t a positive NURBS weight ve
tor W , we 
an setup the n� (p+ L) overdetermined system of linear equationsp+LXi=1 PiRi;p(ti) = Qi i = 1; : : : ; n:Most often, all these weights are simply set to 1. Indeed, for approximation,there is little reason to do otherwise.Optionally the �rst and last given points 
an be 
onstrained (pre
isely
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 system 13interpolated) or the 
urve 
an be 
onstrained to be 
losed and periodi
.We also allow a positive weight to be assigned to ea
h un
onstrained item.In
reasing a weight in
reases the tightness of the approximation to thatitem, whereas de
reasing the weight looses the approximation to that item.Noti
e that these weights have nothing to do with weights in the NURBSsense. x
model also provides a method to approximate the weighted and
onstrained data in the least-squares sense.5.2. { Shape modi�ers. { The purpose of some methods implemented inx
model is to provide tools whi
h allow a user to intera
tively make lo
al mod-i�
ation to an existing NURBS 
urve or surfa
e. A NURBS 
urve or surfa
e isde�ned by its 
ontrol points, weights, knots and orders; modifying one or moreof these parameters, 
an a�e
t and 
hange the shape of the 
urve or surfa
e [66℄.Sin
e x
model is an edu
ational system and assumes the user are experiment-ing and learning, it allows the user to modify all these parameters intera
tively.Generally CAD systems on the market do not allow the user to modify su
hparameters; they apply many prede�ned shape operators to the 
urve or sur-fa
e. Following [60, 61℄, x
model implements some of these operators, su
h as
onstraining a 
urve point to pass over a given point by one 
ontrol point repo-sitioning, by one weight modi�
ations or by two weight modi�
ation, warping,
attening, et
. The result of applying a transformation to the whole spline
urve or surfa
e, gives rise to a spline de�ned by the transformed 
ontrol pointstogether with the original knot ve
tor and 
urve (surfa
e) order. Formally
wA(t) = p+LXi=1 APwi Ni;p(t)is the result of applying the transformation matrix A to the 
urve 
w(t). Inthe 
ase where A is an aÆne transformation, this strategy produ
es exa
tly thesame 
urve (surfa
e) whi
h would have been produ
ed if A had been applied toea
h point on the 
urve (surfa
e).In 1988 Forsey and Bartels [39℄ proposed the Hierar
hi
al Spline Surfa
es(HSS) enabling a surfa
e to be re�ned and detail added, using a hierar
hy, whoselevels 
orrespond to the di�erent levels of re�nement of the surfa
e pat
hes. Thisproposal enables us to restri
t the in
uen
e of re�nement to the relevant partof the surfa
e. In x
model we implemented the HSS idea by using the trimmedNURBS surfa
es power and pre
isely de�ning a "re
tangular trimmed NURBSsurfa
es hierar
hy" [19℄.5.3. { Surfa
e from 
urves. { As intera
tive te
hniques for the s
ulptur-ing of surfa
e shapes on a two dimensional display involve obvious diÆ
ulties,additional tools are available for the designer to model the desired surfa
e usingoperators on 
urves. The most frequently used te
hniques, su
h as skinning,sweeping, and swinging, are adopted in x
model.
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iola - s. morigiNURBS skinning is a spe
ial surfa
e interpolation te
hnique by whi
h anordered set of NURBS 
urves (
alled se
tion 
urves) is interpolated to forma NURBS surfa
e. The se
tion 
urves have to be made 
ompatible, i.e. samedegree and knot ve
tor, by means of the basi
 geometri
 tools des
ribed in se
tion4. If this is the 
ase they will also have the same number of 
ontrol points, andthey 
an be de�ned as follows:
wj (u) = n+HXi=1 QwijNi;n(u); j = 1; : : : ;m+K:For ea
h index i, their 
ontrol verti
es Qwij ; j = 1; : : : ;m +K; in v dire
tionare interpolated using global 
urve interpolation te
hnique in homogeneous spa
e(see se
tion 5.1) obtaining the following 
urves
wi (v) = m+KXj=1 PwijNj;m(v); i = 1; : : : ; n+H;that pass through Qwij at 
ertain ui values.The 
ontrol polygons of the interpolation 
urves together form a 
ontrol meshthat de�nes a skinned surfa
e:r(u; v)w = n+HXi=1 m+KXj=1 PwijNi;n(u)Nj;m(v):The above skinning algorithm is a fairly straightforward generalization to ratio-nal 
urves of the skinning algorithm for polynomial B-spline 
urves des
ribed in[78, 79℄, whi
h has the desirable property that the 
reated surfa
e is as smoothas the se
tion 
urves. Now, as for the rational 
ase, the algorithm works inthe homogeneous spa
e, even if, for example, a rational 
urve is C1 in 3D, itsasso
iated 
urve in 4D may be only C0, that is, the algorithm 
an produ
e aC0 surfa
e in 4D whose asso
iated surfa
e in 3D will exhibit dis
ontinuities.This smoothness problem is addressed in [47℄ and [62℄. The positioning of these
tion 
urves in the spa
e is another 
riti
al problem dis
ussed in [79℄: unevenlypositioned se
tion 
urves 
an lead to unsatisfa
tory surfa
e shapes.NURBS sweeping te
hnique is a spe
ial 
ase of skinning that uses a 
onstantse
tion 
urve and sweeps it along another 
urve (
alled spine or traje
tory 
urve)in order to 
reate a NURBS surfa
e. The positioning points for sweeping 
anbe 
hosen as the spine knot points 
(ui); i = 1; : : : ;m +K. Automati
ally thesystem will pla
e the se
tion 
urves in the 3D spa
e in su
h a way that thepositioning points are mat
hed and ea
h 2D plane on whi
h ea
h se
tion 
urvelies is aligned to the normal of the spine at that point. Then the se
tion 
urves
an be arbitrarily rotated on their planes until the desired position is obtained.
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 system 15The swept surfa
e will also interpolate the spine 
urve whenever the referen
epoint with whi
h the se
tion 
urve is mat
hed to the spine knot points lies onthe se
tion 
urve itself.A revolution surfa
e is generated using a NURBS 
urve whi
h lies in theplane. A full revolution surfa
e is obtained by revolving this 
urve 2� aroundthe z axis. The resulting surfa
e has the formr(u; v) = 9Xi=1 m+KXj=1 PijRi;4(u)Rj;m(v):NURBS swinging is a generalization of the revolution te
hnique, where thetraje
tory 
urve is not ne
essarily 
ir
ular. Given a pro�le 
urve P(u) in thex; z plane P(u) = p+LXi=1 PiRi;p(u)with Pi = (Pxi ; 0; Pzi)T , and a traje
tory 
urve T(v) in the x; y planeT(v) = q+LXj=1 TjRj;q(v)with Tj = (Txj ; Tyj ; 0)T , swinging the pro�le around the z axis along the tra-je
tory 
urve yields the surfa
e:r(u; v) = [sPx(u)Tx(v); sPx(u)Ty(v); Pz(u)℄with 
ontrol points and weights:Qij = [sPxiTxj ; sPxiTyj ; Pzi ℄Twij = wi � wj ;where s is an arbitrary s
aling fa
tor.5.4. { Obje
t 
omposer. { Solid 
onstru
tions 
an be a

omplished by
ombining, using a set of boolean operations, two or more solids; this pro
essis known as the set operation algorithm. Consider, for example, the two solidsA and B, respe
tively de�ned by their boundary surfa
es. The boundaries ofthe solids ASB, ATB, A � B are determined starting from bA and bB, andtrimming away the portion of the pat
hes that does not belong to the resultingsolid. The boundary of the resulting solid is given by the equations known asthe boundary formula [70℄:b(ASB) = (bAT 
B)S(bBT 
A)b(ATB) = (bAT iB)S(bBT iA)b(A�B) = (bAT 
B)S(bBT iA)
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iola - s. morigiwhere iX and 
X represent, respe
tively, the interior and the 
omplement of thesolid X .In [13℄ and [14℄, a set operation algorithm is given, that operates on solidsmodelled with trimmed pat
hes. The proposal given in [14℄ is 
onsidered andadapted for NURBS surfa
es in [15℄ and implemented in the x
model system.The basi
 idea in [14℄ 
onsists in avoiding the interse
tions between trimmedpat
hes by 
onsidering the interse
tions between the pat
hes over the wholedomain. In this way, we 
an then determine the resulting trimmed regions (2DCSG tree) from the interse
tion between the trimmed regions of the solids andthe trimmed regions obtained by the pat
h/pat
h interse
tion operations.A detailed des
ription of the set operation algorithm implemented in the sys-tem is te
hni
ally 
omplex. In the following, we will give a brief des
ription ofthe basi
 steps involved in this pro
ess: the untrimmed surfa
e/surfa
e interse
-tion (SSI), the 2D and 3D Point Membership Classi�
ation (PMC), and the 2D
urve/
urve interse
tion (CCI).- SSI -The SSI pro
edure implemented in x
model is a modi�ed version of the proposalgiven in [3℄; details 
an be found in [17℄. The method exploits the advantageso�ered by the two most frequently used SSI approa
hes, 
urve following andsubdivision, in order to get a good balan
e between robustness and eÆ
ien
y.The 
urve following method begins by �nding some points of interse
tion.Then, the interse
tion 
urve is followed using a numeri
al method [3, 4℄. Thesubdivision method divides the problem into smaller problems by approximatingthe pat
h into simpler linear or quadrati
 sub-pat
hes [48, 14℄. The pat
hesare interse
ted, resulting in 
urves that are then re�ned by another numeri
almethod. The proposed modi�ed algorithm roughly pro
eeds through the fourmain steps that follow:� Adaptive mesh generation; approximate adaptively ea
h of the surfa
es bya grid of isoparametri
 
urves, approximated by pie
ewise linear 
urveswithin a given toleran
e. From this grid we easily obtain a surfa
e trian-gulation;� Initial interse
tion point generation; 
ompute the interse
tions between thegrid segments of a surfa
e and the triangles of the other surfa
e, in orderto obtain at least one starting point for ea
h interse
tion 
urve;� Following an interse
tion 
urve; starting from an initial point on the in-terse
tion 
urve, move along the 
urve by steps. This is done by �rst�nding an estimate for the next point on the interse
tion 
urve, and thenevaluating an exa
t interse
tion within a given toleran
e;� Sorting; �nally, link together the 
urve interse
tion segments found in thepre
eding step in order to obtain 
lose interse
tion 
urves.
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 system 17- 2D and 3D PMC -PMC is a fun
tion that takes, as its input, a point P and a 
losed set S, andreturns one of three possible out
omes: P is inside S, P is on the boundary ofS, or P is outside S. The set operation algorithm makes extensive use of PMCin both two and three dimensions. During the 
onstru
tion of the 2D CSG treeresulting from a boolean operation, a single 3D point is 
lassi�ed with respe
tto the opposing solid. The result will be used for further 2D 
lassi�
ations inorder to build a 
olle
tion of half-spa
es whi
h, ultimately, be
ome the leaves ofthe 2D CSG tree [13, 14℄.A 
ommon 
on
ept is used for both 2D and 3D 
lassi�
ation: a ray is ex-tended from the point to be 
lassi�ed, and the number of interse
tions of the raywith the boundary of the set determines the membership status of the point.An even number of interse
tions means that the point is outside the set,while an odd number implies that the point is inside.While the 
on
ept is the same, its implementation is very di�erent for two orthree dimensions. In the 2D 
ase, the ray is interse
ted with polygons or 
urvedboundaries. In the 3D 
ase, the boundary 
onsists of trimmed pat
hes, and aray/pat
h method is required [57℄.- CCI -This problem 
an either be ta
kled geometri
ally, that is, using subdivision te
h-niques for the 
urves, thus exploiting the 
onvex-hull property of the NURBS
urves [50, 72℄, or numeri
ally. In x
model the geometri
 approa
h is imple-mented.6. { S
ene des
riptionOn
e the geometri
 models of the obje
ts have been 
reated, the modellingof a realisti
 s
ene is based on positioning, orientating the obje
ts in the s
ene,
hara
terizing their materials, and de�ning the light sour
es illuminating them.This 
an be realized by applying an illumination model and some textures.An illumination model is designed to determine the intensity of light re
e
tedby an observer's eye at ea
h point (pixel) in an image. In a global illumina-tion model the intensity of the light re
e
ted from a point to the observer isdetermined by the light that rea
hes a point by re
e
tion from, or transmissionthrough, other obje
ts in the s
ene, as well as the light in
ident from any lightsour
es.The illumination model implemented in the system is based on the global illumi-nation model proposed by Whitted [77℄. This model derives from the te
hniquesintrodu
ed previously by Phong [12℄ and Blinn [7℄.The two traditional methods of texturing implemented in x
model are texturemaps and pro
edural textures. By a texture mapping, an image is mapped ontoan obje
t. This map is realized by positioning the obje
t to be mapped on
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iola - s. morigithe image spa
e and applying an orthogonal proje
tion [7, 38℄. A pro
eduraltexture is an analyti
al fun
tion de�ned in 3D spa
e, that is, a fun
tion thatassigns some visual properties to every point in the 3D texture spa
e. Theresult of the appli
ation of a pro
edural texture on an obje
t is given by pla
ingthe obje
t in the texture spa
e.7. { RenderingThe rendering of NURBS surfa
es as well as 
urves is a very important taskin an intera
tive graphi
s system, su
h as x
model. We distinguish between lowand high level rendering quality.7.1. { Low level or real time rendering. { A low level rendering quality algo-rithm uses a pie
ewise planar approximation of the surfa
e in order to produ
ereasonable images in a reasonable time. x
model provides two strategies: a uni-form approximation and an adaptive approximation within a given toleran
e.The adaptive approximation adopted by the system is not the well known re
ur-sive pro
edure that subdivides the surfa
e until it is "
at enough". In fa
t thispro
edure is very time and spa
e 
onsuming. Instead we have implemented theadaptive mesh generation proposed in [3℄ as the initial step for an SSI method.This 
onsists in a surfa
e approximation using an adaptive grid of isoparametri

urves within a given toleran
e.If the surfa
e is trimmed, on
e the adaptive mesh for the whole surfa
e hasbeen 
omputed, we need to merge the trimming 
urves and the mesh to yield
losed domain polygons and then triangulate them. The triangulation algorithmimplemented in x
model was inspired by [63℄ and [67℄. The latter proposal isnot parametrization dependent and pro
eeds with di�erent toleran
es for thetrimming 
urves and the surfa
e. Our implementation di�ers in the adaptiveapproximation and in the domain polygon triangulation; in this latter 
ase weadopted a simple but faster heuristi
 approa
h than a Delaunay triangulation.On
e a suitable, planar approximation for the surfa
e is obtained, x
model pro-vides four di�erent low level rendering quality methods:� a wire frame representation of the grid surfa
e;� a wire frame representation of the grid surfa
e following the strategy ofdrawing ea
h grid segment with a di�erent grey level in a

ordan
e withthe distan
e from the observer (depth 
ueing);� a wire frame representation of the grid surfa
e following the hidden linestrategy. The implemented hidden line method was derived from [59℄ thenimproved in [53℄. An optimization performan
e strategy was proposed in[16℄. This proposal 
onsists of a quasi exa
t hidden line algorithm highlysuitable for a real time visualization.
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 system 19� a shading algorithm (Gouraud or Phong) of planar approximation. It
onsists in evaluating the illumination model at various lo
ations: on
eper vertex for Gouraud shading, and on
e per pixel for Phong shading[12, 38℄.7.2. { High level or realisti
 rendering. { High quality rendering algorithmsuse an exa
t representation. x
model provides a ray tra
ing algorithm spe
ializedfor NURBS surfa
es. The basi
 problem in a ray-tra
ing surfa
e algorithm is theray/pat
h interse
tion. If the surfa
e is trimmed, it follows a step to determinewhether the interse
tion point lies inside or outside a trimmed region using a2D PMC algorithm. In x
model three methods for ray/pat
h interse
tion areimplemented:� Toth [76℄Toth's algorithm is based on interval Newton iteration. It works robustlyon any parametri
 surfa
e for whi
h bounds onto the surfa
e and its �rstderivative 
an be obtained.� Bezier Clipping [57℄This algorithm uses the 
onvex-hull property in a powerful manner, bydetermining parameter ranges whi
h guarantee that they do not in
ludepoints of interse
tion. Bezier Clipping has the 
avor of a geometri
allybased interval Newton method, and thus may be 
ategorized as partly asubdivision based algorithm and partly a numeri
al method.� Toth speed [56, 74℄A new approa
h, following one of our ideas, was 
alled Toth speed. It is a
ombination of the Toth and Bezier Clipping algorithms that outperformstheir performan
es. The idea is to redu
e the appli
ation of the intervalNewton iterations of the Toth method, trying to �nd the solution usinga simple Newton, in the knowledge that, if a solution exists, it is unique.If this fails, an interval Newton iteration is applied. Moreover, when theToth algorithm is for
ed to use binary subdivision, our method uses BezierClipping.Our ray tra
ing implementation exploits a 
ertain number of optimizationte
hniques [42℄ in order to speed up performan
e, su
h as subdividing a 3D s
eneinto a uniform grid of voxels [41℄, subdividing the NURBS surfa
es in rationalBezier pat
hes, further subdividing ea
h rational Bezier pat
h until a given 
attoleran
e is rea
hed and introdu
ing a se
ond level of subdivision of the surfa
ebounding boxes [56℄.In Fig.3, some modelling examples produ
ed using x
model system by under-graduates in Computer S
ien
e at the University of Bologna, are shown.
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Figure 3: S
enes modelled and rendered with the x
model system



x
model: an aCADemi
 system 218. { A
knowledgementsThe system has developed over several years, and thanks are due to a numberof people who made signi�
ant and minor 
ontributions to its development andtesting. REFERENCES[1℄ I. Akima, A new method of interpolation and smooth 
urve �tting based onlo
al pro
edures, Journal of ACM, 17 (1970), pp. 589{602.[2℄ L. Alt, Rational linear reparametrization of NURBS and the blossomingprin
iple, Computer Aided Geometri
 Design, 10 (1993), pp. 465{467.[3℄ R.E. Barnhill - G. Farin - M. Jordan - B.R. Piper, Surfa
e Surfa
eInterse
tion, Computer Aided Geometri
 Design, 4 (1987), pp. 3{16.[4℄ R.E. Barnhill - S.N. Kersey, A mar
hing method for parametri
 sur-fa
e/surfa
e interse
tion, Computer Aided Geometri
 Design, 7 (1990), pp.257{280.[5℄ B.A. Barsky - D.P. Greenberg, Determining a set of B-spline 
ontrolverti
es to generate an interpolation surfa
e, Computer Graphi
s and ImagePro
essing, 14 (1980), pp. 203{226.[6℄ R.H. Bartels - J.C. Beatty - B.A. Barsky, An introdu
tion to splinesfor use in 
omputer graphi
s and geometri
 modelling, Morgan Kaufmanpublishers, (1987).[7℄ J.F. Blinn - M.E. Newell, Texture and re
e
tion in 
omputer generatedimages, Communi
ation of ACM, 19 (1976), pp. 542{547.[8℄ W. Boehm, Inserting new knots into B-spline 
urves, Computer Aided De-sign, 12 (1980), pp. 199{201.[9℄ W. Boehm, On the eÆ
ien
y of knot insertion algorithms, Computer AidedGeometri
 Design, 2 (1985) pp. 141{143.[10℄ W. Boehm - H. Prautzs
h, The insertion algorithm, Computer-AidedDesign, 17 (1985), pp. 58{59.[11℄ C. deBoor, On 
al
ulating with B-splines, Journal of Approximation The-ory, 6 (1972), pp. 50{62.[12℄ Bui-Tuong - Phong, Illumination for 
omputer generated pi
tures, Com-muni
ation of ACM, 18 (1975), pp. 449{455.



22 g. 
as
iola - s. morigi[13℄ M.S. Casale, Free-form solid modeling with trimmed surfa
e pat
hes,IEEE Computer Graphi
s & Appli
ations, Jan. (1987), pp. 33{43.[14℄ M.S. Casale - J.E. Bobrow, A set operation algorithm for s
ulpturedsolids modeled with trimmed pat
hes, Computer Aided Geometri
 Design, 6(1989), pp. 235{247.[15℄ G. Cas
iola - B. Quaquarelli, Primitive solide, operazioni Booleane eNURBS, Pro
eedings of ICO-GRAPHICS'90, (1990).[16℄ G. Cas
iola - S. Morigi, Graphi
s in parallel 
omputation for rendering3D modelled s
enes, Parallel Computing, 21 (1994), pp. 1365{1382.[17℄ G. Cas
iola - S. Morigi, Il problema SSI nella modellazione solida 
onsuper�
i NURBS, Atti dell'A

ademia delle S
ienze dell'Istituto di Bologna,Serie V (1995), pp. 107{127.[18℄ G. Cas
iola - S. Morigi, Reparametrization of NURBS 
urves, Interna-tional Journal Shape Modelling, 2 (1996), pp. 103{116.[19℄ G. Cas
iola - S. Morigi, The trimmed NURBS age, submitted, (1999).[20℄ G. Cas
iola, x
model: a system to model and render NURBS 
urves andsurfa
es, User's Guide - Version 1.0, Progetto MURST: "Analisi Numeri
a:Metodi e Software Matemati
o", Ferrara (2000)http://www.dm.unibo.it/�
as
iola/html/x
model.html[21℄ G. Cas
iola, x

urv: the 2D modeller, User's Guide - Version1.0, Pro-getto MURST: "Analisi Numeri
a: Metodi e Software Matemati
o", Ferrara(2000)http://www.dm.unibo.it/�
as
iola/html/x
model.html[22℄ G. Cas
iola, x
surf: the 3D modeller, User's Guide - Version 1.0, Pro-getto MURST: "Analisi Numeri
a: Metodi e Software Matemati
o", Ferrara(2000)http://www.dm.unibo.it/�
as
iola/html/x
model.html[23℄ G. Cas
iola - G. DeMar
o, x
bool: the obje
t 
omposer, User's Guide- Version 1.0, Progetto MURST: "Analisi Numeri
a: Metodi e SoftwareMatemati
o", Ferrara (2000)http://www.dm.unibo.it/�
as
iola/html/x
model.html[24℄ G. Cas
iola, x
rayt: the s
ene des
riptor, User's Guide - Version 1.0,Progetto MURST: "Analisi Numeri
a: Metodi e Software Matemati
o", Fer-rara (2000)http://www.dm.unibo.it/�
as
iola/html/x
model.html



x
model: an aCADemi
 system 23[25℄ G. Cas
iola, MATRIX library: Programming Guide - Version 1.0, (1999)http://www.dm.unibo.it/�
as
iola/html/x
model.html[26℄ G. Cas
iola - S. Bonetti, des
riptor library: Programming Guide - Ver-sion 1.0, (1999) http://www.dm.unibo.it/�
as
iola/html/x
model.html[27℄ G. Cas
iola - G. DeMar
o, trim library: Programming Guide - Version1.0, (1999) http://www.dm.unibo.it/�
as
iola/html/x
model.html[28℄ G. Cas
iola - S. Bonetti, xtools library: Programming Guide - Version1.0, (1999) http://www.dm.unibo.it/�
as
iola/html/x
model.html[29℄ E. Cohen - T. Ly
he - R.F. Riesenfeld, Dis
rete B-splines and subdi-vision te
hniques in 
omputer-aided geometri
 design and 
omputer graphi
s,Computer Graphi
s and Image Pro
essing, 14 (1980), pp. 87{111.[30℄ E. Cohen - T. Ly
he - L.L. S
humaker, Algorithms for degree-raisingof splines, Transa
tion On Graphi
s, 4 (1985), pp. 171{181.[31℄ E. Cohen - T. Ly
he - K. Morken, Knot line re�nement algorithmsfor tensor produ
t B-splines surfa
es, Computer Aided Geometri
 Design, 2(1985), pp. 133{139.[32℄ E. Cohen - T. Ly
he - L.L. S
humaker, Degree raising for splines,Journal of Approximation Theory, 46 (1986), pp. 170{181.[33℄ M.G. Cox, The numeri
al evaluation of B-splines, J. Inst. Math. Appl.,10 (1972), pp. 134{149.[34℄ T. Dokken, Finding interse
tions of B-spline represented geometries us-ing re
ursive subdivision te
hniques, Computer Aided Geometri
 Design, 2(1985), pp. 189{195.[35℄ G. Farin, Curves and surfa
es for CAGD: a pra
ti
al guide, A
ademi
Press In
., (1993).[36℄ R.T. Farouki, Trimmed-surfa
e algorithms for the evaluation and interro-gation of solid boundary representations, IBM J.RES.DEVELOP., 31 (1987),pp. 314{333.[37℄ R.T. Farouki - T. Sakkalis, Real rational 
urves are not 'unit speed',Computer Aided Geometri
 Design, 8 (1991), pp. 151{157.[38℄ J.D. Foley - A. VanDam - S.K. Feiner - J.F. Hughes, ComputerGraphi
s prin
iples and pra
ti
e, II Edition, Addison Wesley, (1990).[39℄ D.R. Forsey - R.H. Bartels, Hierar
hi
al B-spline re�nement, Pro
eed-ing SIGGRAPH'88, In Computer Graphi
s, 22 (1988), pp. 205{212.



24 g. 
as
iola - s. morigi[40℄ R.D. Fuhr - M. Kallay, Monotone linear rational spline interpolation,Computer Aided Geometri
 Design, 9 (1992), pp. 313{319.[41℄ A. Fujimoto - T. Tanaka - K. Iwata, ARTS: a

elerated ray-tra
ingsystem, IEEE Comp. Graphi
s and Appl., April (1986), pp. 16{26.[42℄ A. Glassner ed., Introdu
tion to ray tra
ing, A
ademi
 Press, (1989).[43℄ A. Grandine, Computing zeroes of spline fun
tions, Computer-Aided Ge-ometri
 Design, 6 (1989), pp. 129{136.[44℄ J.A. Gregory - M. Sarfraz, A rational 
ubi
 spline with tension, Com-puter Aided Geometri
 Design, 7 (1990), pp. 1{13.[45℄ Ch.M. Hoffmann, Geometri
 and Solid Modeling. An Introdu
tion, Mor-gan Kaufmann Publishers, (1989).[46℄ M.E. Hohmeyer - B.A. Barsky, Rational 
ontinuity: parametri
, geo-metri
 and frenet frame 
ontinuity of rational 
urves, ACM Transa
tion onComputer Graphi
s, 8 (1989), pp. 335{359.[47℄ M.E. Hohmeyer - B.A. Barsky, Skinning rational B-spline 
urves to
onstru
t an interpolatory surfa
e, CVGIP: Graphi
al Models and ImagePro
essing, 53 (1991), pp. 511{521.[48℄ E.G. Houghton - R.F. Emnett - J.D. Fa
tor - C.L. Sabharwal,Implementation of a divide-and-
onquer method for interse
tion of paramet-ri
 surfa
es, in R.E.Barnhill, W.Boehem, eds. Surfa
es in Computer AidedGeometri
 Design, North-Holland, (1984).[49℄ P. Lan
aster - K. Salkauskas, Curve and surfa
e �tting, an introdu
-tion, A
ademi
 Press, (1986).[50℄ J.M. Lane - R.F. Riesenfeld, A theoreti
al development for the 
omputergeneration and display of pie
ewise polynomial surfa
es, IEEE Transa
tionon PAMI, 2 (1980), pp. 35{46.[51℄ E.T.Y. Lee, Choosing nodes in parametri
 
urve interpolation, Computer-Aided Design, 21 (1989), pp. 363{370.[52℄ E.T.Y. Lee - M.L. Lu
ien, M�obius reparametrization of rational B-splines, Computer Aided Geometri
 Design, 8 (1991), pp. 213{215.[53℄ L. Li, Hidden-line algorithm for 
urved surfa
es, Computer-Aided Design,20 (1988), pp. 466{470.[54℄ T. Ly
he - K. Morken, Making the Oslo algorithm more eÆ
ient, SIAMJ. Numer. Anal., 23 (1986), pp. 663{675.



x
model: an aCADemi
 system 25[55℄ W. MA - J.P. Kruth, Parametrization of randomly measured points forleast square �tting of B-spline 
urves and surfa
es, Computer-Aided Design,27 (1995), pp. 663{675.[56℄ M. Marini - D. Grilli, Un algoritmo di ray-tra
ing per super�
i splinerazionali trimmate, Master Thesis in Computer S
ien
e, University ofBologna, (1995).[57℄ T. Nishita - T.W. Sederberg - M. Kakimoto, Ray tra
ing trimmedrational surfa
e pat
hes, ACM Computer Graphi
s, 24 (1990), pp. 337{345.[58℄ G. Nurnberger, Approximation by Spline Fun
tions, Springer Verlag,(1989).[59℄ Y. Ohno, A hidden line elimination method for 
urved surfa
es, Computer-Aided Design, 15 (1983), pp. 209{216.[60℄ L.A. Piegl, Modifying the shape of rational B-splines. Part 1: 
urves,Computer-Aided Design, 21 (1989), pp. 509{518.[61℄ L.A. Piegl, Modifying the shape of rational B-splines. Part 2: surfa
es,Computer-Aided Design, 21 (1989), pp. 538{546.[62℄ L.A. Piegl, On NURBS: a survey, IEEE Comput. Graph. and Appl., 10(1991), pp. 55{71.[63℄ L.A. Piegl - A.M. Ri
hard, Tessellating trimmed NURBS surfa
es,Computer-Aided Design, 27 (1995), pp. 16{26.[64℄ L.A. Piegl - W. Tiller, Software-engineering approa
h to degree eleva-tion of B-spline 
urves, Computer-Aided Design, 26 (1994), pp. 17{28.[65℄ L.A. Piegl - W. Tiller, Algorithm for approximate NURBS skinning,Computer-Aided Design, 28 (1996), pp. 699{706.[66℄ L.A. Piegl - W. Tiller, The NURBS book, Springer, (1995).[67℄ L.A. Piegl - W. Tiller, Geometry-based triangulation of trimmedNURBS surfa
es, Computer-Aided Design, 30 (1998), pp. 11{18.[68℄ H. Prautzs
h, Degree elevation of B-spline 
urves, Computer Aided Ge-ometri
 Design, 1 (1984), pp. 193{198.[69℄ H. Prautzs
h - B. Piper, A fast algorithm to raise the degree of spline
urves, Computer Aided Geometri
 Design, 8 (1991), pp. 253{265.[70℄ A.A.G.Requi
ha, Mathemati
al models of rigid solids, Te
h. Memo. 28,Produ
tion Automation Proje
t, University of Ro
heste (1977).



26 g. 
as
iola - s. morigi[71℄ S. Roth, Ray 
asting for solid modeling, Computer Graphi
s and ImagePro
essing, 18 (1982), pp. 109{144.[72℄ T.W. Sederberg - T. Nishita, Curve interse
tion using Bezier-
lipping,Computer-Aided Design, 24 (1990), pp. 538{549.[73℄ T.W. Sederberg - S.R. Parry, Comparison on three 
urve interse
tionalgorithm, Computer-Aided Design, 18 (1986), pp. 58{63.[74℄ S. Spagna, Analisi, sviluppo e appli
azione di metodi di intersezione perspline razionali, Master Thesis in Compuer S
ien
e, University of Bologna,(1998).[75℄ W. Tiller, Knot-removal algorithms for NURBS 
urves and surfa
es,Computer-Aided Design, 24 (1992), pp. 445{453.[76℄ D. Toth, On ray tra
ing parametri
 surfa
es, Pro
eeding of SIG-GRAPH'85, In Computer Graphi
s, 19 (1985), pp. 171{179.[77℄ T. Whitted, An improved illumination model for shaded display, Commu-ni
ation ACM, 23 (1980), pp. 96{102.[78℄ C.D. Woodward, Cross-se
tional design of B-spline surfa
es, Computer& Graphi
s, 11 (1987), pp. 193{201.[79℄ C.D. Woodward, Skinning te
hniques for intera
tive B-spline surfa
e in-terpolation, Computer-Aided Design, 20 (1988), pp. 441{451.


