THE TRIMMED NURBS AGE *
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Abstract. In this work we report our experience in the geometric modeling field, using trimmed
NURBS surfaces and we describe how these surfaces can be used both for solid and surface modeling
purposes. Our experience is based on the design and implementation of zcmodel, an interactive
graphics system merging new and well-known methods for modeling.
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1. Introduction. In geometric modeling there are two fundamental represen-
tation schemes which have been successful and have been incorporated in the most
popular CAD/CAM software packages: solid modeling and surface modeling. A solid
modeler represents an object unambiguously by describing its surface boundary and
by topologically orienting it, so that we can tell, at each surface point, on which side
the solid interior lies. Whereas, a surface modeler gives only a geometrical description
of the object boundary without any topological information.

The Non-Uniform Rational B-Splines (NURBS) is a well-established tool for ge-
ometric design. NURBS have become the de facto industry standards for the repre-
sentation, design, and data exchange of geometric information. NURBS have been
added to several international standards, and many packages include NURBS as the
primitive for designing simple and free form curves and surfaces. However, the most
useful NURBS paradigm is limited by the requirement that the surfaces are defined
over rectangular regions and this leads to topological rectangular patches. A gener-
alization for an arbitrary topology can be obtained by collapsing some of the control
mesh edges, but this creates surfaces with ambiguous surface normal and degenerated
parametrization.

The introduction of a ’trimmed surface’ data type in the description of free form
objects or parts of solids has provided greater power and flexibility to these represen-
tational schemes. A trimmed surface is an ordinary tensor product surface that has
a restricted parameter domain, thus overcoming the limit of tensor product surfaces
defined over rectangular regions, and allowing for arbitrary domains.

This work is not intended as an exhaustive survey on trimmed NURBS surfaces,
but as a description of our experience of geometric modeling using trimmed NURBS
surfaces. Our experimental testbed is zemodel, a system developed at the University
of Bologna [9] that is based on trimmed NURBS surfaces, which tests new modeling
ideas and where techniques can easily be experimented and evaluated. This system
is the result of our experience of over 10 years in NURBS research and development
and it combines new and well-tried approaches. In fact, our work methods are well
expressed by the following sentence from Voelker and Requicha [44]:

"1t is important to do both theoretical research and experimental system building.
They are synergistic, and the exclusive pursuit of either can lead to sterile theory or
quirky, opaque systems.”
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2 G. CASCIOLA AND S.MORIGI

Everyone agrees with this idea, although, in the academic world, it is hardly ever
rewarded.

The paper is structured as follows: in Section 2 the basic definitions of trimmed
NURBS surface are given. In Section 3 we address the problem of representing the
trimmed regions, while Section 4 deals with several approaches used for rendering
trimmed surfaces. In Section 5 and 6 we describe how these surfaces can be used for
solid and surface modeling purposes.

2. Trimmed NURBS surfaces. A trimmed NURBS surface can be defined
by a tensor product NURBS surface and a set of trimming curves in the parametric
space of the surface.

A NURBS surface of order (m,n) defined in the parametric domain U x V =
[0,1] x [0,1], can be represented as:
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where w;; are the weights, P;; are the control points, and N; ,(u), Njm(v) are the
order n and m B-splines, respectively, defined over the knot vectors
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Associated with a NURBS surface is a set of planar, closed, non-intersecting curves
that can be conveniently represented as NURBS curves defined in the parameter
domain [0, 1] by
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A trimmed NURBS surface is given by the restriction of r(u,v) to a subdomain
D c U xV, of the parametric space, named trimmed region. This domain D is defined
as the set of regions on U x V whose boundaries are specified by the trimming curves
and a given criteria. This criteria allows us to identify the part of the surface that
remains when discarding all the holes defined by the trimming curves. The trimmed
surface boundaries are obtained by mapping the 2D trimming curves onto the surface,
that is,

r(xk(t)ayk(t))a k=1,---,M.
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Trimmed NURBS surfaces have been adopted by the CAD/CAM industry, and
included in graphics standards. As such, trimmed NURBS surfaces are provided as
modeling primitives in several geometric modeling software systems, and the render-
ing of trimmed NURBS surfaces is supported by international standards, such as
PHIGS+, as well as graphics programming interfaces, such as Iris-GL and OpenGL
(Silicon Graphics, Inc.), Starbase (Hewlett-Packard Corp.), and Renderman (Pixar).

Trimmed surfaces are essential for the modeling of non-regular boundary objects,
generated by trimming away part of the rectangular patch. Trimming patches also
play a fundamental role in the boundary description of solid models where the trimmed
surfaces can give a complete representation of the boundary of a sculptured solid
primitive by means of the union of surfaces restricted to suitable domains. They are
the result of Boolean operations on solid objects bounded by NURBS surfaces [17].

3. Representing of trimmed NURBS surfaces. We focus now on the prob-
lem of representing the trimmed region D, providing three different representations
that define the same domain D.

Definition 1: handedness rule of trimming

The curves ci(t) are considered all properly oriented and joined to form a N < M
numbers of outer or inner loops. Outer loops are oriented counter-clockwise, whereas
inner loops are oriented clockwise. The domain of the trimmed surface is defined
as the common region within the outer boundary (corresponding to the outer loops)
and outside the inner boundaries (corresponding to inner loops), including boundary
curves [32]. Figure 3.1a presents an example of trimmed region obtained by this rule;
the area that is part of the trimmed region is shaded.

Definition 2: winding rule of trimming

The curves ¢ (t) are considered all properly joined to form N < M closed loops
(see Figure 3.1b). The set of contours divides the supporting surface into an inner
or retained region and an outer or discarded region based on the odd-winding rule.
According to this rule, the region of the surface that is enclosed by an even number
of loops is trimmed out [29].

Definition 3: 2D CSG tree

The trimmed domain is represented by the 2D equivalent of a CSG (Constructive
Solid Geometry) tree [5], which, like its 3D counterpart, is a collection of half-spaces
and Boolean operation symbols [17, 5]. Each leaf of the CSG tree structure is an
embedded non-intersecting closed curve. Curves at the same level are disjoint to each
other.

The trimmed region that is kept can be determined by classifying a single point.
Conventions can be assumed to consider alternate levels of the tree to be outer and
inner loops, starting from an inner/outer top level. In Figure 3.1c the 2D CSG tree
representing the trimmed region illustrated in Figure3.la is shown with the top level
set to be outer.

The trimmed region looks like a set of islands and lakes, where the islands rep-
resent part of the trimmed region, while the lakes are the holes in it. The algorithm
used to build a 2D CSG tree T for a given trimmed region forms a union of islands
(R;), and subtracts from each island all of its lakes (S;;):
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where I is the number of islands and L; is the number of the lakes S;; children of
island 1.

Another approach for representing a trimmed surface is based on the idea of
decomposing the domain D of the parameter space using a set of planar subregions,
whose union defines the entire domain D (see Figure 3.1d). This approach does not
follow an intuitive idea of trimming out the part of the entire patch bounded by the
trimming curves, that is preserved somehow in the previous definitions, but it allows
us to manage a set of surfaces, defined on an irregular domain, that do not contain any
trimming curves. This can represent an advantage during the evaluation/rendering
phase, as well as in the mesh generation phase, because it allows for a representation
of a trimmed tensor product patch as a collection of untrimmed patches. In [22]
the authors consider this approach by defining a trimmed surface as the union of a
set of planar, ruled (four-sided) subregions, addressing the problem of data exchange
between systems. More generally, this approach can be applied using S-patches [28,
45]. S-patches are rational generalizations of Bezier-surfaces that admit any number
of boundary curves.

(d)

F1G. 3.1. Example of trimmed region obtained by: (a) definition 1, (b) definition 2, (c) defini-
tion 3, and by untrimmed regions approach (d).

4. Rendering of trimmed NURBS surfaces. This section deals with the
problem of visualizing the trimmed NURBS surfaces. As we know, the visualiza-
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tion algorithms differ in rendering quality with a computational cost that increases
as the quality improves. A modeling system needs both medium/low-level quality
algorithms, allowing for real-time visualization (such as depth cueing, hidden-line
or z-buffer), and high quality algorithms for a realistic final rendering (such as ray-
tracing).

Medium /low-level quality algorithms use a piecewise planar approximation (tes-
sellation or triangulation) of the trimmed surface within a given tolerance. After
the triangulation phase a surface can be rendered in real time using the triangle
rendering capabilities common in current graphics systems. Several algorithms have
been developed in the past to obtain a triangulation of a trimmed NURBS surface
[26, 32, 35, 40, 29]. These methods are parametrization dependent and use the same
tolerance to polygonize the trimming curves and to triangulate the surface. Only
Piegl and Tiller in [33] present an algorithm, which is not parametrization dependent,
that solves the problem with different tolerances for the trimming curves and the sur-
face. The triangulation algorithm implemented in zemodel was inspired by the latter
proposal and consists in the following steps:

e grid surface; a rectangular grid in the entire domain is created adaptively.
By splitting each rectangular into two triangles, we obtain a piecewise linear
approximation of the surface. The goal is to approximate curved regions using
more triangles than for the flat regions, while ensuring that the approximation
satisfies the requirements of a given tolerance [1];

e polygonize trimming curves; consists in obtaining a piecewise linear approxi-
mation of the trimming curves within a given tolerance.

e merge trimming polygon and rectangular grid; given a rectangle in the grid of
the parameter domain, along with its status and a set of trimming polygons,
the goal is to compute a set of closed polygons that bound the trimmed
domain lying inside the given rectangle.

e triangulating domain polygons; this problem has been solved in a simple and
heuristic way. Our approach distinguishes two cases: the points on the rect-
angular grid may or may not be consecutive polygon vertices. In the first
case, the triangles open fanwise from one of the grid points; in the second
case, where two grid points are opposite, the triangles form a seam.

=| Domair - [ =] Hidden - [
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Fic. 4.1. Rendering of trimmed NURBS sphere with a hidden-line algorithm; a triangulation
of the trimmed domain (left), the rendered trimmed surface (right).
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F1a. 4.2. Rendering of trimmed NURBS sphere with a ray-tracing algorithm.

Figure 4.1 illustrates an example of a trimmed NURBS sphere rendered by a
hidden-line algorithm obtained using zcmodel.

High quality rendering algorithms use an exact representation. The history, the-
ory and capabilities of ray-tracing algorithms are well known and documented [20].
The basic problems in ray-tracing trimmed NURBS surfaces are the following;:

e ray/patch intersection
e determining if the intersection points belong to a trimmed patch.

If the trimming is caused by a Boolean operation involving solid geometric models,
the latter step can be performed using conventional CSG methods [37]. Our zemodel
system manages boundary representations for solids by using trimmed surfaces and
therefore the second step determines wether an intersection point lies inside or outside
a trimmed region using a 2D PMC (Point Membership Classification) algorithm (see
section 5).

Solutions to the ray/patch intersection problem can be categorized as being based
on subdivision, numerical or hybrid techniques. Subdivision approaches are described
by Whitted [46], Rogers [36] and Woodward [47]. These algorithms are based on the
convex-hull properties of NURBS surfaces. If the ray does not intersect the convex-
hull of the control points, it does not intersect the patch. By recursively subdividing
the patch and checking convex-hulls, the intersection points can be computed at a
linear convergent rate amounting to a binary search. Whitted’s algorithm operates in
three dimensions, whereas Rogers and Woodward map the problem in two dimensions.

Numerical solutions of the ray/patch intersection problem include those devel-
oped by Toth [43], Sweeny and Bartels [42] and Joy and Bhetanabhotla [24]. Toth’s
algorithm is based on interval Newton iterations. It works robustly on any paramet-
ric surface for which bounds onto the surface and its first derivative can be obtained.
Sweeny and Bartels proposed refining the control mesh using the Oslo algorithm [15]
until the mesh closely approximates the surface. The ray intersection is then computed
by intersecting the control mesh with the ray, and using that intersection point as a
starting point for Newton iteration. Joy and Bhetanabhotla’s algorithm uses quasi
Newton optimization to capture the point/s on the patch nearest the ray, including
the intersection points.

By hybrid solutions, we refer to Bezier clipping [31]. This algorithm uses the
convex-hull property in a more powerful manner, by determining parameter ranges
which guarantee that they do not include points of intersection. Bezier clipping has the
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flavor of a geometrically based interval Newton method, and thus may be categorized
as partly a subdivision based algorithm and partly a numerical method.

From a numerical point of view all these methods find the ray/patch intersections
by solving a non-linear system of equations. The above methods are global and
when several solutions occur, they split the problem. The only one which uses a
local convergence method after applying an initial global localization step is Toth’s
algorithm. However, the localization step is very expensive from a computational
point of view, as well as the fact that, in the case of near solutions in the parametric
domain this localization step can fail, requiring the application of a binary subdivision
method of the function.

In our system we implemented first the Toth’s proposal, then Bezier clipping and
recently we added a new algorithm following one of our ideas. This new approach was
called ”Toth speed”. It is a combination of the Toth and Bezier clipping algorithms
that outperforms their performances [30, 41]. The idea is to reduce the application of
the interval Newton iterations of the Toth method, trying to find the solution using
a simple Newton, in the knowledge that, if a solution exists, it is unique. If this fails,
an interval Newton iteration is applied. Moreover, when the Toth algorithm is forced
to use binary subdivision, our method uses Bezier clipping.

All these algorithms are included in the system and can be compared on complex
ray traced scenes. Note that a ray-tracing algorithm exploits a certain number of
optimization techniques in order to speed up performance, such as subdividing a 3D
scene in voxels, subdividing the NURBS surface in rational Bezier patches, further
subdividing each rational Bezier patch until a given flat tolerance is reached [19].
These optimizations can improve a ray/patch intersection in different ways.

The optimizations mentioned in the case of trimmed surfaces, introduce a new
problem: the subdivision of a patch implies the redefinition of the trimmed domain.
The solution to this problem may be more or less complex, depending on the type of
representation used for the trimmed region.

Figure 4.2 shows an example of a trimmed NURBS sphere rendered by a ray-
tracing algorithm obtained by zemodel .

5. Solid modeling. Following the B-rep (Boundary representation) of a solid,
we can define as ’primitive solid” any solid that has, as its boundary, a single surface
that is simply closed in order to separate the space into two parts, one of which will
be enclosed. According to convention, the boundary surface must be parametrized
in such a way that the surface normal vector indicates the area outside the solid.
For example, spheres, cylinders, etc. are included in this definition, as well as closed
sculptured solids. Primitive solids can also be combined by Boolean operations, such
as intersection, union and difference, in order to create a complex solid. The difficulties
posed by Boolean combinations of free form objects have been overcome through the
use of trimmed surfaces.

The boundary of a solid object S is defined as follows

k
(5.1) bS = | Jri(Dy)

where D; is the trimmed region associated with the surface r;. A primitive solid is
then defined by £k = 1 and D; = U x V. The boundary of the solid S is a closed
surface.

Given two solids A and B, respectively defined by their boundary surfaces, the
Boolean operation problem consists in determining the boundaries of the solids A |} B,
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A B, A—B starting from bA and bB. We will refer to this process as the set operation
algorithm.

The boundary of the resulting solid is given by the equations known as the bound-
ary formula [34]:

b(AU B) = (bANcB) (BB N cA)
(5.2) b(ANB) = (bANiB) J(bBNiA)
b(A— B) = (bA(eB) J(bBiA)

where iX and cX represent, respectively, the interior and the complement of the solid
X.

The trimmed patches of the resulting solid are the same as those of bA and bB,
except for the portion of the patches that have been trimmed away (see Figure 5.1).

-

Fic. 5.1. Solid modeling; trimmed domains for the solid finger disk in Fig.5.2; the cylinder
part of the solid (left), the disk part of the solid (right).

F1G. 5.2. Solid modeling; primitive solids to compose the finger disk by difference (left), the
resulting scene (right).

In [5] and [6], a set operation algorithm is given, that operates on solids modelled
with trimmed patches. In [17], the trimmed patch is represented by a dual represen-
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tation, i.e. the trimmed patch is given both by an implicit surface and a parametric
patch, and a basic theory is presented for a set operation algorithm, which operates
on the dual representation. In [7] the proposal in [5] is taken up, adapted for NURBS
surfaces and implemented in the zcmodel system. A complete description and im-
plementation of a set operation algorithm is technically complex. The basic idea in
[7] consists in avoiding the intersections between trimmed patches by considering the
intersections between the patches over the whole domain. After this, the trimmed
regions (2D CSG tree) resulting from the intersection between the trimmed regions of
the solids and the trimmed regions obtained by the patch/patch intersection opera-
tions, are determined. In the following, we will give a brief description of untrimmed
surface/surface intersection (SSI), 2D and 3D PMC and 2D curve/curve intersection
(CCI), which represent the basic steps involved in this process.

5.1. SSI. The methods available for intersecting patches can be divided into two
categories: curve following and subdivision. Firstly, the curve following method finds
some points of intersection. Then, the points on the intersection curve are detected
using a numerical method [1, 2]. This method is especially useful for processing
singular cases of intersection [3]. The subdivision method divides the problem into
smaller problems by approximating the patch into simpler linear or quadratic sub-
patches [23, 6]. The patches are intersected, resulting in curves that are then refined by
another numerical method. A modified version proposed in [1] has been implemented
in the zemodel system [8]. Here, the balance between robustness and efficiency, a
problem for SSI algorithms, is solved by a ”little trick”. The four main steps are the
following;:

e Adaptive mesh generation; this consists in the approximation of each of the
surfaces using an adaptive grid of isoparametric curves, approximated by
piecewise linear curves within a given tolerance. From this grid we easily
obtain a surface triangulation;

e Initial intersection point generation; the intersections between the grid seg-
ments of a surface and the triangles of the other surface are determined in
order to obtain at least one starting point for each intersection curve;

e Following an intersection curve; with an initial point on the intersection
curve, we move along the curve by steps. To do this, first of all we find an
estimate for the next point on the intersection curve, and then we evaluate
an exact intersection within a given tolerance;

e Sorting; finally, the curve intersection segments found in the preceding step
are linked together in order to obtain complete intersection curves.

5.2. 2D and 3D PMC. Point Membership Classification is a function that
takes, as its input, a point P and a closed set S, and which returns one of three
possible outcomes: P is inside S, P is on the boundary of S, or P is outside S. The set
operation algorithm makes extensive use of PMC in both two and three dimensions.
During the construction of the 2D CSG tree, a single 3D point is classified with
respect to the opposing solid. The result will be used for further 2D classifications in
order to build a collection of half-spaces which, ultimately, become the leaves of the
tree. A single concept is used for both 2D and 3D classification: a ray is extended
from the point to be classified, and the number of intersections of the ray with the
boundary of the set determines the membership status of the point. An even number
of intersections means that the point is outside the set, while an odd number implies
that the point is inside. While the concept is the same, its implementation is very
different for two or three dimensions. In the 2D case, the ray is intersected with
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polygons or curved boundaries. In the case of curved boundaries all the roots in the
parametric interval [0,1] of the scalar NURBS function resulting from the ray/curve
intersection must be found. To solve this problem the methods in [21, 27, 4, 31]
are explored and compared [41]. In the 3D case, the boundary consists of trimmed
patches, and a ray/patch method is required (see section 4).

5.3. CCI. This problem can either be tackled geometrically, that is, using subdi-
vision techniques for the curves, that exploit the convex-hull property of the NURBS
curves [27, 25, 38], or numerically. The latter is done either by finding all the zeros
of the function resulting from the system, when a curve has been implicitized [39]
(this is profitably applicable only for low degree curves), or by finding the zeros of the
vector function in two variables (2D surface), obtained from the difference between
the curves [16]. The problem of finding the zeros of a 2D surface can be solved using
the same methods as those used to determine the ray/patch intersections, (see section
4).

Figure 5.2 shows an example of solid modelling generated by the zcmodel system.

6. Surface modeling. The refinement technique for spline surfaces is a well
known tool used to represent a surface defined by a finer control mesh with the
feature that each single control point will have a more local effect on the surface.
This allows us to model small patches and to modify their shape without affecting
the rest. This idea led to the definition of Hierarchical Spline Surfaces (HSS) [18],
proposed in 1988 by Forsey and Bartels, enabling a surface to be refined and details
added, using a hierarchy, whose levels correspond to the varying levels of refinement of
the surface patches. This technique enables us to restrict the influence of refinement
to the relevant parts of the surface.

Our paper illustrates how the zcmodel system uses trimmed NURBS surfaces
to represent HSS and enables modeling to be carried out with these surfaces. For
this purpose rectangular trimmed NURBS surfaces are defined. They consists in
a particular class of trimmed surface, whose trimmed away regions are defined as
rectangular in the parametric domain.

We can represent an HSS as a NURBS surface r and a set of regions D; as follows:

U r(D;)

where each region D; represents the ith level of detail of an HSS and is defined by

Di:Aifl—Ai with AOZUXV, A,:Uz‘il]

j=1

and where Ai]’ = [ua,,up;] X [Uc;,vq,] represents the jth rectangular trimmed region
at level 7, and is a subset of 4;_;. Note that U?:l D;=UxV.

The modeling phase, by adding or editing details, consists in first selecting the
rectangular patch on the surface to be modified, then determining the corresponding
rectangular subdomain and trimming it so that the domain becomes restricted to
the chosen patch, which now acts as an autonomous and untrimmed surface. The
appropriate refinement is carried out and the control points that can be moved without
altering their order of continuity with the original surface are determined. In the initial
HSS work [18], the control points that cannot be altered in order to avoid losing the
original continuity are already clearly specified. These form a frame m — 1 wide and
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n — 1 high in the control mesh, where m and n are the NURBS surface orders. Any
change in position and/or weight of all or only some of the control points within
this frame results in a local modification of the patch, while maintaining the original
continuity with the rest of the surface.

In Figure 6.1 we show an example of HSS modeling using trimmed NURBS.

Fic. 6.1. HSS modeling using trimmed NURBS; on the left three levels of rectangular patches
are shown, on the right the modeled surface is given.

Furthermore, in order to design multi-sided surfaces, it makes perfect sense to
consider a modeling procedure that trims one surface by means of another surface,
even if no set operation is indicated. To do this, the zcmodel system allows the user
to model the 2D trimming curves and define a 2D CSG tree for a given surface.

7. Conclusions and new trends. In this paper we have discussed the useful-
ness of the trimmed NURBS paradigm for modeling.
Trimmed NURBS present at least two difficulties:
e trimming is expensive and prone to numerical errors;
e it becomes difficult to maintain smoothness at the seams of the patchwork,
when the model is animated.

Recently, subdivision surfaces have been considered as a way of overcoming NURBS
topological limitations without mesh degeneracy. They do not require trimming, and
model smoothness is automatically guaranteed, even in animated models. The idea
is to refine an irregular/regular mesh, by creating a new mesh that approximates the
old one. By repeating this process, a smooth surface is formed as the limit of the pro-
cess itself. Subdivision algorithms are quite simple, and are generally able to produce
quite complex objects, although the basic theoretical modeling background has yet to
be explored, and effective, intuitive user interface, designed to exploit the potential of
the representation to the full, requires further development. Although trends in geo-
metric modeling community research are moving towards an exhaustive exploration of
the subdivision paradigm, at the moment, trimming modeling still remains the most
complete and powerful means for free form object modeling.
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