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Abstract. In this paper we present a NURBS version of the rational
interpolating spline with tension introduced in [2], and we extend our
proposal to the rectangular topology case. In particular we present
some rational interpolating techniques that enable us to reconstruct
shape-preserving bivariate NURBS and allow us to interactively mod-
ify the resulting surface by a set of tension parameters.

§1. Introduction

Looking at the history of CAGD in industry, it appears that the need for
compatible formats to exchange data among different systems led to the
introduction of NURBS representation, which is even today, the current
industry standard. However, even if NURBS is the most important entity
in industrial applications, in all commercial software packages the weights
are not used when approximating or interpolating with NURBS. This
is because the desired range of values that they should attain is rather
restrictive (weights should be positive, bounded away from zero and also
have a reasonable upper bound in standard form). However, the main
reason for the limited use of interpolating NURBS is that treating weights
and control points as unknowns immediately requires the solution of a
nonlinear problem. Therefore, the literature is extremely poor in the field
of rational interpolation, since very few authors have tried to face all the
difficulties that arise. Furthermore, as NURBS representation can only
be used to a very limited extent for actual modelling purposes, the only
exception might be to style an application where the weights are used as
fairing or sculpting parameters.

These considerations motivated the research reported in this paper,
where we propose a univariate/bivariate interpolating NURBS, whose
weights are used as tension parameters. The univariate form is the NURBS
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version of the rational interpolating spline with tension originally proposed
in [2] and [3] in order to improve classical polynomial tension methods.
In fact, while the most famous interpolating splines with tension, the
so-called ν-splines [5,6], are limited to the parametric case, our proposal
works efficiently both in non-parametric and parametric cases. However,
as our aim is simply to underline the possibility of applying an interpolat-
ing method with tension properties to non-parametric sets of points, we
will limit our attention to the scalar formulation only. In the same way,
when we present the extension of this proposal to the bivariate case, we
address our attention to non-parametric rational interpolating techniques
of a rectangular set of points, while stressing that, in comparison to the
few other tension methods proposed up to now, our solution is highly
flexible for geometric modelling purposes and can be implemented in a
NURBS-based CAD system with a really low computational cost.

§2. Piecewise Rational Cubic Interpolant with Tension

Definition 1. Let (xi, Fi), i = 0, ..., N (with x0 < x1 < ... < xN ) be
interpolating points and let Di, i = 0, ..., N , denote first derivative values
defined at the knots xi. Then a piecewise rational cubic interpolating
function c(x) ∈ C1

[x0,xN ] is defined for x ∈ [xi, xi+1], i = 0, ..., N − 1, by
the following expression

ci(x) = FiR
i
0,3(x) + GiR

i
1,3(x) + HiR

i
2,3(x) + Fi+1R

i
3,3(x) (1)

where Gi := Fi + hiDi

3wi
, Hi := Fi+1 − hiDi+1

3wi
(with hi = xi+1 − xi) and

Ri
j,3(x) =

λi
jBi

j,3(x)
∑

3

k=0
λi

k
Bi

k,3
(x)

, j = 0, ..., 3 are the rational basis functions de-

fined via the positive weights λi
0 = λi

3 := 1, λi
1 = λi

2 := wi and the cubic
Bernstein polynomials Bi

j,3(x), j = 0, ..., 3.

Here wi is a tension parameter for the single piece ci(x), i.e., if wi → ∞,
ci(x) converges uniformly to the linear interpolant on [xi, xi+1]. Addition-
ally, when all the tension parameters wi, i = 0, ..., N − 1, are increased,
the rational spline c(x) converges uniformly to a C1 piecewise linear inter-
polant; these piecewise rational cubic Bézier functions can be represented
as NURBS, that is on a single knot partition with triple knots, and in the
special case of equal tension parameters, with double knots. Note that,
assuming the derivative values Di, i = 1, ..., N − 1, to be degrees of free-
dom, and computing them by the imposition of C2-continuity conditions,
c(x) ∈ C2

[x0,xN ], see [2,3].

Remark 1. In the parametric formulation, this proposal has the funda-
mental property that the curve parameterization is good for any choice of
the tension parameters, as these influence both basis functions and control
points.
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Now, writing (1) in the equivalent form

ci(x) = Fiφ
i
0,3(x) + Diφ

i
1,3(x) + Di+1φ

i
2,3(x) + Fi+1φ

i
3,3(x), (2)

we can see ci(x) as the rational cubic Hermite interpolant, where

φi
0,3(x) = Ri

0,3(x) + Ri
1,3(x), φi

1,3(x) = hi

3wi
Ri

1,3(x)

φi
2,3(x) = − hi

3wi
Ri

2,3(x), φi
3,3(x) = Ri

2,3(x) + Ri
3,3(x)

(3)

are rational cubic Hermite basis functions.
When wi = 1, Ri

j,3(x) j = 0, ..., 3 become the cubic Bernstein poly-

nomials Bi
j,3(x) j = 0, ..., 3, φi

j,3(x) j = 0, ..., 3 become the cubic Hermite
basis functions, and c(x) the well-known piecewise cubic Hermite inter-
polant. The latter represents the only tension method implemented in
commercial modelling systems. But, while it requires the changing of the
modulus of the derivatives assigned at the given interpolating points in
order to achieve tension effects on the resulting curve, the rational piece-
wise cubic Hermite interpolating technique we propose allows local/global
tension effects, without changing the given data set.

§3. Bivariate Rational Interpolating Functions with Tension

In this section we introduce some methods that allow us to reconstruct the
single-valued surface interpolant of a given rectangular set of points and
to modify the resulting shape, either locally or globally, using the so-called
tension parameters.

3.1. Composition of bicubic partially blended tension patches

The first method we present is a transfinite interpolating method. After
defining a network of rational cubic Hermite interpolating functions, by
assuming the values zi,j, i = 0, ...,M, j = 0, ..., N , and the first derivatives
fx

i,j , f
y
i,j , i = 0, ., M , j = 0, ..., N , corresponding to the rectangular grid

points (xi, yj), i = 0, ...,M , j = 0, ..., N (with x0 < x1 < ... < xM and
y0 < y1 < ... < yN), we suggest blending the four intersecting rational
cubics forming the boundary of each individual patch using the partially
bicubic Coons technique (see [1]).

Definition 2. The (i, j)th bicubic partially blended Coons patch
Si,j(x, y), assuming values zh,k and derivatives fx

h,k, f
y
h,k, h = i, i + 1, k =

j, j+1 corresponding to the four corners of the domain [xi, xi+1]×[yj , yj+1],
can be defined by the matrix form:

Si,j(x, y) = − [−1 φi
0,3(x) φi

3,3(x) ]×




0 S(x,yj) S(x,yj+1)

S(xi,y) S(xi,yj) S(xi,yj+1)

S(xi+1,y) S(xi+1,yj) S(xi+1,yj+1)









−1
φ

j
0,3(y)

φ
j
3,3(y)



 ,
(4)
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where wi = wj = 1 ∀i, j so that φi
s,3(x) and φ

j
s,3(y), s = 0, 3 are the cubic

Hermite blending functions and S(x, yj), S(x, yj+1), S(xi, y), S(xi+1, y)
denote, the rational cubics with tension defined on the sides of [xi, xi+1]×
[yj , yj+1] using (2) with

Fi Di Di+1 Fi+1 wi

S(x, yj) zi,j fx
i,j fx

i+1,j zi+1,j ωi,j

S(x, yj+1) zi,j+1 fx
i,j+1 fx

i+1,j+1 zi+1,j+1 ωi,j+1

S(xi, y) zi,j f
y
i,j f

y
i,j+1 zi,j+1 τi,j

S(xi+1, y) zi+1,j f
y
i+1,j f

y
i+1,j+1 zi+1,j+1 τi+1,j .

Remark 2. The composition S(x, y) of the partially blended Coons
patches Si,j(x, y), i = 0, ...,M − 1, j = 0, ..., N − 1, inherits all the prop-
erties of the network of boundary curves. Therefore it is characterized by
a set of M × (N +1) tension parameters ωi,j , i = 0, ...,M − 1, j = 0, ..., N ,
in the x direction and by a set of (M + 1) × N tension parameters
τi,j , i = 0, ...,M, j = 0, ..., N − 1 in the y direction, which ensure lo-
cal/global tension effects (see Fig. 1 and Fig. 2 left for examples of local
tension).

Proposition 3. The composition S(x, y) defined above is a C1-continu-
ous degree-seven piecewise rational surface with shape-preserving proper-
ties when interpolating to monotonic and convex data sets.

Proof: To prove that S(x, y) is made of degree-seven rational patches, it is
sufficient to make the boolean sum form (4) explicit; the result immediatly
follows if we note that a rational cubic with tension can be simplified as a
cubic over a quadratic (this is due to the equality of its central weights).
Since the boundary curves are C1-continuous and the blending functions
satisfy the conditions (φi

s,3)
′(xi) = (φi

s,3)
′(xi+1) = 0 and (φj

s,3)
′(yj) =

(φj
s,3)

′(yj+1) = 0, s = 0, 3, i = 0, ...,M − 1, j = 0, ..., N − 1, continuity of
cross-boundary derivatives is automatically satisfied. Furthermore, from
the tension and shape-preserving properties of the network of boundary
curves (proved in [2,3]), the corresponding tension and shape-preserving
properties on the transfinite interpolating surface S(x, y) trivially follow.

3.2. Composition of bicubically blended tension patches

The bicubic partially blended Coons patch defined above is easy to use
in a design environment, since only the four boundary curves are needed.
However, a more flexible composite C1 Coons surface can be developed
if, together with the boundary curves, the cross-boundary derivatives,
interpolating to the tangent vectors and twist vectors assigned in the 2×2
grid points, are given.
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Definition 4. The (i, j)th bicubically blended surface patch Si,j(x, y), i =
0, ...,M − 1, j = 0, ..., N − 1, assuming the values zh,k and the derivatives
fx

h,k, f
y
h,k, f

xy
h,k, in the 2 × 2 grid points (xh, yk), h = i, i + 1, k = j, j + 1,

can be defined by the matrix form:

Si,j(x, y) = − [−1 φi
0,3(x) φi

3,3(x) φi
1,3(x) φi

2,3(x) ]× (5)















0 S(x,yj) S(x,yj+1) S
y

(x,yj)
S

y

(x,yj+1)

S(xi,y) S(xi,yj) S(xi,yj+1) S
y

(xi,yj)
S

y

(xi,yj+1)

S(xi+1,y) S(xi+1,yj) S(xi+1,yj+1) S
y

(xi+1,yj)
S

y

(xi+1,yj+1)

Sx
(xi,y) Sx

(xi,yj)
Sx

(xi,yj+1)
S

xy

(xi,yj)
S

xy

(xi,yj+1)

Sx
(xi+1,y) Sx

(xi+1,yj)
Sx

(xi+1,yj+1) S
xy

(xi+1,yj)
S

xy

(xi+1,yj+1)





























−1
φ

j
0,3(y)

φ
j
3,3(y)

φ
j
1,3(y)

φ
j
2,3(y)















where wi = wj = 1 ∀i, j and S(x, yj), S(x, yj+1), S(xi, y), S(xi+1, y) de-
note the rational cubics with tension defined above, interpolating to the
corner data and tangent vectors, while Sy(x, yj), Sy(x, yj+1), Sx(xi, y),
Sx(xi+1, y) denote the rational cubics with tension interpolating to tan-
gent and twist vectors, defined by (2) with

Fi Di Di+1 Fi+1 wi

Sy(x, yj) f
y
i,j f

xy
i,j f

xy
i+1,j f

y
i+1,j ωi,j

Sy(x, yj+1) f
y
i,j+1 f

xy
i,j+1 f

xy
i+1,j+1 f

y
i+1,j+1 ωi,j+1

Sx(xi, y) fx
i,j f

xy
i,j f

xy
i,j+1 fx

i,j+1 τi,j

Sx(xi+1, y) fx
i+1,j f

xy
i+1,j f

xy
i+1,j+1 fx

i+1,j+1 τi+1,j .

Remark 3. As asserted above, the composition S(x, y) of the bicubically
blended Coons patches Si,j(x, y), i = 0, ...,M − 1, j = 0, ..., N − 1 is a
degree-seven piecewise rational surface, which inherits all the properties of
the network of boundary curves (see Fig. 3 left, Fig. 4). In this case, using
a network of C2 boundary curves, we are able to obtain a C2 surface.

Remark 4. While in the previous method only two of the cubic Hermite
basis functions are used (as the name bicubic partially blended suggests),
this time, we have to use all four cubic Hermite blending functions in
both the coordinate directions to obtain a patch that incorporates cross-
boundary derivatives as well. Exchanging the used cubic Hermite blending
functions with the four rational cubic Hermite polynomials defined in (3),
and setting all tension parameters in x and y directions, respectively equal
to ŵ and w, we can achieve a global tension control of the interpolating
surface in the coordinate directions (see Fig. 2 right).
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3.3. C1-joined tension patches

The tensor-product surface of the rational cubics with tension defined in
Section 2 is not useful because any one of the shape parameters controls
the tension on the entire corresponding strip of the surface. The two
Coons techniques proposed in Sects. 3.1 and 3.2 can describe a much richer
variety of interpolating NURBS surfaces than do tensor-product surfaces
and, additionally, they can ensure local tension effects. However, they
cannot be represented in a bicubic degree NURBS form. Sarfraz’s method
[7] (which seems to be the only one presented in the literature up to now)
can provide an interpolatory surface with local tension properties, but it
cannot be described in a NURBS form because it uses a rational bicubic
degree representation with functional weights. Moreover, its computation
is too time-consuming to be useful in a geometric modelling system. These
considerations prompted us to look for an alternative strategy which could
generate a rational Hermite interpolating C1 surface, with a bicubic degree
NURBS representation and a local tension capability. Since a rational
bicubic C1 surface, interpolating to a given set of (M + 1)× (N + 1) data
and derivative values, can always be viewed as a collection of M × N

rational C1 Hermite bicubic patches that are pieced together, we are able
to stretch a specified patch of the original surface and, using the following
conditions, to keep the C1-continuity with the adjacent patches.

Proposition 5. Let Si,j(x, y) and Si+1,j(x, y) be two degree-(m, n) ra-

tional Bézier patches respectively, with positive weights {λi,j
k,l}, {λ

i+1,j
k,l }

and control points {ci,j
k,l}, {c

i+1,j
k,l } k = 0, ...,m, l = 0, ..., n, defined over

the domains [xi, xi+1] × [yj, yj+1] and [xi+1, xi+2] × [yj , yj+1]. C1 suffi-
cient conditions between the two adjacent C0-continuous rational patches
Si,j(x, y) and Si+1,j(x, y), along the common boundary Si,j(xi+1, y), are

λ
i+1,j
k,1 = −

hx
i+1

hx
i

λ
i,j
k,n−1 +

λ
i,j

k,n

λ
i,j

0,n

(
hx

i+1

hx
i

λ
i,j
0,n−1 + λ

i+1,j
0,1 ), k = 1, ...,m,

c
i+1,j
k,1 = c

i,j
k,n +

hx
i+1

hx
i

λ
i,j

k,n−1

λ
i+1,j

k,1

(ci,j
k,n − c

i,j
k,n−1), k = 0, ...,m,

(6)
where hx

i = xi+1 − xi and λ
i+1,j
0,1 is an arbitrary positive constant.

Proof: Using the notation proposed in [4], C1-continuity between the
rational patches Si,j and Si+1,j is equivalent to the condition

(DxTi+1,j(x, y))|x=xi+1
= (DxTi,j(x, y))|x=xi+1

+ σTi,j(xi+1, y), (7)

where Ti,j(x, y), Ti+1,j(x, y) represent the homogeneus coordinate systems
of the patches Si,j(x, y), Si+1,j(x, y), respectively, and Dx denotes the first
partial derivative along the x direction. The constant σ is a free parameter
since we are considering a rational C1-continuity between the two patches
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Si,j and Si+1,j , while the coefficient of the term DxTi,j is fixed equal to
1. This derives from considering the patches in the classical positional
continuity C0 (and not in the rational one), which requires the equality of
weights and control points on the common boundary curve:

λ
i,j
k,n = λ

i+1,j
k,0 , k = 0, ...,m,

c
i,j
k,n = c

i+1,j
k,0 , k = 0, ...,m.

(8)

Now, following [4], if we derive the C1 sufficient conditions between ad-
jacent C0-continuous rectangular rational Bézier patches, we obtain, for
k = 0, ...,m, the explicit conditions

1
hx

i+1

(λi+1,j
k,1 − λ

i,j
k,n) = 1

hx
i

(λi,j
k,n − λ

i,j
k,n−1) + σλ

i,j
k,n,

1
hx

i+1

(λi+1,j
k,1 c

i+1,j
k,1 − λ

i,j
k,nc

i,j
k,n) = 1

hx
i

(λi,j
k,nc

i,j
k,n − λ

i,j
k,n−1c

i,j
k,n−1) + σλ

i,j
k,nc

i,j
k,n.

Hence, assuming λ
i+1,j
0,1 = −

hx
i+1

hx
i

λ
i,j
0,n−1 + (1 +

hx
i+1

hx
i

+ σhx
i+1)λ

i,j
0,n as a

free parameter (since it depends on σ) and, substituting the resulting
expression for σ in the remaining previous equations, we find (6).

Remark 5. Note that when λ
i,j
k,l = λ

i+1,j
k,l = 1 for k = 0, ...,m, and

l = 0, ..., n, σ must be 0. In this case the patches Si,j and Si+1,j are non
rational and conditions (6) become classical C1-continuity conditions [1].
Since our aim is to be able to stretch a patch of a composition of M × N

rational C1 Hermite bicubic patches, keeping the interpolation and the
C1-continuity with all the patches around, from now on we will consider
conditions (6) with m = n = 3. Additionally, since rational bicubic tensor-
product surfaces are a well-known class of C1-continuous NURBS surfaces,
we focalize an example of our strategy on the Hermite interpolating surface

Si,j(x, y) =

3
∑

k=0

3
∑

l=0

c
i,j
k,lR

i
k,3(x)Rj

l,3(y), i = 0, ...,M − 1 j = 0, ..., N − 1

with {λi,j
k,l}k,l=0,...,3 = [1, νj , νj , 1]T [1, µi, µi, 1]. Now, since the tension

parameters µi, i = 0, ...,M − 1 and νj , j = 0, ..., N − 1 influence the en-
tire strips [xi, xi+1] × [y0, yN ], i = 0, ...,M − 1 and [x0, xM ] × [yj , yj+1],
j = 0, ..., N − 1, respectively, in order to obtain a local tension control on
a specified rational Hermite patch Si,j(x, y), we define two new tension
parameters µi, νj on the sides of its rectangular boundary. Then we re-
compute the patch Si,j(x, y) as a tensor-product, and exploit the degree
of freedom characterizing conditions (6), to adjust the weights and control
points of the first ring of eight patches contained in the neighbourhood of
Si,j , in order to maintain C1-continuity. If we consider (for simplicity of
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presentation) hx
i = hx

i+1 ∀i, as, in our case, λ
i,j
0,3 = λ

i,j
3,3 = 1, C1-continuity

conditions (6) assume the simplified expressions

λ
i+1,j
k,1 = −λ

i,j
k,2 + λ

i,j
k,3(µi + λ

i+1,j
0,1 ), k = 1, ..., 3,

c
i+1,j
k,1 = c

i,j
k,3 +

λ
i,j

k,2

λ
i+1,j

k,1

(ci,j
k,3 − c

i,j
k,2), k = 0, ..., 3,

(9)

where λ
i+1,j
0,1 is taken as equal to µi + µi+1 − µi. Then, if after taking the

boundary weights λ
i+1,j
k,1 = −λ

i,j
k,2+λ

i,j
k,3(µi+µi+1), ∀k = 1, ..., 3, we repeat

this computation in the directions (i − 1, j), (i, j − 1), (i, j + 1), adjusting
the weight λ

i+1,j+1
1,1 as the product of λ

i+1,j
3,1 by λ

i,j+1
1,3 , and the other

three corner weights λ
i−1,j+1
1,2 , λ

i−1,j−1
2,2 , λ

i+1,j−1
2,1 in the same way, the first

condition (9) is automatically satisfied for each patch around the (i, j)th.
Afterwards, by computing the corresponding control points according to
the second condition (9), we are able to keep the C1-continuity of the
surface, even if we have modified the weights of the (i, j)th patch, causing
a tension on it (see Fig. 3 right).

§4. Conclusions

The rational cubic interpolating method proposed in [2,3] has been con-
verted into standard NURBS form and applied to obtain shape control on
rectangular NURBS Hermite interpolatory surfaces. Using the techniques
described, we have obtained a number of different ways of achieving shape
control on these kinds of surfaces, always maintaining C1-continuity.

In fact, comparing the following figures with Fig. 1 left (which was
built with global values ω := ωi,j = 1 ∀i, j, τ := τi,j = 1 ∀i, j), we can see
that it is possible to apply tension:

• along a curve segment, causing the segment to tend to a straight line
by increasing shape parameter ωi,j for a specified couple of indices
i, j (Fig. 1 right, where ω3,4 = 4);

• along a network curve, causing the whole curve to tend to a polygon
by increasing shape parameters ω0,j, ..., ωM−1,j for one j ∈ {0, ..., N}
(Fig. 2 left shows this for ω0,4 = · · · = ω5,4 = 4);

• along x direction (Fig. 2 right corresponds to the blending tension
parameters ŵ = 4, w = 1);

• on a single patch. This is done by applying both interval tensions at
its four sides (Fig. 3 left represents the bicubically blended tension
method with parameters (4,4), while Fig. 3 right the rational bicu-
bic tensor-product with global parameters (2,2), where the C1-join
technique has been applied with parameters µ3 = ν3 = 3);

• on the whole surface (Fig. 4 left shows this for the global value ω :=
ωi,j = 4, ∀i, j, τ := τi,j = 4 ∀i, j);
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Fig. 1. left: no tension - right: tension along S([x3, x4], y4).

Fig. 2. left: tension along S(x, y4) - right: tension along x direction.

Fig. 3. left: tension on patch S3,3 - right: tension on patch S3,3.

• everywhere except on a specified patch (Fig. 4 right shows this using
a global tension (4,4) and a local tension (1,1) on patch S3,3).

§5. Future Work

We intend to extend these methods to the parametric case in order to
be able to apply the rational G1-continuity conditions (instead of the C1-
continuity introduced in 3.3) which will give us extra degrees of freedom.
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Fig. 4. left: global tension - right: global tension except on patch S3,3.
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