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Abstract

A new class of spline curves in polar coordinates has been pre-
sented in (Sdnchez-Reyes, 1992) and independently considered in (de
Casteljau, 1994). These are rational trigonometric curves in Cartesian
coordinates and can be represented as NURBS. From the relationship
existing with the correspondent curves in Cartesian coordinates an al-
ternative way to derive some useful tools for modelling splines in polar
coordinates has been provided. In particular an ad hoc algorithm of
degree elevation for splines in polar coordinates is presented. On the
basis of these results we propose a modelling system for NURBS curves
and surfaces supplied with a modelling environment for spline curves
and surfaces in polar, spherical, and mixed polar-Cartesian coordi-

nates.

1 Introduction

Recently, in (Sanchez-Reyes, 1992) a class of spline curves in polar coordi-
nates was proposed. We refer to these curves as p-splines. They have proved
to be a generalization of those considered in (Sanchez-Reyes, 1990), which
we call p-Bézier curves.

Soon afterwards, classes of spline surfaces in cylindrical, spherical and
tubular coordinates were proposed in (Sanchez-Reyes, 1991, 1994a, 1994h).
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The p-splines were independently considered in (de Casteljau, 1994),
which he called Focal splines. These classes of curves and surfaces are in-
teresting because they allow for modelling and interpolation of 2I) and 3D
free forms in polar coordinates with the same facilities as Cartesian splines.
Another important aspect to be considered is the possibility of providing a
rapid response to the Point Membership Classification problem.

In all of the cited papers Sanchez-Reyes emphasizes the fact that the
p-spline curves and surfaces are piecewise rational Bézier in Cartesian co-
ordinates and they are not rational splines. Actually, this last assertion is
neither proved nor supported by any justification. In this paper we will not
only show that a p-spline curve or surface is a NURBS, but we will also pro-
vide the algorithm that leads to a representation of these curves and surfaces
as NURBS.

In addition to knot insertion, knot removal and subdivision, another
known result from Sanchez-Reyes’ papers is the possibility of making degree
elevation for p-splines from degree n to degree kn, although an explanation of
how to achieve this has not been given. In (Casciola et al., 1995) an algorithm
for degree elevation for p-Bézier curves has been proposed. In this paper we
will suggest how to use it for p-splines, together with tests on efficiency and
numerical stability.

These two results, in addition to others with less theoretical consequences
but essential for practical purposes, have convinced us of the usefulness of
extending our NURBS-based modelling system by supplying it with a mod-
elling environment for p-spline curves and surfaces in polar, spherical, and
mixed polar-Cartesian coordinates in order to manage polar and spherical
models in the best way.

This environment makes use both of original tools and of tools already
developed for NURBS, and it must be considered as an added potentiality
to generate and model NURBS curves and surfaces. In particular, at the
moment, the polar, spherical and mixed environment allows: the modelling of
p-spline curves by interpolation and control-point modification; the modelling
of tensor-product p-spline surfaces by interpolation of a mesh of points, by
interpolation of ¢-curves or §-curves (skinning), by revolution of a ¢ curve,
or by swinging; the possibility to model product surfaces (see Koparkar and
Mudur, 1984) in mixed coordinates. As is already known | the latter includes
sweep and swung surfaces.



2 P-spline curves and surfaces

A p-spline curve ¢(1) of degree n is defined as

0= (46))- (75 )

where 0(t) denotes the polar angle and p(#) is the radius. Without loss
of generality, we consider t € [~A,A]. The functions M, (1) satisfy the
following recurrence relation:
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on a non-decreasing knot sequence {t;} 52" where
—A = o= =1, ti«"+n,+1 == ti«"+2n+1 =A

and the constraint ¢,,,, — ¢, < w, Vi, is satisfied .

It is easy to recognize that the functions M;,(#) are the normalized
trigonometric B-splines (see Lyche and Winter, 1979). Considering a sup-
port reduced to a single interval, these are identical with Bernstein basis
trigonometric polynomials and span the space

T span{l,cos 2t,sin 2t, cos 4t,sin 41, ..., cosnt,sinnt} n even,
" span{cost,sint, cos3t,sin 3t, ..., cosnt,sinnt} n odd

with t € [0, 7).
It is known (see Koch et al., 1995) that the control curve of the trigono-
metric spline ZZ‘:(;” 6; M, . (1) is given by
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interpolates the points (t;‘717(57j,1)7 (12, 6;).
We note that the s satisfy n(1—17 ;) < 7 in view of the knot constraints;
these guarantee that ¢;(1) can be defined everywhere and can interpolate

(74,621 ) and (17,6).

The control curve of ¢(1) is defined as

where

1 sin n(t—17_,)
gi(t) — sinn(t—tX_ | )84sinn(tf—1)8; 1

sin(é;—&_1)
sin(f—¢&;_1)8;4+sin(&—80)8;_1

having set & = nt’.

*. Every i-th piece of the control curve F(t) is, in polar

coordinates, a straight segment which interpolates the points (&,1757:11),

(&87).

Thus, the F(t) is a control polygon, and the coefficients §;' and the
Greville radial directions & define, in polar coordinates, the control points
d; = (57;75;1) of the p-spline ¢(t). The knot constraint implies that, in polar
coordinates, & — &1 < 7 holds.

Figure 1 illustrates an example of a p-spline curve and relative control
polygon (F(1)), and the associated trigonometric spline function, together
with its control curve (G(t)).

P-spline curves enjoy properties of local control, linear precision, convex
hull, and variation diminishing inherited from splines in Cartesian coordi-
nates. Moreover, p-splines of degree 2 are conic sections with foci at the
origin of the coordinates.

A tensor product p-spline surface s(u,v), in spherical coordinates, of
degree n in u and m in v, is defined as follows:
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Figure 1: Example of p-spline curve of degree n = 3 together with its
control polygon (left) and associated trigonometric spline with its con-
trol curve (right) - {£;} = {0,0,0,0,0.75,1.5,2.25,3,3.3.3}, {(&.8, ")} =
{(0,0.3),(0.75,0.3), (2.25,0.22), (4.5,0.3), (6.75,0.22), (8.25,0.3),(9,0.3) }

:
p(r, ) S S A i My () M (1)
s(u,v) = () = o
o(v) mu

where [u,v] € [a,b] X [¢,d].
A product surface of p(#) and d(u) with scaling factor f(u) in polar-

Cartesian mixed coordinates is given by

f(u)cosOp(0) + dy(u)
r(u,0) =1 f(u)sin0p(0) + dx(u)
ds(u)

with
flu) =I5 iR (u)

d(u) = 275" DiR; o (u)
P0) = S
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where f(u) and d(u) are NURBS, with the R;,, rational B-spline functions,
and p(0) is a p-spline curve.

In the next section we will show how all the curves and surfaces considered
in our spline-based modelling system can be represented as NURBS.

3 NURBS representation of p-splines

It is known (Sanches-Reyes, 1992) that the class of p-spline restricted to
a single segment (p-Bézier curves or Focal Bezier) represents a subclass of
rational Bezier curves in Cartesian coordinates. Therefore, we can state that
p-splines represent a subclass of NURBS.

A first approach to obtain a NURBS representation of a p-spline curve
has been suggested in (Sanchez-Reyes 1992). Given a p-spline curve over an
arbitrary knot sequence, this can be converted by subdivision into a piecewise
curve whose individual pieces are p-Bézier curves, so that every p-Bézier
curve can be represented in terms of rational Bezier curves in Cartesian
coordinates.

In the alternative approach proposed here, a non-piecewise Bezier repre-
sentation of a p-spline ¢(1) as a NURBS curve ¢(v) will be provided.

Let ¢(t) be the p-spline represented as a scalar function

. ]
el = ST S ML (L)

(3)

where § € [-nA, nAl.
Then the correspondent curve of (3) in Cartesian coordinates will be
obtained by a simple change of coordinates:

() )

Applying the identities

cosf = ZZ‘:(;” cos Mv?mr(%)
Sin 9 = ZZ\:_I(;W Siﬂ 57 M?,W(%)

(see Goodman and Lee, 1984), relation (4) assumes the following trigono-
metric rational form:
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In (Koch, 1988) the important transformation v, : P,— > T, 5 (7. [)(2) =
cos” x f(tan ), was provided; more precisely, if p € P, on [tan o, tan (], then

Yop € T, on [a, B] when —2 < o < 8 < Z. From this assertion it follows

that a polynomial B-spline is proportional to a trigonometric B-spline. In
particular, the following important relation can easily be proved:

cos™1
Miu(t) = o Ninle(1)) (6)
I cost;
F=i+1 '
s s
t) =tant — = <il< =
(1) = tan 5 5

where the N, are the polynomial B-spline functions defined on the knot

sequence {¢(t;)}.
In virtue of (6), relation (5) becomes

K+4n [ cosé&; it -
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Thus, we can conclude that a p-spline in Cartesian coordinates has the
following NURBS representation:

Z,‘:(;” Piw; N, (v)

= == € 10,11, 8
o) = St tmet) e ) )
with weights
o;
Wy = (9)
I cost;
j=it
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Figure 2: NURBS representation of the p-spline curve shown in Fig.1.
n=3,{v;} =40,0,0,0,0.46,0.5,0.53, 1,1, 1,1}, {w;} = {1,0.09668,0.00933,
0.00066, 0.00933,0.09668, 1}.

cos§;

sin§;
a knot sequence {v;} obtained applying relation (7) to the knots #,. Note
that the P; are given by the transformation in Cartesian coordinates of the

and control points P, = 5;1 ); the N;,(v) functions are defined over

p-spline control points (&,6; ).

In Figure 2 the NURBS representation of the p-spline curve illustrated
in Figure 1 is shown.

If 2A > 7, in order to satisfy the applicability conditions of relation (6),
it will be necessary to subdivide the p-spline curve into piecewise p-splines
defined on intervals whose size is less than .

Also, it should be noted that if the p-spline is defined on a generic interval
[a, b], the translation, non-translation, at the origin of this interval involves
differently parametrized curves in Cartesian coordinates that can be con-
verted into each other by means of a suitable linear rational reparametriza-
tion.



The existence of the corresponding Cartesian rational spline ¢(v) of a
given p-spline ¢(#), allows us to assure that the piecewise rational Bézier
curve, obtained following the approach suggested by Sanchez-Reyes, can
be transformed into ¢(v) by a suitable linear rational reparametrization of
each piece, followed by consecutive knot removal until the partition {v;} 1s
achieved.

4 Tools for p-splines

Of the many tools that play an important role in a spline-based modelling
system, we report knot insertion, subdivision, knot removal, and degree ele-
vation. Algorithms for knot insertion, subdivision, and knot removal for p-
splines can be obtained from analogous algorithms for trigonometric splines,
as can be easily deduced from the definition of ¢(¢).

Alternative algorithms can be obtained using relation (6) and the anal-
ogous algorithms for polynomial splines. For example, the knot insertion
algorithm for p-splines may be schematized through the following steps:

Tet 1, <1< tyiq1 be the knot to be inserted.

8
i+n

H cost;

G=i41

ﬁ .

1. Compute ¢; = =0 —mn,--- 0

b

2. Insert knot c,o(]f) by means of the polynomial spline algorithm on ¢; coef-
ficients to achieve ¢; over the {v;} knot partition;

i+n

R H COSt}
3. Compute §; = =4 =0 —mn, - 0L+1.

€y

In fact, applying (6) to ¢(t), we have

1 1

- = - 10
ZZ‘:_SW 6i Mi,n(t) cos™ ZZ‘:_SW Ci Ni,n (7)) ( )

executing knot insertion for polynomial splines, (10) becomes

1

cosmt SIS 6N (v)
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Figure 3: Degree elevation steps; (a) original cubic p-spline curve , (b) sub-
division in 3 p-Bézier curves, (¢) degree elevation of each p-Bézier curve , (d)
degree-elevated curve after the knot removal step; the degree is raised to 6.

and applying relation (6) once again, we obtain
B 1
S 6iMia (1)

with ¢;, ¢ and (i; as indicated in 1.,2. and 3.

Analogously, relation (6) can be used in order to evaluate the p-spline ¢(1),
referring the evaluation of a trigonometric spline to a polynomial spline. It
should be noted that these tips can improve the efficiency of a p-spline-based
modelling system.

Unlike the above-considered tools, the algorithm for the degree elevation
of a p-spline is not achievable either from the trigonometric spline degree
elevation algorithm considered in (see Alfeld et al., 1995), or from the degree
elevation algorithm for polynomial splines. In fact, the application of such
algorithms does not modify the parametric interval size, as results from the
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definition of ¢(¢). From this the need emerges for an ad hoc algorithm to
determine the degree elevated p-spline curve.

4.1 Degree elevation for p-splines

From the expression of a p-spline in terms of the Fourier basis, one can
deduce that this subset of curves is closed with respect to degree elevation
from degree n to degree kn, for any natural value k.

Assume, for example, n = 2; the p-spline can be represented, for each
segment, in the Fourier basis {1,cos2t,sin2t}, for t € [—A, A], and also

{1,cos 4s,sin4s} s € [f%, %] Therefore, it can be expressed by the Fourier

basis of elevated degree kn =4, {1, cos 2s,sin 2s, cos4s,sin 4s}.

Following the idea in (Piegl and Tiller, 1994) for polynomial splines,
we provide a degree elevation technique for p-splines that consists in the
following steps:

1. decompose the p-spline into piecewise p-Bézier curves (subdivision);
2. apply degree elevation to each p-Bézier curve;

3. remove unnecessary knots until the continuity of the original curve is
guaranteed (knot removal).

In order to realize step 2 , the following result is exploited (Casciola et

al., 1995).

Degree elevation formula for p-Bézier curves

Let p(t) = D c;Ajn(t), 1 € [=A,A] be a generic trigonometric polyno-
J=0
mial of degree n in the Bernstein trigonometric basis, then

kn, A A
pt) =Y & Am(s),  s=1/k,  se [? * ] ()
r=0 / /
where |
— 777 kn 10 i n .
& = Sin”(QA)( T) 72_(:) Cj 4 Villjr
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and

gl iq+7a
. [(1)“' (d)] s (20
v =11 o ant <—)
o Zd!.]d! k
d odd
min(k(n—j)—Ir—.J) 2A

R N (AR

h=max(0,r—kj)
1) = max odd less than or equal to k&,

T

i = {(7/177/37 ~ Dy J15.73, “7.777);7/177/37 c tDy J15 735 -5 0D Z 0 ’

ih+is+..+ip=n—j, n+js+..+ip=7}

Although the formula may appear complex and its implementation may
not be immediately comprehensible, in (Casciola et al., 1995) useful details
and tips to produce an efficient and stable algorithm are provided.

At first sight, it is easy to realize that the critical point of the formula
consists in the cycle in T'; ; this is due both to the difficulty in determining
the ordered sequences (i1,73,..,7pn,71,73,--»4n), and to their large quantity
that makes the cycle expensive.

For this purpose, it should be pointed out that only ordered sequences of
(k+1)div2 items iq, 13, ..,1p satisfying i1 +i3+..+ip =n—7 with j =0,--- |n
needed to be determined, because the 7y, 75, .., 7p items are the same. The
ordered sequences in I'; are obtained by making suitable combinations of
the 21,13, ...2p items. Moreover, we can observe that the number of ordered
sequences in ['; for k& = 2 is reduced to one, and, for small k and n , the
number of ordered sequences remains limited.

Considering that, generally, in a spline modelling system, the most fre-
quently used maximum degrees are 2,3 or 4 | it is easy to see how this formula
can produce good results.

The proposed algorithm provides a preprocessing phase that performs
the entities that recur many times in the given formula; in particular, the
coefficients 7, are precomputed. Note that, being +; = 7,,_;, the number of

12



E\n [ 1 2 3 4
2 0.00 2379 1.876 1.498
3 0.00 1.427 1.161 0.921
4 0.00 1.019 0.853 0.675
5 0.00 0.793 0.668 0.533
6 0.00 0.649 0.552  0.440
7 0.00 0.549 0.468 0.375
8 0.00 0476 0.408 0.327

Table 1: Convergence of control points to the curve; each entry has to be
multiplied by 1077,

these coefficients actually computed is reduced to half of the cardinality of
;.
Only one preprocessing phase is required for the degree elevation of all
the p-Bézier curves, and this also contributes to the efficiency of the degree
elevation algorithm for p-splines.
In Figure 3, the three main algorithm steps are tested on an initial p-
spline curve of degree n = 3 with 2 single interior knots, to obtain a p-spline

of degree kn = 6 with 2 interior knots, both having a multeplicity of 4.

Computational results

The algorithm has been implemented in Pascal (BORLAND 7.0), carried
out in double precision (15-16 significant figures), and tested on a Pentium
90 PC.

The test curves considered, without loss of generality, have been cho-
sen with # € [0, 7], the coefficients §;' =1 .4 = 0,---,n, and randomly
distributed knots.

Tests were performed on the following aspects:

1. numerical stability of the algorithm;

evaluated by means of a convergency test on the control points of the
degree elevated curve to the curve itself, and by means of a maximum de-
viation test between the original p-spline and the associated degree-elevated
p-spline;

13



E\n | 1 2 3 4 E\n | 1 2 3 4
2 0.017 0.033 0.037 0.107 2 0.109 0.293 0.733 1.470
3 0.033  0.073 0.180 0.400 3 0.187 0.733 2.010 4.067
4 0.036 0.106 0.267 0.627 4 0.293 1.470 4.216 9.133
5 0.053  0.220 0.767 2.270 5 0.473  2.600 7.910 17.53
(Ta) (10)
E\n | 1 2 3 4 E\n | 1 2 3 4
2 0.036 0.073 0.147 0.253 2 0.180 0.547 1.313 2.640
3 0.073 0.187 0.340 0.807 3 0.326 1.420 3.880 8.127
4 0.090 0.220 0.587 1.250 4 0.620 2.900 8.453 18.57
5 0.107 0.440 1.500 4.510 5 0.993 5.380 16.07 36.50
(20) (20)
E\n | 1 2 3 4 E\n | 1 2 3 4
2 0.040 0.147 0.220 0.400 2 0.293 0.880 2.010 4.033
3 0.113  0.293 0.620 1.250 3 0.587 2.270  6.190 12.80
4 0.113  0.327 0.880 1.944 4 1.030 4.830 13.70 29.76
5 0.147 0.653 2.310 7.500 5 1.650 8.720 25.90 54.20
(3a) (30)

Table 2: Execution time (10 %sec) results of degree elevation ;(a) our imple-

mentation, (b) interpolation technique; (1), (2) and (3) respectively with 1,

3 and 5 internal knots.
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Figure 4: Degree elevation results shown in the second column in Table 2a

2. execution time of the algorithm;

evaluated as a function of the start degree n, the increment factor k, and
the number I of interior knots.

Table 1T summarizes convergency results of control points to the curve,
for p-spline test curves of degrees n = 1,2,3,4 with 2 interior knots and
increasing k. The values reported were evaluated by computing

| (&) — 6 12
iz&---J«"ﬂiiL(knW) le(&:) i (12)

Numerical stability was assessed by

MAXERR = ||c(t) — ¢(9)||eon (13)

on a uniformly-spaced set of points, where ¢(s) denotes the degree-elevated
curve, resulting in

107" < MAXERR <107" (14)

This reveals the accuracy of our results.

In order to evaluate performance, the algorithm for the degree elevation of
p-splines was compared with the interpolation technique, the only means at
our disposal for degree-elevating a p-spline. Table 2 reports a comparison of
execution times required by our algorithm and by the interpolation technique
for 1,3 and 5 interior knots, with n < 5 and k& < 6.
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Figure 5: Degree elevation results as a function of the number of interior
knots

The results emphasize the performance of our algorithm when compared
with the interpolation technique; Figures 4 and 5 provide a clearer under-
standing of these results.

In Figure 4 timings relating to an initial curve of degree n = 2 with 3
interior knots are reported for increasing k values.

While the execution times of our algorithm were slightly worse than the
linear growth rate, the interpolation has an exponential growth rate.

The tests in Figure 5 illustrate the execution times as functions of the
number of internal knots, while the degree kn remains unchanged at value 9.

From Figure 5 we can observe that the performance of our algorithm for
p-splines takes full advantage of the preprocessing phase, making the growth
rate less than the linear one.

All of the tests considered used p-spline curves with single interior knots.
It is clear that our algorithm performs better, compared with the interpola-
tion technique, when the knot multeplicity is increased.

5 Modelling examples

In this section we show some examples of surfaces obtained using our NURBS-
based modelling system. This system is supplied with a modelling environ-
ment for p-spline curves and surfaces in polar, spherical and mixed polar-
Cartesian coordinates.
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Figure 6: p-spline profile curves in polar coordinates for a half face

In the first example we have modelled a face in polar-spherical coordinates
by the skinning technique.

In Figure 6 the profile curves for half face are shown. These p-spline
curves have different degree 2 and 3, and different knot partition. They are
obtained by interpolation in polar coordinates. Before applying the skinning
technique in spherical coordinates, in order to obtain a tensor product p-
spline surface, all the profile curves have been maked compatible by using
our degree elevation algorithm and knot insertion technique. In Figure 7 the
resulting modelling face is shown.

The second example, in Figure 8, shows a tensor product p-spline surface
modelled by changing its control points. Modelling this kind of surfaces is
complex in Cartesian coordinates but becomes easy in spherical coordinates
because is sufficient to modify the coefficients according to a specific pattern.

The last example shows a swinging surface as a particular case of a prod-
uct surface in mixed polar-Cartesian coordinates.

Figure 9 shows the p-spline trajectory curve modelled in polar coordinates
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Figure 7: p-spline surface in spherical coordinates obtained by skinning

Figure 8: p-spline surface in spherical coordinates obtained by modelling the

control grid



Figure 9: left: p-spline trajectory; right: NURBS profile

250
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Figure 10: swinging surface in mixed polar-Cartesian coordinates
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and the NURBS profile curve in Cartesian coordinates. The resulting surface
is shown in Figure 10.

Once the p-spline surface has been modelled, it is possible to represent
it as a NURBS surface, generalizing the result in section 3. This turns out
to be important both for having the model in a standard NURBS form, and
to exploit for p-splines the note techniques for NURBS as, for example, the
rendering algorithms.
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