
THE TRIMMED NURBS AGE �G. CASCIOLA y AND S. MORIGI zAbstra
t. In this work we report our experien
e in the geometri
 modeling �eld, using trimmedNURBS surfa
es and we des
ribe how these surfa
es 
an be used both for solid and surfa
e modelingpurposes. Our experien
e is based on the design and implementation of x
model, an intera
tivegraphi
s system merging new and well-known methods for modeling.Key words. trimmed NURBS, rendering, surfa
e modeling, solid modeling.AMS subje
t 
lassi�
ations. 65D17, 65Y25, 65Y201. Introdu
tion. In geometri
 modeling there are two fundamental represen-tation s
hemes whi
h have been su

essful and have been in
orporated in the mostpopular CAD/CAM software pa
kages: solid modeling and surfa
e modeling. A solidmodeler represents an obje
t unambiguously by des
ribing its surfa
e boundary andby topologi
ally orienting it, so that we 
an tell, at ea
h surfa
e point, on whi
h sidethe solid interior lies. Whereas, a surfa
e modeler gives only a geometri
al des
riptionof the obje
t boundary without any topologi
al information.The Non-Uniform Rational B-Splines (NURBS) is a well-established tool for ge-ometri
 design. NURBS have be
ome the de fa
to industry standards for the repre-sentation, design, and data ex
hange of geometri
 information. NURBS have beenadded to several international standards, and many pa
kages in
lude NURBS as theprimitive for designing simple and free form 
urves and surfa
es. However, the mostuseful NURBS paradigm is limited by the requirement that the surfa
es are de�nedover re
tangular regions and this leads to topologi
al re
tangular pat
hes. A gener-alization for an arbitrary topology 
an be obtained by 
ollapsing some of the 
ontrolmesh edges, but this 
reates surfa
es with ambiguous surfa
e normal and degeneratedparametrization.The introdu
tion of a 'trimmed surfa
e' data type in the des
ription of free formobje
ts or parts of solids has provided greater power and 
exibility to these represen-tational s
hemes. A trimmed surfa
e is an ordinary tensor produ
t surfa
e that hasa restri
ted parameter domain, thus over
oming the limit of tensor produ
t surfa
esde�ned over re
tangular regions, and allowing for arbitrary domains.This work is not intended as an exhaustive survey on trimmed NURBS surfa
es,but as a des
ription of our experien
e of geometri
 modeling using trimmed NURBSsurfa
es. Our experimental testbed is x
model, a system developed at the Universityof Bologna [9℄ that is based on trimmed NURBS surfa
es, whi
h tests new modelingideas and where te
hniques 
an easily be experimented and evaluated. This systemis the result of our experien
e of over 10 years in NURBS resear
h and developmentand it 
ombines new and well-tried approa
hes. In fa
t, our work methods are wellexpressed by the following senten
e from Voelker and Requi
ha [44℄:"It is important to do both theoreti
al resear
h and experimental system building.They are synergisti
, and the ex
lusive pursuit of either 
an lead to sterile theory orquirky, opaque systems."�This work was supported by MURST, Co�n97, Numeri
al Analysis: Methods and Mathemati
alSoftware.yDept. of Mathemati
s, University of Bologna, Italy; E-mail: 
as
iola�dm.unibo.it.zDept. of Mathemati
s, University of Bologna, Italy; E-mail: morigi�dm.unibo.it.1



2 G. CASCIOLA AND S.MORIGIEveryone agrees with this idea, although, in the a
ademi
 world, it is hardly everrewarded.The paper is stru
tured as follows: in Se
tion 2 the basi
 de�nitions of trimmedNURBS surfa
e are given. In Se
tion 3 we address the problem of representing thetrimmed regions, while Se
tion 4 deals with several approa
hes used for renderingtrimmed surfa
es. In Se
tion 5 and 6 we des
ribe how these surfa
es 
an be used forsolid and surfa
e modeling purposes.2. Trimmed NURBS surfa
es. A trimmed NURBS surfa
e 
an be de�nedby a tensor produ
t NURBS surfa
e and a set of trimming 
urves in the parametri
spa
e of the surfa
e.A NURBS surfa
e of order (m;n) de�ned in the parametri
 domain U � V =[0; 1℄� [0; 1℄, 
an be represented as:r(u; v) = Pn+Hi=1 Pm+Kj=1 wijPijNi;n(u)Nj;m(v)Pn+Hi=1 Pm+Kj=1 wijNi;n(u)Nj;m(v)(2.1)where wij are the weights, Pij are the 
ontrol points, and Ni;n(u); Nj;m(v) are theorder n and m B-splines, respe
tively, de�ned over the knot ve
torsU = (0; � � � ; 0| {z }n ; un+1; � � � ; un+H ; 1; � � � ; 1| {z }n )V = (0; � � � ; 0| {z }m ; vm+1; � � � ; vm+K ; 1; � � � ; 1| {z }m ):Asso
iated with a NURBS surfa
e is a set of planar, 
losed, non-interse
ting 
urvesthat 
an be 
onveniently represented as NURBS 
urves de�ned in the parameterdomain [0; 1℄ by
k(t) = (xk(t); yk(t)) = Ppk+Lki=1 wiPiNi;pk (t)Ppk+Lki=1 wiNi;pk(t) ; k = 1; � � � ;M;(2.2)with the knot ve
torsTk = (0; � � � ; 0| {z }pk ; tpk+1; � � � ; tpk+Lk ; 1; � � � ; 1| {z }pk ):A trimmed NURBS surfa
e is given by the restri
tion of r(u; v) to a subdomainD � U�V , of the parametri
 spa
e, named trimmed region. This domain D is de�nedas the set of regions on U �V whose boundaries are spe
i�ed by the trimming 
urvesand a given 
riteria. This 
riteria allows us to identify the part of the surfa
e thatremains when dis
arding all the holes de�ned by the trimming 
urves. The trimmedsurfa
e boundaries are obtained by mapping the 2D trimming 
urves onto the surfa
e,that is, r(xk(t); yk(t)); k = 1; � � � ;M:



THE TRIMMED NURBS AGE 3Trimmed NURBS surfa
es have been adopted by the CAD/CAM industry, andin
luded in graphi
s standards. As su
h, trimmed NURBS surfa
es are provided asmodeling primitives in several geometri
 modeling software systems, and the render-ing of trimmed NURBS surfa
es is supported by international standards, su
h asPHIGS+, as well as graphi
s programming interfa
es, su
h as Iris-GL and OpenGL(Sili
on Graphi
s, In
.), Starbase (Hewlett-Pa
kard Corp.), and Renderman (Pixar).Trimmed surfa
es are essential for the modeling of non-regular boundary obje
ts,generated by trimming away part of the re
tangular pat
h. Trimming pat
hes alsoplay a fundamental role in the boundary des
ription of solid models where the trimmedsurfa
es 
an give a 
omplete representation of the boundary of a s
ulptured solidprimitive by means of the union of surfa
es restri
ted to suitable domains. They arethe result of Boolean operations on solid obje
ts bounded by NURBS surfa
es [17℄.3. Representing of trimmed NURBS surfa
es. We fo
us now on the prob-lem of representing the trimmed region D, providing three di�erent representationsthat de�ne the same domain D.De�nition 1: handedness rule of trimmingThe 
urves 
k(t) are 
onsidered all properly oriented and joined to form a N <Mnumbers of outer or inner loops. Outer loops are oriented 
ounter-
lo
kwise, whereasinner loops are oriented 
lo
kwise. The domain of the trimmed surfa
e is de�nedas the 
ommon region within the outer boundary (
orresponding to the outer loops)and outside the inner boundaries (
orresponding to inner loops), in
luding boundary
urves [32℄. Figure 3.1a presents an example of trimmed region obtained by this rule;the area that is part of the trimmed region is shaded.De�nition 2: winding rule of trimmingThe 
urves 
k(t) are 
onsidered all properly joined to form N < M 
losed loops(see Figure 3.1b). The set of 
ontours divides the supporting surfa
e into an inneror retained region and an outer or dis
arded region based on the odd-winding rule.A

ording to this rule, the region of the surfa
e that is en
losed by an even numberof loops is trimmed out [29℄.De�nition 3: 2D CSG treeThe trimmed domain is represented by the 2D equivalent of a CSG (Constru
tiveSolid Geometry) tree [5℄, whi
h, like its 3D 
ounterpart, is a 
olle
tion of half-spa
esand Boolean operation symbols [17, 5℄. Ea
h leaf of the CSG tree stru
ture is anembedded non-interse
ting 
losed 
urve. Curves at the same level are disjoint to ea
hother.The trimmed region that is kept 
an be determined by 
lassifying a single point.Conventions 
an be assumed to 
onsider alternate levels of the tree to be outer andinner loops, starting from an inner/outer top level. In Figure 3.1
 the 2D CSG treerepresenting the trimmed region illustrated in Figure3.1a is shown with the top levelset to be outer.The trimmed region looks like a set of islands and lakes, where the islands rep-resent part of the trimmed region, while the lakes are the holes in it. The algorithmused to build a 2D CSG tree T for a given trimmed region forms a union of islands(Ri), and subtra
ts from ea
h island all of its lakes (Sij):T = I[i=1(Ri\( Li[j=1Sij));



4 G. CASCIOLA AND S.MORIGIwhere I is the number of islands and Li is the number of the lakes Sij 
hildren ofisland i.Another approa
h for representing a trimmed surfa
e is based on the idea ofde
omposing the domain D of the parameter spa
e using a set of planar subregions,whose union de�nes the entire domain D (see Figure 3.1d). This approa
h does notfollow an intuitive idea of trimming out the part of the entire pat
h bounded by thetrimming 
urves, that is preserved somehow in the previous de�nitions, but it allowsus to manage a set of surfa
es, de�ned on an irregular domain, that do not 
ontain anytrimming 
urves. This 
an represent an advantage during the evaluation/renderingphase, as well as in the mesh generation phase, be
ause it allows for a representationof a trimmed tensor produ
t pat
h as a 
olle
tion of untrimmed pat
hes. In [22℄the authors 
onsider this approa
h by de�ning a trimmed surfa
e as the union of aset of planar, ruled (four-sided) subregions, addressing the problem of data ex
hangebetween systems. More generally, this approa
h 
an be applied using S-pat
hes [28,45℄. S-pat
hes are rational generalizations of Bezier-surfa
es that admit any numberof boundary 
urves.
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) de�ni-tion 3, and by untrimmed regions approa
h (d).4. Rendering of trimmed NURBS surfa
es. This se
tion deals with theproblem of visualizing the trimmed NURBS surfa
es. As we know, the visualiza-



THE TRIMMED NURBS AGE 5tion algorithms di�er in rendering quality with a 
omputational 
ost that in
reasesas the quality improves. A modeling system needs both medium/low-level qualityalgorithms, allowing for real-time visualization (su
h as depth 
ueing, hidden-lineor z-bu�er), and high quality algorithms for a realisti
 �nal rendering (su
h as ray-tra
ing).Medium/low-level quality algorithms use a pie
ewise planar approximation (tes-sellation or triangulation) of the trimmed surfa
e within a given toleran
e. Afterthe triangulation phase a surfa
e 
an be rendered in real time using the trianglerendering 
apabilities 
ommon in 
urrent graphi
s systems. Several algorithms havebeen developed in the past to obtain a triangulation of a trimmed NURBS surfa
e[26, 32, 35, 40, 29℄. These methods are parametrization dependent and use the sametoleran
e to polygonize the trimming 
urves and to triangulate the surfa
e. OnlyPiegl and Tiller in [33℄ present an algorithm, whi
h is not parametrization dependent,that solves the problem with di�erent toleran
es for the trimming 
urves and the sur-fa
e. The triangulation algorithm implemented in x
model was inspired by the latterproposal and 
onsists in the following steps:� grid surfa
e; a re
tangular grid in the entire domain is 
reated adaptively.By splitting ea
h re
tangular into two triangles, we obtain a pie
ewise linearapproximation of the surfa
e. The goal is to approximate 
urved regions usingmore triangles than for the 
at regions, while ensuring that the approximationsatis�es the requirements of a given toleran
e [1℄;� polygonize trimming 
urves; 
onsists in obtaining a pie
ewise linear approxi-mation of the trimming 
urves within a given toleran
e.� merge trimming polygon and re
tangular grid; given a re
tangle in the grid ofthe parameter domain, along with its status and a set of trimming polygons,the goal is to 
ompute a set of 
losed polygons that bound the trimmeddomain lying inside the given re
tangle.� triangulating domain polygons; this problem has been solved in a simple andheuristi
 way. Our approa
h distinguishes two 
ases: the points on the re
t-angular grid may or may not be 
onse
utive polygon verti
es. In the �rst
ase, the triangles open fanwise from one of the grid points; in the se
ond
ase, where two grid points are opposite, the triangles form a seam.

Fig. 4.1. Rendering of trimmed NURBS sphere with a hidden-line algorithm; a triangulationof the trimmed domain (left), the rendered trimmed surfa
e (right).



6 G. CASCIOLA AND S.MORIGI

Fig. 4.2. Rendering of trimmed NURBS sphere with a ray-tra
ing algorithm.Figure 4.1 illustrates an example of a trimmed NURBS sphere rendered by ahidden-line algorithm obtained using x
model.High quality rendering algorithms use an exa
t representation. The history, the-ory and 
apabilities of ray-tra
ing algorithms are well known and do
umented [20℄.The basi
 problems in ray-tra
ing trimmed NURBS surfa
es are the following:� ray/pat
h interse
tion� determining if the interse
tion points belong to a trimmed pat
h.If the trimming is 
aused by a Boolean operation involving solid geometri
 models,the latter step 
an be performed using 
onventional CSG methods [37℄. Our x
modelsystem manages boundary representations for solids by using trimmed surfa
es andtherefore the se
ond step determines wether an interse
tion point lies inside or outsidea trimmed region using a 2D PMC (Point Membership Classi�
ation) algorithm (seese
tion 5).Solutions to the ray/pat
h interse
tion problem 
an be 
ategorized as being basedon subdivision, numeri
al or hybrid te
hniques. Subdivision approa
hes are des
ribedby Whitted [46℄, Rogers [36℄ and Woodward [47℄. These algorithms are based on the
onvex-hull properties of NURBS surfa
es. If the ray does not interse
t the 
onvex-hull of the 
ontrol points, it does not interse
t the pat
h. By re
ursively subdividingthe pat
h and 
he
king 
onvex-hulls, the interse
tion points 
an be 
omputed at alinear 
onvergent rate amounting to a binary sear
h. Whitted's algorithm operates inthree dimensions, whereas Rogers and Woodward map the problem in two dimensions.Numeri
al solutions of the ray/pat
h interse
tion problem in
lude those devel-oped by Toth [43℄, Sweeny and Bartels [42℄ and Joy and Bhetanabhotla [24℄. Toth'salgorithm is based on interval Newton iterations. It works robustly on any paramet-ri
 surfa
e for whi
h bounds onto the surfa
e and its �rst derivative 
an be obtained.Sweeny and Bartels proposed re�ning the 
ontrol mesh using the Oslo algorithm [15℄until the mesh 
losely approximates the surfa
e. The ray interse
tion is then 
omputedby interse
ting the 
ontrol mesh with the ray, and using that interse
tion point as astarting point for Newton iteration. Joy and Bhetanabhotla's algorithm uses quasiNewton optimization to 
apture the point/s on the pat
h nearest the ray, in
ludingthe interse
tion points.By hybrid solutions, we refer to Bezier 
lipping [31℄. This algorithm uses the
onvex-hull property in a more powerful manner, by determining parameter rangeswhi
h guarantee that they do not in
lude points of interse
tion. Bezier 
lipping has the



THE TRIMMED NURBS AGE 7
avor of a geometri
ally based interval Newton method, and thus may be 
ategorizedas partly a subdivision based algorithm and partly a numeri
al method.From a numeri
al point of view all these methods �nd the ray/pat
h interse
tionsby solving a non-linear system of equations. The above methods are global andwhen several solutions o

ur, they split the problem. The only one whi
h uses alo
al 
onvergen
e method after applying an initial global lo
alization step is Toth'salgorithm. However, the lo
alization step is very expensive from a 
omputationalpoint of view, as well as the fa
t that, in the 
ase of near solutions in the parametri
domain this lo
alization step 
an fail, requiring the appli
ation of a binary subdivisionmethod of the fun
tion.In our system we implemented �rst the Toth's proposal, then Bezier 
lipping andre
ently we added a new algorithm following one of our ideas. This new approa
h was
alled "Toth speed". It is a 
ombination of the Toth and Bezier 
lipping algorithmsthat outperforms their performan
es [30, 41℄. The idea is to redu
e the appli
ation ofthe interval Newton iterations of the Toth method, trying to �nd the solution usinga simple Newton, in the knowledge that, if a solution exists, it is unique. If this fails,an interval Newton iteration is applied. Moreover, when the Toth algorithm is for
edto use binary subdivision, our method uses Bezier 
lipping.All these algorithms are in
luded in the system and 
an be 
ompared on 
omplexray tra
ed s
enes. Note that a ray-tra
ing algorithm exploits a 
ertain number ofoptimization te
hniques in order to speed up performan
e, su
h as subdividing a 3Ds
ene in voxels, subdividing the NURBS surfa
e in rational Bezier pat
hes, furthersubdividing ea
h rational Bezier pat
h until a given 
at toleran
e is rea
hed [19℄.These optimizations 
an improve a ray/pat
h interse
tion in di�erent ways.The optimizations mentioned in the 
ase of trimmed surfa
es, introdu
e a newproblem: the subdivision of a pat
h implies the rede�nition of the trimmed domain.The solution to this problem may be more or less 
omplex, depending on the type ofrepresentation used for the trimmed region.Figure 4.2 shows an example of a trimmed NURBS sphere rendered by a ray-tra
ing algorithm obtained by x
model .5. Solid modeling. Following the B-rep (Boundary representation) of a solid,we 
an de�ne as 'primitive solid' any solid that has, as its boundary, a single surfa
ethat is simply 
losed in order to separate the spa
e into two parts, one of whi
h willbe en
losed. A

ording to 
onvention, the boundary surfa
e must be parametrizedin su
h a way that the surfa
e normal ve
tor indi
ates the area outside the solid.For example, spheres, 
ylinders, et
. are in
luded in this de�nition, as well as 
loseds
ulptured solids. Primitive solids 
an also be 
ombined by Boolean operations, su
has interse
tion, union and di�eren
e, in order to 
reate a 
omplex solid. The diÆ
ultiesposed by Boolean 
ombinations of free form obje
ts have been over
ome through theuse of trimmed surfa
es.The boundary of a solid obje
t S is de�ned as followsbS = k[i=1 ri(Di)(5.1)where Di is the trimmed region asso
iated with the surfa
e ri. A primitive solid isthen de�ned by k = 1 and D1 = U � V . The boundary of the solid S is a 
losedsurfa
e.Given two solids A and B, respe
tively de�ned by their boundary surfa
es, theBoolean operation problem 
onsists in determining the boundaries of the solids ASB,



8 G. CASCIOLA AND S.MORIGIATB, A�B starting from bA and bB. We will refer to this pro
ess as the set operationalgorithm.The boundary of the resulting solid is given by the equations known as the bound-ary formula [34℄: b(ASB) = (bAT 
B)S(bBT 
A)b(ATB) = (bAT iB)S(bBT iA)b(A�B) = (bAT 
B)S(bBT iA)(5.2)where iX and 
X represent, respe
tively, the interior and the 
omplement of the solidX . The trimmed pat
hes of the resulting solid are the same as those of bA and bB,ex
ept for the portion of the pat
hes that have been trimmed away (see Figure 5.1).

Fig. 5.1. Solid modeling; trimmed domains for the solid �nger disk in Fig.5.2; the 
ylinderpart of the solid (left), the disk part of the solid (right).

Fig. 5.2. Solid modeling; primitive solids to 
ompose the �nger disk by di�eren
e (left), theresulting s
ene (right).In [5℄ and [6℄, a set operation algorithm is given, that operates on solids modelledwith trimmed pat
hes. In [17℄, the trimmed pat
h is represented by a dual represen-



THE TRIMMED NURBS AGE 9tation, i.e. the trimmed pat
h is given both by an impli
it surfa
e and a parametri
pat
h, and a basi
 theory is presented for a set operation algorithm, whi
h operateson the dual representation. In [7℄ the proposal in [5℄ is taken up, adapted for NURBSsurfa
es and implemented in the x
model system. A 
omplete des
ription and im-plementation of a set operation algorithm is te
hni
ally 
omplex. The basi
 idea in[7℄ 
onsists in avoiding the interse
tions between trimmed pat
hes by 
onsidering theinterse
tions between the pat
hes over the whole domain. After this, the trimmedregions (2D CSG tree) resulting from the interse
tion between the trimmed regions ofthe solids and the trimmed regions obtained by the pat
h/pat
h interse
tion opera-tions, are determined. In the following, we will give a brief des
ription of untrimmedsurfa
e/surfa
e interse
tion (SSI), 2D and 3D PMC and 2D 
urve/
urve interse
tion(CCI), whi
h represent the basi
 steps involved in this pro
ess.5.1. SSI. The methods available for interse
ting pat
hes 
an be divided into two
ategories: 
urve following and subdivision. Firstly, the 
urve following method �ndssome points of interse
tion. Then, the points on the interse
tion 
urve are dete
tedusing a numeri
al method [1, 2℄. This method is espe
ially useful for pro
essingsingular 
ases of interse
tion [3℄. The subdivision method divides the problem intosmaller problems by approximating the pat
h into simpler linear or quadrati
 sub-pat
hes [23, 6℄. The pat
hes are interse
ted, resulting in 
urves that are then re�ned byanother numeri
al method. A modi�ed version proposed in [1℄ has been implementedin the x
model system [8℄. Here, the balan
e between robustness and eÆ
ien
y, aproblem for SSI algorithms, is solved by a "little tri
k". The four main steps are thefollowing:� Adaptive mesh generation; this 
onsists in the approximation of ea
h of thesurfa
es using an adaptive grid of isoparametri
 
urves, approximated bypie
ewise linear 
urves within a given toleran
e. From this grid we easilyobtain a surfa
e triangulation;� Initial interse
tion point generation; the interse
tions between the grid seg-ments of a surfa
e and the triangles of the other surfa
e are determined inorder to obtain at least one starting point for ea
h interse
tion 
urve;� Following an interse
tion 
urve; with an initial point on the interse
tion
urve, we move along the 
urve by steps. To do this, �rst of all we �nd anestimate for the next point on the interse
tion 
urve, and then we evaluatean exa
t interse
tion within a given toleran
e;� Sorting; �nally, the 
urve interse
tion segments found in the pre
eding stepare linked together in order to obtain 
omplete interse
tion 
urves.5.2. 2D and 3D PMC. Point Membership Classi�
ation is a fun
tion thattakes, as its input, a point P and a 
losed set S, and whi
h returns one of threepossible out
omes: P is inside S, P is on the boundary of S, or P is outside S. The setoperation algorithm makes extensive use of PMC in both two and three dimensions.During the 
onstru
tion of the 2D CSG tree, a single 3D point is 
lassi�ed withrespe
t to the opposing solid. The result will be used for further 2D 
lassi�
ations inorder to build a 
olle
tion of half-spa
es whi
h, ultimately, be
ome the leaves of thetree. A single 
on
ept is used for both 2D and 3D 
lassi�
ation: a ray is extendedfrom the point to be 
lassi�ed, and the number of interse
tions of the ray with theboundary of the set determines the membership status of the point. An even numberof interse
tions means that the point is outside the set, while an odd number impliesthat the point is inside. While the 
on
ept is the same, its implementation is verydi�erent for two or three dimensions. In the 2D 
ase, the ray is interse
ted with



10 G. CASCIOLA AND S.MORIGIpolygons or 
urved boundaries. In the 
ase of 
urved boundaries all the roots in theparametri
 interval [0,1℄ of the s
alar NURBS fun
tion resulting from the ray/
urveinterse
tion must be found. To solve this problem the methods in [21, 27, 4, 31℄are explored and 
ompared [41℄. In the 3D 
ase, the boundary 
onsists of trimmedpat
hes, and a ray/pat
h method is required (see se
tion 4).5.3. CCI. This problem 
an either be ta
kled geometri
ally, that is, using subdi-vision te
hniques for the 
urves, that exploit the 
onvex-hull property of the NURBS
urves [27, 25, 38℄, or numeri
ally. The latter is done either by �nding all the zerosof the fun
tion resulting from the system, when a 
urve has been impli
itized [39℄(this is pro�tably appli
able only for low degree 
urves), or by �nding the zeros of theve
tor fun
tion in two variables (2D surfa
e), obtained from the di�eren
e betweenthe 
urves [16℄. The problem of �nding the zeros of a 2D surfa
e 
an be solved usingthe same methods as those used to determine the ray/pat
h interse
tions, (see se
tion4). Figure 5.2 shows an example of solid modelling generated by the x
model system.6. Surfa
e modeling. The re�nement te
hnique for spline surfa
es is a wellknown tool used to represent a surfa
e de�ned by a �ner 
ontrol mesh with thefeature that ea
h single 
ontrol point will have a more lo
al e�e
t on the surfa
e.This allows us to model small pat
hes and to modify their shape without a�e
tingthe rest. This idea led to the de�nition of Hierar
hi
al Spline Surfa
es (HSS) [18℄,proposed in 1988 by Forsey and Bartels, enabling a surfa
e to be re�ned and detailsadded, using a hierar
hy, whose levels 
orrespond to the varying levels of re�nement ofthe surfa
e pat
hes. This te
hnique enables us to restri
t the in
uen
e of re�nementto the relevant parts of the surfa
e.Our paper illustrates how the x
model system uses trimmed NURBS surfa
esto represent HSS and enables modeling to be 
arried out with these surfa
es. Forthis purpose re
tangular trimmed NURBS surfa
es are de�ned. They 
onsists ina parti
ular 
lass of trimmed surfa
e, whose trimmed away regions are de�ned asre
tangular in the parametri
 domain.We 
an represent an HSS as a NURBS surfa
e r and a set of regions Di as follows:n[i=1 r(Di)where ea
h region Di represents the ith level of detail of an HSS and is de�ned byDi = Ai�1 �Ai with A0 = U � V; Ai = mi[j=1 Âijand where Âij = [uaj ; ubj ℄ � [v
j ; vdj ℄ represents the jth re
tangular trimmed regionat level i, and is a subset of Ai�1. Note that Sni=1Di = U � V .The modeling phase, by adding or editing details, 
onsists in �rst sele
ting there
tangular pat
h on the surfa
e to be modi�ed, then determining the 
orrespondingre
tangular subdomain and trimming it so that the domain be
omes restri
ted tothe 
hosen pat
h, whi
h now a
ts as an autonomous and untrimmed surfa
e. Theappropriate re�nement is 
arried out and the 
ontrol points that 
an be moved withoutaltering their order of 
ontinuity with the original surfa
e are determined. In the initialHSS work [18℄, the 
ontrol points that 
annot be altered in order to avoid losing theoriginal 
ontinuity are already 
learly spe
i�ed. These form a frame m� 1 wide and



THE TRIMMED NURBS AGE 11n� 1 high in the 
ontrol mesh, where m and n are the NURBS surfa
e orders. Any
hange in position and/or weight of all or only some of the 
ontrol points withinthis frame results in a lo
al modi�
ation of the pat
h, while maintaining the original
ontinuity with the rest of the surfa
e.In Figure 6.1 we show an example of HSS modeling using trimmed NURBS.

Fig. 6.1. HSS modeling using trimmed NURBS; on the left three levels of re
tangular pat
hesare shown, on the right the modeled surfa
e is given.Furthermore, in order to design multi-sided surfa
es, it makes perfe
t sense to
onsider a modeling pro
edure that trims one surfa
e by means of another surfa
e,even if no set operation is indi
ated. To do this, the x
model system allows the userto model the 2D trimming 
urves and de�ne a 2D CSG tree for a given surfa
e.7. Con
lusions and new trends. In this paper we have dis
ussed the useful-ness of the trimmed NURBS paradigm for modeling.Trimmed NURBS present at least two diÆ
ulties:� trimming is expensive and prone to numeri
al errors;� it be
omes diÆ
ult to maintain smoothness at the seams of the pat
hwork,when the model is animated.Re
ently, subdivision surfa
es have been 
onsidered as a way of over
oming NURBStopologi
al limitations without mesh degenera
y. They do not require trimming, andmodel smoothness is automati
ally guaranteed, even in animated models. The ideais to re�ne an irregular/regular mesh, by 
reating a new mesh that approximates theold one. By repeating this pro
ess, a smooth surfa
e is formed as the limit of the pro-
ess itself. Subdivision algorithms are quite simple, and are generally able to produ
equite 
omplex obje
ts, although the basi
 theoreti
al modeling ba
kground has yet tobe explored, and e�e
tive, intuitive user interfa
e, designed to exploit the potential ofthe representation to the full, requires further development. Although trends in geo-metri
 modeling 
ommunity resear
h are moving towards an exhaustive exploration ofthe subdivision paradigm, at the moment, trimming modeling still remains the most
omplete and powerful means for free form obje
t modeling.
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