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Abstract

The objective of the paper is to continue the study of an interesting
class of rational splines in polar coordinates, introduced by Sanchez-
Reyes [17] and independently by de Casteljau [6]. We refer to these
curves as p-splines. They are a generalization of certain analogous of
Bézier curves in polar coordinates which we call p-Bézier.

We present an alternative way to have an exact representation of
a circular arc using p-Bézier and p-spline curves. This result has a
direct application in the construction of p-spline surfaces in spherical
coordinates.

Keywords: Conic sections; p-Bézier and p-spline curves; circles; circular
arcs;

1 Introduction

In [3] a class of spline curves and surfaces in polar coordinates, named p-
splines, was investigated in terms of trigonometric splines. This class of
curves was introduced by Sanchez Reyes in [17] and independently consid-
ered in [6] by de Casteljau, which he called focal splines. These classes
of curves and surfaces are interesting because they allow for modelling and
interpolation of 2D and 3D free forms in polar coordinates with the same
properties as Cartesian splines. Another important aspect is the possibility
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of providing a rapid response to the so-called point membership classification
problem.

In [4] the authors show that a p-spline curve or surface is a NURRBS,
and provide an algorithm that leads to a representation of these curves and
surfaces as NURBS.

Many of the tools for p-splines, such as evaluation, knot insertion, knot
removal and subdivision, can be easily derived from the analogous tools for
trigonometric splines. This is not the case for degree elevation. In [2] an
algorithm for degree elevation for p-Bézier curves has been proposed and in
[4] it has been suggested how to use it for p-splines.

Conic sections represent an important design tool, and many algorithms
for the use of conics exist. In particular the circle has received most attention
from the CAGD community. We will focus on circle partly because it is an
important subject in itself, but also because of its fundamental role in the
construction of the control grid of a p-spline surface in spherical coordinates,
obtained as tensor-product of p-spline curves [3]. In particular, in a spherical
coordinate system, necessary, in order to compute the control points of the
p-spline surface, is to determine the coefficients of the associated p-spline
circle.

This paper is organized as follows. Section 2 introduces the notation
needed to describe p-spline and p-Bézier curves. In section 3, some prelim-
inaries about conic sections are given, and sections 4 and 5 investigate a
number of interesting properties of these curves as circles and circular arcs.

2 P-spline and p-Bézier curves

A p-spline curve c(t) of degree n is defined as

T
1
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where 0(t) denotes the polar angle, p(1) is the radius, and the é,’s are non
negative coefficients. Without loss of generality, we consider ¢ € [—A, Al
The functions M, () are the normalized trigonometric B-splines satisfying
the following recurrence relation [11]:
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In contrast to the polynomial case the functions M;,(¢) do not form a
partition of unity.

Tt is known [9] that the control curve of the trigonometric spline S84 8 M; . (1)
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Gt)=gi(t) i=1,---,K+n te [ﬁ,nfﬂ 7 = ! Z“‘” 7

sinn(t — 17 )6 +sinn(t; —1)6; 1

simn(tr —17)

gi(t) =

interpolates the points (t;‘717(57j,1)7 (12, 6;).
We note that the t¥s satisfy n(1*—17 ) < 7 in view of the knot constraints;
these guarantee that ¢;(1) can be defined everywhere and can interpolate

(74,621 ) and (17,6).
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with & = nt?. Every i-th piece of the control curve F(#) is, in polar coordi-

nates, a line segment which interpolates the points (57;,1 , 57;11)7 (f};7 571).

Thus, the F(#) is a control polygon, and the coefficients §;' and the
Greville radial directions & define, in polar coordinates, the control points
d; = (f};7 5;1) of the p-spline ¢(#). The knot constraint implies that £, —¢, 1 <
7 holds.

Figure 1 gives an example of a p-spline curve and the corresponding con-
trol polygon F(#), and the associated trigonometric spline function, together
with its control curve G(t).

P-spline curves enjoy properties of local control, linear precision, convex
hull, and variation diminishing property inherited from splines in Cartesian
coordinates. As we shall see in the next section, p-splines of degree 2 are
conic sections with foci at the origin of the coordinate system.

Moreover, as shown in [4], a p-spline defined on the parametric interval
[—A,A], where 2A < 7, admits the following NURBS representation in
Cartesian coordinates:

ZZ‘:_SW P;w; Ni,n (7))
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with weights given by
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sin§;
Cartesian coordinates of the p-spline control points d;.

The N;,.(v) functions are defined over a knot sequence {v;} obtained by

_] [] n ta,nt]
7)72 tan A

and control points P; = §; ) obtained by the transformation in

applying the relation

to the knots #,.

Remark 1
Note that if 2A > =, it is necessary to subdivide the p-spline curve into
piecewise p-splines defined on intervals whose size is less than 7 [4].
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Figure 1: Example of p-spline curve of degree n = 3 together with its
control polygon (left) and associated trigonometric spline with its con-
trol curve (right) - {£;} = {0,0,0,0,0.75,1.5,2.25,3,3.3.3}, {(&.8, ")} =
{(0,0.3),(0.75,0.3), (2.25,0.22), (4.5,0.3), (6.75,0.22), (8.25,0.3),(9,0.3) }

Remark 2
The circular spline introduced in [12] can be obtained in polar coordinates
by applying to p-spline the following transformation:

Analogously to the Cartesian case, the class of p-spline restricted to a
single segment represents a subclass of rational Bézier curves in polar coor-
dinates, that we call p-Bézier curves.

A p-Bézier curve c(t) of degree n is defined as:

S A )

where §(1) denotes the polar angle, p(#) is the radius, the é;’s are non negative
coefficients, and, without loss of generality, t € [-A, A], 2nA < 7.

The functions A, (1), named the Bernstein basis trigonometric polyno-
mials [1], are defined as follows:
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and span the linear space

T span{1, cos(2t),sin(2t), cos(4t),sin(4t), .., cos(nt),sin(nt)} , n even
"] span{cos(t),sin(t), cos(3t),sin(31), .., cos(nt),sin(nt)}, n odd

with t € [0, 7).
In [16] is proved that the functions A;, satisfy the following relation:

3 inlt) = (;T&)n

so that they do not form a partition of unity.

The coefficients 6; and the Greville radial directions & = —nA+2A, 1 =
0,..,n define the control points in polar coordinates d; = (&;,8; ") of c(2).

3 Conic sections

It is well known that a rational Bézier curve of degree n = 2 is a conic, since
a rational curve of degree 2 has an algebraic equation of degree 2 [7][10].

Moreover, in [16] has been shown that every p-Bézier curve of degree 2
represents a conic section with focus at the origin.

Let us consider the expression of a conic in polar coordinates (p, #) with
focus at the origin O:

P
oy == ,k‘ ]
1+ ecos(§—6,)’ p=e (M)

where by e we denote eccentricity, k is the distance of the focus from the

p

directrix, and , the angle between the direction § = (0 and the axis of the
conic. Setting § = 21 in (1), we obtain a p-Bézier curve of degree 2 expressed
in terms of the Fourier basis:

1
— = ag + ajcos(2t) + bysin(2t)
p

where aq, a; and by are constants.
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Figure 2: Unit circular arc as p-Bézier of degree n = 2
3.1 Classification of polar conics
The type classification of the conic depends on the value [16]:

9 9 =1 parabola;
(1) (51) <1 ellipse;

Wows  6pds > 1 hyperbola;

where w; are the weights of the rational Bézier curve associated to the p-
Bézier defined by coefficients é;.

As is known, a rational quadratic Bézier curve in standard form, that is
PoP:P; forms an isosceles triangle, wo = 1, wy = COS(P()OPQ) and wy = 1,
represents a circular arc [7].

From equation (1) we can obtain an expression for a circular arc setting
e = 0 and p equal to the radius.

4 Circular arc as a p-Bézier curve

We begin by observing that a representation of a circular arc as a p-Bézier
curve can be obtained only for even-degree, as space T, for odd n does not
contain constants.

et us now consider the simple case of a unit circular arc of degree 2
with center at the origin, spanning an angular interval [—2A,2A]. Since the
p-Bézier curve interpolates the extreme points dg and dy and is tangent to
them, we have
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Figure 3: Semicircle as p-Bézier of degree n = 2

50 - 52 - ]
and 61 = cos(2A), see figure 2.

The maximum angle of a circular arc that we can express as a p-Bézier

curve of degree 2 is 7 and represents a semicircle with the control point d,
. . L -1 _ 1 _
at infinity, see figure 3; in fact ;" = —= = oo.

Since we want to mantain the convex hull property (which is defined for
point sets, not for points and vectors), we are interested in p-Bézier and
p-spline representations with all finite control points.

We now focus on the computation of the coefficients, that we name v;, of
a unit circular arc represented by a p-Bézier of even arbitrarily chosen degree
n = 2k, for any natural value k, and control points (&, v; ').

The coefficients v; could be obtained by interpolation of n + 1 points on
the circular arc of degree 2.

An alternative way to obtain v; is provided from the degree elevation
technique [2] that allows for coefficients of the degree elevated n = mk curve
starting from the coefficients of the curve of degree 7, setting m = 2.

Finally, an explicit formula to determine the v; coefficients is known from
[18] and can be obtained by solving:

1= [Aga(t) + cos(2A) Ay 5(1) + Aga(t)]F

Thus obtaining the formula

k! 2cos(2A)9 .
5: N wra—i i Sk
= 7)77/47777?(7%)7 v; = (7) p,qg > 0 plat(k=p=a) (2)
=0 7)77’77:7 7/ - k
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Figure 4: Circle as p-spline of degree n = 2: using 3 p-Bézier arcs

5 Circle as a p-spline curve

In this section we are interested in the p-spline representation of a circle.

By the above considerations, a circle can be represented by a p-spline of
degree 2 with at least 2 p-Bézier arcs. But this case involves two control
points at infinity.

In order to have all finite control points, the circle must consist of at least
3 p-Bézier arcs of degree 2 (2 interior single knots).

Figures 4 and 5 illustrate a circle as a p-spline of degree 2 using a uniform
periodic knot vector.

In figure 4 we have an equilateral-triangle control polygon, and the knot
vector has two single interior knots. In figure 5 we have a square control
polygon, and the knot vector has 3 single interior knots.

Proposition 1 Using p-spline it is possible to obtain representations of a
circle without using double knots, as was forced in the case of rational splines.

In fact, in [13] is proved that the knot vector of a NURBS circle of degree
2 must have at least one double knot.

To provide another proof of this result let us represent the p-spline circle
of degree 2 as a NURBS (see section 2). As we noticed, we have to subdivide
the circle into at least two p-Bézier arcs, consequently we get a knot vector
that contains one interior double knot ( and two control points at infinity)
or two interior double knots with all finite control points.
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Figure 5: Circle as p-spline of degree n = 2: using 4 p-Bézier arcs

Note that the lowest degree necessary to represent a p-spline circle as
a NURBS without double knots is four. In this case, the p-spline spans a
7 parametric interval and the associated knot vector has one single interior
knot.

If we are interested in a NURBS representation of a p-spline circle without
double knots , a p-spline of degree at least 6 is required; in this case the p-
spline is a p-Bézier curve spanning a £ parametric interval, as is described
by the following proposition.

Proposition 2 The degree of a p-Bézier curve representing a circle must
be at least 6 in order to use only finite control points.

We observe that the circle representation using p-Bézier arcs of degree 4
requires 5 control points but two of them at infinity.

Considering the p-spline circle of degree 6, only one p-Bézier span is
required and its NURRBS representation is an example of circle represented
by a single rational polynomial Bézier arc. Following a result in [5] and [14],
in order to obtain a circle using a rational Bézier curve with all positive
weights, at least degree 5 is required.

5.1 Circle as a p-spline using a uniform periodic knot
vector

We now prove that the p-spline of even degree n defined by a uniform knot
vector and control points dj = (&, 8; ') equidistant from the origin, such that
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6; = ¢ Vi, with ¢ € IR, represents a circle. That is:

1 1
SRR S M (1) eSS My (1)

= const.

p(t) =

Thus, it will be sufficient to prove the identity

K4n

Z M; (1) = const.

=0

In the case n = 2 it is easy to see that

K42 ]
M, (1) = )
; 2(t) cos(h)

where h = &4 — &, V. In fact, using the trigonometric Marsden identity
[11], we have

1 = cos?(t) + sinz(t) =
= Zf;JSQ(COS(fm ) cos(&iga) 4 sin(Eiqr ) sin(&ig2)) M o(1)
= 27,362 COS(fH? — &ip1 )M o(1)
= cos(h) ZZ‘:(;Q M, o(1).

In general, for any even degree n, the following result holds.

Theorem 1 let n = 2k, and {t;} be and arbitrarily chosen knot vector.
Then

where A = (2)/2, a = (a1,..,a,) is a multi-index, and the o; € {1,..,n},

v =1,...n, are defined as follows:

N

the first o items, (m,..,(yg), are taken over the n items given by all
permutations = : {1,..,n} — {1,..,n} considered in lexicographical order;

and

the remaining 5 items, (@21, .., a,), are taken from the set {1,..,n} and
are chosen so that ¥(i,7), o # .
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PrROOF  From [15], in case of even degree n, we have

it A

S (o pe )
n V1) ()
(isr2)

where the o7, elements are given by

ikt
(&

n n
k _n _i(n—k)t _ ot iy
Y (—1)ole = [I(e" — &)
k=0 k=1
Setting & = 0, in (4) and computing the 0';7”,«4_% term as coefficient, of 2" |
we obtain
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where a is a multi-index obtained by considering 2 items over the n items
given by all permutations = : {1,..,n} — {1,..,n} considered in lexicograph-

ical order; thus obtaining (Z)/Q elements for the multi-index a. Then, rela-
2

tion (4) becomes

(4o +..+7‘,‘7+”%) U +‘2‘+t,7+n)

n+K (Z(y e
Z |ex]

BE

Combining the sums resulting from relation (5) , and applying the trigono-

Je

Mijn(t) =1 ()

metric identity:

eim + efim
cos(x) = —
to each of the (2)/2 summands «a;, we obtain relation (3). ]
2

If we consider a uniform knot vector, the coefficients in (3) are all equal to
a constant ¢, and the associated p-spline represents a circle. Let us consider
some examples.
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Example 1
Let n = 2, then relation (3) becomes

24K
> cos(tipr — tiga) Mia(t) = 1
7=0
In this case we have a = (a1, a3) and |a| = 1. Considering uniformly spaced
knots, we obtain
24+ K ]

M. o(1) =
72_(:) .7,2( ) COS(h)
where h = t;11 — t;. The p-spline
1

M S M)

represents a unit circle of degree n = 2 with coefficients 6; = cos(h), V.

Example 2
Let n = 4, then a = (o1, a2, a3,04). Since |a] = 3, we consider the
permutations: (1,2),(1,3),(1,4), thus obtaining

44+ K

DM () =1
i=0

where

6j = lcos(tipr +tja — fjpa — tjga) + cos(ljpn +tipa — i — 1j4a)+
cos(fjp1 + Tjsa — v — 1j34)] /3

Considering uniformly spaced knots, we obtain

1
p(f) = I/ cos cos = ]
o e LU0

that represents a p-spline unit circle of degree n = 4.

13



Then, we can easily represent a circle of radius r in polar coordinates as
a p-spline of even degree n , by just considering a uniform knot vector and

constant control points é; given by é; = (”:)7”#)’ where
n+K
const = Z M; .. (1).
J=0

We should note that it is more difficult to obtain this result in the Carte-
sian case. In fact, a circle, represented as NURRBS, is obtained by projecting
a curve that lies on a cone in homogeneous space into the plane z = 1.

5.2 Circle as a p-spline using an arbitrary knot vector

We now focus on the problem of finding a circle representation as a p-spline
curve on an arbitrary knot vector. (Given an arbitrary knot vector and an
even degree n, we are interested in computing the v; coefficients of the p-
spline circle of degree n defined on that knot vector. Instead of applying
the result of theorem 1, we want to investigate two alternative and practical
procedures.

In [18], the author suggested the following three step procedure.

Subdivision Method

1. Apply knot insertion to each knot of the knot vector until each interior
knot has a multiplicity of n;

2. Compute the v; coefficients for the p-Bezier representation of each cir-
cular arc by (2);

3. Remove each interior knot down to the desired multiplicity.

A more efficient technique is the following.

Knot insertion-Knot removal Method

1. Consider a uniform knot vector on the interval [0, 2x] consisting of the
minimum number of knots necessary to represent a p-spline circle of
even degree n (which, as we know, turns out to be 2);
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2. Insert the knots of the arbitrary initial knot vector;

3. Apply knot removal to the interior knots belonging to the uniform knot
vector.

Note that, as both methods use a periodic knot vector, in order to apply
knot insertion to the knots exterior to the parametric interval (O7 2”—7T , the
support has to be extended to the minimum size that permit to insert knots
as internal knots. The added external knots can be ignored.

The number of knot insertions in the first method increases as function
of both degree and control point number, while, in the second method, it
depends only on the number of control points.

Hence we can conclude that the knot-insertion knot-removal procedure is
computationally favourable.

Remark
The above mentioned considerations give rise to a new basis for p-splines,
defined as follows:

th(t) = ; Mi,m (71)7

where N; ., (1) denote certain normalized basis functions which form a parti-
tion of unity.

6 Concluding remarks

Remark 1

To express the polar form of a trigonometric polynomial of even degree
n in terms of the Fourier basis [8] we can use the functions cos(3- 7, ¢;),
sin(37, 1;) corresponding respectively to the functions cos(nt) and sin(nt).
We can obtain the polar form of a constant by considering the result (3)
restricted to the Bernstein trigonometric polynomial basis.
Remark 2

In a spherical coordinates system (p, ¢, ), a tensor product p-spline sur-

face of degree (m,n), is defined as s(s,1) = - !
gree (m,n), is defined as s(s, 1 T
” ’ T i M ()M ()]
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ms,nt)T, see [3]. The control points of the p spline surface s(s,t), in cylin-

drical coordinates, are given by d;; = (mq‘ ,gbh%qm( i)), where (¢;,0;)

are the Greville values. The v; coefficients qahqu

m4+K

Z oiM; (s) =1,

=0

and can be obtained by the Knot insertion - Knot removal method, see
subsection 5.2.

For example, a unit sphere can be represented as a p-spline surface ob-
tained by revolution, considering the coefficients é;; = v;v;.
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