
THE TRIMMED NURBS AGE �G. CASCIOLA y AND S. MORIGI zAbstrat. In this work we report our experiene in the geometri modeling �eld, using trimmedNURBS surfaes and we desribe how these surfaes an be used both for solid and surfae modelingpurposes. Our experiene is based on the design and implementation of xmodel, an interativegraphis system merging new and well-known methods for modeling.Key words. trimmed NURBS, rendering, surfae modeling, solid modeling.AMS subjet lassi�ations. 65D17, 65Y25, 65Y201. Introdution. In geometri modeling there are two fundamental represen-tation shemes whih have been suessful and have been inorporated in the mostpopular CAD/CAM software pakages: solid modeling and surfae modeling. A solidmodeler represents an objet unambiguously by desribing its surfae boundary andby topologially orienting it, so that we an tell, at eah surfae point, on whih sidethe solid interior lies. Whereas, a surfae modeler gives only a geometrial desriptionof the objet boundary without any topologial information.The Non-Uniform Rational B-Splines (NURBS) is a well-established tool for ge-ometri design. NURBS have beome the de fato industry standards for the repre-sentation, design, and data exhange of geometri information. NURBS have beenadded to several international standards, and many pakages inlude NURBS as theprimitive for designing simple and free form urves and surfaes. However, the mostuseful NURBS paradigm is limited by the requirement that the surfaes are de�nedover retangular regions and this leads to topologial retangular pathes. A gener-alization for an arbitrary topology an be obtained by ollapsing some of the ontrolmesh edges, but this reates surfaes with ambiguous surfae normal and degeneratedparametrization.The introdution of a 'trimmed surfae' data type in the desription of free formobjets or parts of solids has provided greater power and exibility to these represen-tational shemes. A trimmed surfae is an ordinary tensor produt surfae that hasa restrited parameter domain, thus overoming the limit of tensor produt surfaesde�ned over retangular regions, and allowing for arbitrary domains.This work is not intended as an exhaustive survey on trimmed NURBS surfaes,but as a desription of our experiene of geometri modeling using trimmed NURBSsurfaes. Our experimental testbed is xmodel, a system developed at the Universityof Bologna [9℄ that is based on trimmed NURBS surfaes, whih tests new modelingideas and where tehniques an easily be experimented and evaluated. This systemis the result of our experiene of over 10 years in NURBS researh and developmentand it ombines new and well-tried approahes. In fat, our work methods are wellexpressed by the following sentene from Voelker and Requiha [44℄:"It is important to do both theoretial researh and experimental system building.They are synergisti, and the exlusive pursuit of either an lead to sterile theory orquirky, opaque systems."�This work was supported by MURST, Co�n97, Numerial Analysis: Methods and MathematialSoftware.yDept. of Mathematis, University of Bologna, Italy; E-mail: asiola�dm.unibo.it.zDept. of Mathematis, University of Bologna, Italy; E-mail: morigi�dm.unibo.it.1



2 G. CASCIOLA AND S.MORIGIEveryone agrees with this idea, although, in the aademi world, it is hardly everrewarded.The paper is strutured as follows: in Setion 2 the basi de�nitions of trimmedNURBS surfae are given. In Setion 3 we address the problem of representing thetrimmed regions, while Setion 4 deals with several approahes used for renderingtrimmed surfaes. In Setion 5 and 6 we desribe how these surfaes an be used forsolid and surfae modeling purposes.2. Trimmed NURBS surfaes. A trimmed NURBS surfae an be de�nedby a tensor produt NURBS surfae and a set of trimming urves in the parametrispae of the surfae.A NURBS surfae of order (m;n) de�ned in the parametri domain U � V =[0; 1℄� [0; 1℄, an be represented as:r(u; v) = Pn+Hi=1 Pm+Kj=1 wijPijNi;n(u)Nj;m(v)Pn+Hi=1 Pm+Kj=1 wijNi;n(u)Nj;m(v)(2.1)where wij are the weights, Pij are the ontrol points, and Ni;n(u); Nj;m(v) are theorder n and m B-splines, respetively, de�ned over the knot vetorsU = (0; � � � ; 0| {z }n ; un+1; � � � ; un+H ; 1; � � � ; 1| {z }n )V = (0; � � � ; 0| {z }m ; vm+1; � � � ; vm+K ; 1; � � � ; 1| {z }m ):Assoiated with a NURBS surfae is a set of planar, losed, non-interseting urvesthat an be onveniently represented as NURBS urves de�ned in the parameterdomain [0; 1℄ byk(t) = (xk(t); yk(t)) = Ppk+Lki=1 wiPiNi;pk (t)Ppk+Lki=1 wiNi;pk(t) ; k = 1; � � � ;M;(2.2)with the knot vetorsTk = (0; � � � ; 0| {z }pk ; tpk+1; � � � ; tpk+Lk ; 1; � � � ; 1| {z }pk ):A trimmed NURBS surfae is given by the restrition of r(u; v) to a subdomainD � U�V , of the parametri spae, named trimmed region. This domain D is de�nedas the set of regions on U �V whose boundaries are spei�ed by the trimming urvesand a given riteria. This riteria allows us to identify the part of the surfae thatremains when disarding all the holes de�ned by the trimming urves. The trimmedsurfae boundaries are obtained by mapping the 2D trimming urves onto the surfae,that is, r(xk(t); yk(t)); k = 1; � � � ;M:



THE TRIMMED NURBS AGE 3Trimmed NURBS surfaes have been adopted by the CAD/CAM industry, andinluded in graphis standards. As suh, trimmed NURBS surfaes are provided asmodeling primitives in several geometri modeling software systems, and the render-ing of trimmed NURBS surfaes is supported by international standards, suh asPHIGS+, as well as graphis programming interfaes, suh as Iris-GL and OpenGL(Silion Graphis, In.), Starbase (Hewlett-Pakard Corp.), and Renderman (Pixar).Trimmed surfaes are essential for the modeling of non-regular boundary objets,generated by trimming away part of the retangular path. Trimming pathes alsoplay a fundamental role in the boundary desription of solid models where the trimmedsurfaes an give a omplete representation of the boundary of a sulptured solidprimitive by means of the union of surfaes restrited to suitable domains. They arethe result of Boolean operations on solid objets bounded by NURBS surfaes [17℄.3. Representing of trimmed NURBS surfaes. We fous now on the prob-lem of representing the trimmed region D, providing three di�erent representationsthat de�ne the same domain D.De�nition 1: handedness rule of trimmingThe urves k(t) are onsidered all properly oriented and joined to form a N <Mnumbers of outer or inner loops. Outer loops are oriented ounter-lokwise, whereasinner loops are oriented lokwise. The domain of the trimmed surfae is de�nedas the ommon region within the outer boundary (orresponding to the outer loops)and outside the inner boundaries (orresponding to inner loops), inluding boundaryurves [32℄. Figure 3.1a presents an example of trimmed region obtained by this rule;the area that is part of the trimmed region is shaded.De�nition 2: winding rule of trimmingThe urves k(t) are onsidered all properly joined to form N < M losed loops(see Figure 3.1b). The set of ontours divides the supporting surfae into an inneror retained region and an outer or disarded region based on the odd-winding rule.Aording to this rule, the region of the surfae that is enlosed by an even numberof loops is trimmed out [29℄.De�nition 3: 2D CSG treeThe trimmed domain is represented by the 2D equivalent of a CSG (ConstrutiveSolid Geometry) tree [5℄, whih, like its 3D ounterpart, is a olletion of half-spaesand Boolean operation symbols [17, 5℄. Eah leaf of the CSG tree struture is anembedded non-interseting losed urve. Curves at the same level are disjoint to eahother.The trimmed region that is kept an be determined by lassifying a single point.Conventions an be assumed to onsider alternate levels of the tree to be outer andinner loops, starting from an inner/outer top level. In Figure 3.1 the 2D CSG treerepresenting the trimmed region illustrated in Figure3.1a is shown with the top levelset to be outer.The trimmed region looks like a set of islands and lakes, where the islands rep-resent part of the trimmed region, while the lakes are the holes in it. The algorithmused to build a 2D CSG tree T for a given trimmed region forms a union of islands(Ri), and subtrats from eah island all of its lakes (Sij):T = I[i=1(Ri\( Li[j=1Sij));



4 G. CASCIOLA AND S.MORIGIwhere I is the number of islands and Li is the number of the lakes Sij hildren ofisland i.Another approah for representing a trimmed surfae is based on the idea ofdeomposing the domain D of the parameter spae using a set of planar subregions,whose union de�nes the entire domain D (see Figure 3.1d). This approah does notfollow an intuitive idea of trimming out the part of the entire path bounded by thetrimming urves, that is preserved somehow in the previous de�nitions, but it allowsus to manage a set of surfaes, de�ned on an irregular domain, that do not ontain anytrimming urves. This an represent an advantage during the evaluation/renderingphase, as well as in the mesh generation phase, beause it allows for a representationof a trimmed tensor produt path as a olletion of untrimmed pathes. In [22℄the authors onsider this approah by de�ning a trimmed surfae as the union of aset of planar, ruled (four-sided) subregions, addressing the problem of data exhangebetween systems. More generally, this approah an be applied using S-pathes [28,45℄. S-pathes are rational generalizations of Bezier-surfaes that admit any numberof boundary urves.
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3 4() (d)Fig. 3.1. Example of trimmed region obtained by: (a) de�nition 1, (b) de�nition 2, () de�ni-tion 3, and by untrimmed regions approah (d).4. Rendering of trimmed NURBS surfaes. This setion deals with theproblem of visualizing the trimmed NURBS surfaes. As we know, the visualiza-



THE TRIMMED NURBS AGE 5tion algorithms di�er in rendering quality with a omputational ost that inreasesas the quality improves. A modeling system needs both medium/low-level qualityalgorithms, allowing for real-time visualization (suh as depth ueing, hidden-lineor z-bu�er), and high quality algorithms for a realisti �nal rendering (suh as ray-traing).Medium/low-level quality algorithms use a pieewise planar approximation (tes-sellation or triangulation) of the trimmed surfae within a given tolerane. Afterthe triangulation phase a surfae an be rendered in real time using the trianglerendering apabilities ommon in urrent graphis systems. Several algorithms havebeen developed in the past to obtain a triangulation of a trimmed NURBS surfae[26, 32, 35, 40, 29℄. These methods are parametrization dependent and use the sametolerane to polygonize the trimming urves and to triangulate the surfae. OnlyPiegl and Tiller in [33℄ present an algorithm, whih is not parametrization dependent,that solves the problem with di�erent toleranes for the trimming urves and the sur-fae. The triangulation algorithm implemented in xmodel was inspired by the latterproposal and onsists in the following steps:� grid surfae; a retangular grid in the entire domain is reated adaptively.By splitting eah retangular into two triangles, we obtain a pieewise linearapproximation of the surfae. The goal is to approximate urved regions usingmore triangles than for the at regions, while ensuring that the approximationsatis�es the requirements of a given tolerane [1℄;� polygonize trimming urves; onsists in obtaining a pieewise linear approxi-mation of the trimming urves within a given tolerane.� merge trimming polygon and retangular grid; given a retangle in the grid ofthe parameter domain, along with its status and a set of trimming polygons,the goal is to ompute a set of losed polygons that bound the trimmeddomain lying inside the given retangle.� triangulating domain polygons; this problem has been solved in a simple andheuristi way. Our approah distinguishes two ases: the points on the ret-angular grid may or may not be onseutive polygon verties. In the �rstase, the triangles open fanwise from one of the grid points; in the seondase, where two grid points are opposite, the triangles form a seam.

Fig. 4.1. Rendering of trimmed NURBS sphere with a hidden-line algorithm; a triangulationof the trimmed domain (left), the rendered trimmed surfae (right).



6 G. CASCIOLA AND S.MORIGI

Fig. 4.2. Rendering of trimmed NURBS sphere with a ray-traing algorithm.Figure 4.1 illustrates an example of a trimmed NURBS sphere rendered by ahidden-line algorithm obtained using xmodel.High quality rendering algorithms use an exat representation. The history, the-ory and apabilities of ray-traing algorithms are well known and doumented [20℄.The basi problems in ray-traing trimmed NURBS surfaes are the following:� ray/path intersetion� determining if the intersetion points belong to a trimmed path.If the trimming is aused by a Boolean operation involving solid geometri models,the latter step an be performed using onventional CSG methods [37℄. Our xmodelsystem manages boundary representations for solids by using trimmed surfaes andtherefore the seond step determines wether an intersetion point lies inside or outsidea trimmed region using a 2D PMC (Point Membership Classi�ation) algorithm (seesetion 5).Solutions to the ray/path intersetion problem an be ategorized as being basedon subdivision, numerial or hybrid tehniques. Subdivision approahes are desribedby Whitted [46℄, Rogers [36℄ and Woodward [47℄. These algorithms are based on theonvex-hull properties of NURBS surfaes. If the ray does not interset the onvex-hull of the ontrol points, it does not interset the path. By reursively subdividingthe path and heking onvex-hulls, the intersetion points an be omputed at alinear onvergent rate amounting to a binary searh. Whitted's algorithm operates inthree dimensions, whereas Rogers and Woodward map the problem in two dimensions.Numerial solutions of the ray/path intersetion problem inlude those devel-oped by Toth [43℄, Sweeny and Bartels [42℄ and Joy and Bhetanabhotla [24℄. Toth'salgorithm is based on interval Newton iterations. It works robustly on any paramet-ri surfae for whih bounds onto the surfae and its �rst derivative an be obtained.Sweeny and Bartels proposed re�ning the ontrol mesh using the Oslo algorithm [15℄until the mesh losely approximates the surfae. The ray intersetion is then omputedby interseting the ontrol mesh with the ray, and using that intersetion point as astarting point for Newton iteration. Joy and Bhetanabhotla's algorithm uses quasiNewton optimization to apture the point/s on the path nearest the ray, inludingthe intersetion points.By hybrid solutions, we refer to Bezier lipping [31℄. This algorithm uses theonvex-hull property in a more powerful manner, by determining parameter rangeswhih guarantee that they do not inlude points of intersetion. Bezier lipping has the



THE TRIMMED NURBS AGE 7avor of a geometrially based interval Newton method, and thus may be ategorizedas partly a subdivision based algorithm and partly a numerial method.From a numerial point of view all these methods �nd the ray/path intersetionsby solving a non-linear system of equations. The above methods are global andwhen several solutions our, they split the problem. The only one whih uses aloal onvergene method after applying an initial global loalization step is Toth'salgorithm. However, the loalization step is very expensive from a omputationalpoint of view, as well as the fat that, in the ase of near solutions in the parametridomain this loalization step an fail, requiring the appliation of a binary subdivisionmethod of the funtion.In our system we implemented �rst the Toth's proposal, then Bezier lipping andreently we added a new algorithm following one of our ideas. This new approah wasalled "Toth speed". It is a ombination of the Toth and Bezier lipping algorithmsthat outperforms their performanes [30, 41℄. The idea is to redue the appliation ofthe interval Newton iterations of the Toth method, trying to �nd the solution usinga simple Newton, in the knowledge that, if a solution exists, it is unique. If this fails,an interval Newton iteration is applied. Moreover, when the Toth algorithm is foredto use binary subdivision, our method uses Bezier lipping.All these algorithms are inluded in the system and an be ompared on omplexray traed senes. Note that a ray-traing algorithm exploits a ertain number ofoptimization tehniques in order to speed up performane, suh as subdividing a 3Dsene in voxels, subdividing the NURBS surfae in rational Bezier pathes, furthersubdividing eah rational Bezier path until a given at tolerane is reahed [19℄.These optimizations an improve a ray/path intersetion in di�erent ways.The optimizations mentioned in the ase of trimmed surfaes, introdue a newproblem: the subdivision of a path implies the rede�nition of the trimmed domain.The solution to this problem may be more or less omplex, depending on the type ofrepresentation used for the trimmed region.Figure 4.2 shows an example of a trimmed NURBS sphere rendered by a ray-traing algorithm obtained by xmodel .5. Solid modeling. Following the B-rep (Boundary representation) of a solid,we an de�ne as 'primitive solid' any solid that has, as its boundary, a single surfaethat is simply losed in order to separate the spae into two parts, one of whih willbe enlosed. Aording to onvention, the boundary surfae must be parametrizedin suh a way that the surfae normal vetor indiates the area outside the solid.For example, spheres, ylinders, et. are inluded in this de�nition, as well as losedsulptured solids. Primitive solids an also be ombined by Boolean operations, suhas intersetion, union and di�erene, in order to reate a omplex solid. The diÆultiesposed by Boolean ombinations of free form objets have been overome through theuse of trimmed surfaes.The boundary of a solid objet S is de�ned as followsbS = k[i=1 ri(Di)(5.1)where Di is the trimmed region assoiated with the surfae ri. A primitive solid isthen de�ned by k = 1 and D1 = U � V . The boundary of the solid S is a losedsurfae.Given two solids A and B, respetively de�ned by their boundary surfaes, theBoolean operation problem onsists in determining the boundaries of the solids ASB,



8 G. CASCIOLA AND S.MORIGIATB, A�B starting from bA and bB. We will refer to this proess as the set operationalgorithm.The boundary of the resulting solid is given by the equations known as the bound-ary formula [34℄: b(ASB) = (bAT B)S(bBT A)b(ATB) = (bAT iB)S(bBT iA)b(A�B) = (bAT B)S(bBT iA)(5.2)where iX and X represent, respetively, the interior and the omplement of the solidX . The trimmed pathes of the resulting solid are the same as those of bA and bB,exept for the portion of the pathes that have been trimmed away (see Figure 5.1).

Fig. 5.1. Solid modeling; trimmed domains for the solid �nger disk in Fig.5.2; the ylinderpart of the solid (left), the disk part of the solid (right).

Fig. 5.2. Solid modeling; primitive solids to ompose the �nger disk by di�erene (left), theresulting sene (right).In [5℄ and [6℄, a set operation algorithm is given, that operates on solids modelledwith trimmed pathes. In [17℄, the trimmed path is represented by a dual represen-



THE TRIMMED NURBS AGE 9tation, i.e. the trimmed path is given both by an impliit surfae and a parametripath, and a basi theory is presented for a set operation algorithm, whih operateson the dual representation. In [7℄ the proposal in [5℄ is taken up, adapted for NURBSsurfaes and implemented in the xmodel system. A omplete desription and im-plementation of a set operation algorithm is tehnially omplex. The basi idea in[7℄ onsists in avoiding the intersetions between trimmed pathes by onsidering theintersetions between the pathes over the whole domain. After this, the trimmedregions (2D CSG tree) resulting from the intersetion between the trimmed regions ofthe solids and the trimmed regions obtained by the path/path intersetion opera-tions, are determined. In the following, we will give a brief desription of untrimmedsurfae/surfae intersetion (SSI), 2D and 3D PMC and 2D urve/urve intersetion(CCI), whih represent the basi steps involved in this proess.5.1. SSI. The methods available for interseting pathes an be divided into twoategories: urve following and subdivision. Firstly, the urve following method �ndssome points of intersetion. Then, the points on the intersetion urve are detetedusing a numerial method [1, 2℄. This method is espeially useful for proessingsingular ases of intersetion [3℄. The subdivision method divides the problem intosmaller problems by approximating the path into simpler linear or quadrati sub-pathes [23, 6℄. The pathes are interseted, resulting in urves that are then re�ned byanother numerial method. A modi�ed version proposed in [1℄ has been implementedin the xmodel system [8℄. Here, the balane between robustness and eÆieny, aproblem for SSI algorithms, is solved by a "little trik". The four main steps are thefollowing:� Adaptive mesh generation; this onsists in the approximation of eah of thesurfaes using an adaptive grid of isoparametri urves, approximated bypieewise linear urves within a given tolerane. From this grid we easilyobtain a surfae triangulation;� Initial intersetion point generation; the intersetions between the grid seg-ments of a surfae and the triangles of the other surfae are determined inorder to obtain at least one starting point for eah intersetion urve;� Following an intersetion urve; with an initial point on the intersetionurve, we move along the urve by steps. To do this, �rst of all we �nd anestimate for the next point on the intersetion urve, and then we evaluatean exat intersetion within a given tolerane;� Sorting; �nally, the urve intersetion segments found in the preeding stepare linked together in order to obtain omplete intersetion urves.5.2. 2D and 3D PMC. Point Membership Classi�ation is a funtion thattakes, as its input, a point P and a losed set S, and whih returns one of threepossible outomes: P is inside S, P is on the boundary of S, or P is outside S. The setoperation algorithm makes extensive use of PMC in both two and three dimensions.During the onstrution of the 2D CSG tree, a single 3D point is lassi�ed withrespet to the opposing solid. The result will be used for further 2D lassi�ations inorder to build a olletion of half-spaes whih, ultimately, beome the leaves of thetree. A single onept is used for both 2D and 3D lassi�ation: a ray is extendedfrom the point to be lassi�ed, and the number of intersetions of the ray with theboundary of the set determines the membership status of the point. An even numberof intersetions means that the point is outside the set, while an odd number impliesthat the point is inside. While the onept is the same, its implementation is verydi�erent for two or three dimensions. In the 2D ase, the ray is interseted with



10 G. CASCIOLA AND S.MORIGIpolygons or urved boundaries. In the ase of urved boundaries all the roots in theparametri interval [0,1℄ of the salar NURBS funtion resulting from the ray/urveintersetion must be found. To solve this problem the methods in [21, 27, 4, 31℄are explored and ompared [41℄. In the 3D ase, the boundary onsists of trimmedpathes, and a ray/path method is required (see setion 4).5.3. CCI. This problem an either be takled geometrially, that is, using subdi-vision tehniques for the urves, that exploit the onvex-hull property of the NURBSurves [27, 25, 38℄, or numerially. The latter is done either by �nding all the zerosof the funtion resulting from the system, when a urve has been impliitized [39℄(this is pro�tably appliable only for low degree urves), or by �nding the zeros of thevetor funtion in two variables (2D surfae), obtained from the di�erene betweenthe urves [16℄. The problem of �nding the zeros of a 2D surfae an be solved usingthe same methods as those used to determine the ray/path intersetions, (see setion4). Figure 5.2 shows an example of solid modelling generated by the xmodel system.6. Surfae modeling. The re�nement tehnique for spline surfaes is a wellknown tool used to represent a surfae de�ned by a �ner ontrol mesh with thefeature that eah single ontrol point will have a more loal e�et on the surfae.This allows us to model small pathes and to modify their shape without a�etingthe rest. This idea led to the de�nition of Hierarhial Spline Surfaes (HSS) [18℄,proposed in 1988 by Forsey and Bartels, enabling a surfae to be re�ned and detailsadded, using a hierarhy, whose levels orrespond to the varying levels of re�nement ofthe surfae pathes. This tehnique enables us to restrit the inuene of re�nementto the relevant parts of the surfae.Our paper illustrates how the xmodel system uses trimmed NURBS surfaesto represent HSS and enables modeling to be arried out with these surfaes. Forthis purpose retangular trimmed NURBS surfaes are de�ned. They onsists ina partiular lass of trimmed surfae, whose trimmed away regions are de�ned asretangular in the parametri domain.We an represent an HSS as a NURBS surfae r and a set of regions Di as follows:n[i=1 r(Di)where eah region Di represents the ith level of detail of an HSS and is de�ned byDi = Ai�1 �Ai with A0 = U � V; Ai = mi[j=1 Âijand where Âij = [uaj ; ubj ℄ � [vj ; vdj ℄ represents the jth retangular trimmed regionat level i, and is a subset of Ai�1. Note that Sni=1Di = U � V .The modeling phase, by adding or editing details, onsists in �rst seleting theretangular path on the surfae to be modi�ed, then determining the orrespondingretangular subdomain and trimming it so that the domain beomes restrited tothe hosen path, whih now ats as an autonomous and untrimmed surfae. Theappropriate re�nement is arried out and the ontrol points that an be moved withoutaltering their order of ontinuity with the original surfae are determined. In the initialHSS work [18℄, the ontrol points that annot be altered in order to avoid losing theoriginal ontinuity are already learly spei�ed. These form a frame m� 1 wide and



THE TRIMMED NURBS AGE 11n� 1 high in the ontrol mesh, where m and n are the NURBS surfae orders. Anyhange in position and/or weight of all or only some of the ontrol points withinthis frame results in a loal modi�ation of the path, while maintaining the originalontinuity with the rest of the surfae.In Figure 6.1 we show an example of HSS modeling using trimmed NURBS.

Fig. 6.1. HSS modeling using trimmed NURBS; on the left three levels of retangular pathesare shown, on the right the modeled surfae is given.Furthermore, in order to design multi-sided surfaes, it makes perfet sense toonsider a modeling proedure that trims one surfae by means of another surfae,even if no set operation is indiated. To do this, the xmodel system allows the userto model the 2D trimming urves and de�ne a 2D CSG tree for a given surfae.7. Conlusions and new trends. In this paper we have disussed the useful-ness of the trimmed NURBS paradigm for modeling.Trimmed NURBS present at least two diÆulties:� trimming is expensive and prone to numerial errors;� it beomes diÆult to maintain smoothness at the seams of the pathwork,when the model is animated.Reently, subdivision surfaes have been onsidered as a way of overoming NURBStopologial limitations without mesh degeneray. They do not require trimming, andmodel smoothness is automatially guaranteed, even in animated models. The ideais to re�ne an irregular/regular mesh, by reating a new mesh that approximates theold one. By repeating this proess, a smooth surfae is formed as the limit of the pro-ess itself. Subdivision algorithms are quite simple, and are generally able to produequite omplex objets, although the basi theoretial modeling bakground has yet tobe explored, and e�etive, intuitive user interfae, designed to exploit the potential ofthe representation to the full, requires further development. Although trends in geo-metri modeling ommunity researh are moving towards an exhaustive exploration ofthe subdivision paradigm, at the moment, trimming modeling still remains the mostomplete and powerful means for free form objet modeling.
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