
Circle as a p-spline curveG.Casciola and S.Morigi �Department of Mathematics, University of Bologna, ItalyAbstractThe objective of the paper is to continue the study of an interestingclass of rational splines in polar coordinates, introduced by S�anchez-Reyes [17] and independently by de Casteljau [6]. We refer to thesecurves as p-splines. They are a generalization of certain analogous ofB�ezier curves in polar coordinates which we call p-B�ezier.We present an alternative way to have an exact representation ofa circular arc using p-B�ezier and p-spline curves. This result has adirect application in the construction of p-spline surfaces in sphericalcoordinates.Keywords: Conic sections; p-B�ezier and p-spline curves; circles; circulararcs;1 IntroductionIn [3] a class of spline curves and surfaces in polar coordinates, named p-splines, was investigated in terms of trigonometric splines. This class ofcurves was introduced by S�anchez-Reyes in [17] and independently consid-ered in [6] by de Casteljau, which he called focal splines. These classesof curves and surfaces are interesting because they allow for modelling andinterpolation of 2D and 3D free forms in polar coordinates with the sameproperties as Cartesian splines. Another important aspect is the possibility�This research was supported by CNR-Italy, contract n.96.03845.PS011



of providing a rapid response to the so-called point membership classi�cationproblem.In [4] the authors show that a p-spline curve or surface is a NURBS,and provide an algorithm that leads to a representation of these curves andsurfaces as NURBS.Many of the tools for p-splines, such as evaluation, knot insertion, knotremoval and subdivision, can be easily derived from the analogous tools fortrigonometric splines. This is not the case for degree elevation. In [2] analgorithm for degree elevation for p-B�ezier curves has been proposed and in[4] it has been suggested how to use it for p-splines.Conic sections represent an important design tool, and many algorithmsfor the use of conics exist. In particular the circle has received most attentionfrom the CAGD community. We will focus on circle partly because it is animportant subject in itself, but also because of its fundamental role in theconstruction of the control grid of a p-spline surface in spherical coordinates,obtained as tensor-product of p-spline curves [3]. In particular, in a sphericalcoordinate system, necessary, in order to compute the control points of thep-spline surface, is to determine the coe�cients of the associated p-splinecircle.This paper is organized as follows. Section 2 introduces the notationneeded to describe p-spline and p-B�ezier curves. In section 3, some prelim-inaries about conic sections are given, and sections 4 and 5 investigate anumber of interesting properties of these curves as circles and circular arcs.2 P-spline and p-B�ezier curvesA p-spline curve c(t) of degree n is de�ned asc(t) = (�(t); �(t))T =  1PK+ni=0 �iMi;n(t); nt!Twhere �(t) denotes the polar angle, �(t) is the radius, and the �i's are nonnegative coe�cients. Without loss of generality, we consider t 2 [��;�].The functions Mi;n(t) are the normalized trigonometric B-splines satisfyingthe following recurrence relation [11]:2



Mi;n(t) = sin(t� ti)sin(ti+n � ti)Mi;n�1(t) + sin(ti+n+1 � t)sin(ti+n+1 � ti+1)Mi+1;n�1(t)and Mi;0(t) = ( 1 if ti � t < ti+10 otherwiseon a non-decreasing knot sequence ftigK+2n+1i=0 where�� = t0 = � � � = tn tK+n+1 = � � � = tK+2n+1 = �and the constraint ti+n � ti < �, 8i, is satis�ed .In contrast to the polynomial case the functions Mi;n(t) do not form apartition of unity.It is known [9] that the control curve of the trigonometric splinePK+ni=0 �iMi;n(t)is given byG(t) = gi(t) i = 1; � � � ;K + n t 2 ht�i�1; t�i i ; t�i = 1nXi+nj=i+1 tjwhere gi(t) = sinn(t� t�i�1)�i + sinn(t�i � t)�i�1sinn(t�i � t�i�1)interpolates the points �t�i�1; �i�1�, (t�i ; �i).We note that the t�i s satisfy n(t�i�t�i�1) < � in view of the knot constraints;these guarantee that gi(t) can be de�ned everywhere and can interpolate�t�i�1; �i�1� and (t�i ; �i).The control curve of c(t) is de�ned asF(t) =  1gi(t) ; nt!T i = 1; � � � ;K + nwhere 1gi(t) = sinn(t�i�t�i�1)sinn(t�t�i�1)�i+sinn(t�i�t)�i�1 == sin(�i��i�1)sin(���i�1)�i+sin(�i��)�i�1 ;3



with �i = nt�i . Every i-th piece of the control curve F(t) is, in polar coordi-nates, a line segment which interpolates the points ��i�1; ��1i�1�, ��i; ��1i �.Thus, the F(t) is a control polygon, and the coe�cients ��1i and theGreville radial directions �i de�ne, in polar coordinates, the control pointsdi = ��i; ��1i � of the p-spline c(t). The knot constraint implies that �i��i�1 <� holds.Figure 1 gives an example of a p-spline curve and the corresponding con-trol polygon F(t), and the associated trigonometric spline function, togetherwith its control curve G(t).P-spline curves enjoy properties of local control, linear precision, convexhull, and variation diminishing property inherited from splines in Cartesiancoordinates. As we shall see in the next section, p-splines of degree 2 areconic sections with foci at the origin of the coordinate system.Moreover, as shown in [4], a p-spline de�ned on the parametric interval[��;�], where 2� < �, admits the following NURBS representation inCartesian coordinates:q(v) = PK+ni=0 PiwiNi;n(v)PK+ni=0 wiNi;n(v) v 2 [0; 1] ;with weights given by wi = �ii+nQj=i+1 cos tjand control points Pi = ��1i  cos �isin �i ! obtained by the transformation inCartesian coordinates of the p-spline control points di.The Ni;n(v) functions are de�ned over a knot sequence fvig obtained byapplying the relation v = 12 �1 + tan ttan��to the knots ti.Remark 1Note that if 2� � �, it is necessary to subdivide the p-spline curve intopiecewise p-splines de�ned on intervals whose size is less than � [4].4



Figure 1: Example of p-spline curve of degree n = 3 together with itscontrol polygon (left) and associated trigonometric spline with its con-trol curve (right) - ftig = f0; 0; 0; 0; 0:75; 1:5; 2:25; 3; 3; 3; 3g, f��i; ��1i �g =f(0; 0:3); (0:75; 0:3); (2:25; 0:22); (4:5; 0:3); (6:75; 0:22); (8:25; 0:3); (9; 0:3)gRemark 2The circular spline introduced in [12] can be obtained in polar coordinatesby applying to p-spline the following transformation:� = (�(�); �)! ( 1�(�) ; �n):Analogously to the Cartesian case, the class of p-spline restricted to asingle segment represents a subclass of rational B�ezier curves in polar coor-dinates, that we call p-B�ezier curves.A p-B�ezier curve c(t) of degree n is de�ned as:c(t) = (�(t); �(t))T =  1Pni=0 �iAi;n(t); nt!Twhere �(t) denotes the polar angle, �(t) is the radius, the �i's are non negativecoe�cients, and, without loss of generality, t 2 [��;�], 2n� < �.The functions Ai;n(t), named the Bernstein basis trigonometric polyno-mials [1], are de�ned as follows: 5



Ai;n(t) = 1sinn(2�)�ni � sinn�i(�� t) sini(t+�)and span the linear spaceTn = ( spanf1; cos(2t); sin(2t); cos(4t); sin(4t); ::; cos(nt); sin(nt)g ; n evenspanfcos(t); sin(t); cos(3t); sin(3t); ::; cos(nt); sin(nt)g ; n oddwith t 2 [0; �).In [16] is proved that the functions Ai;n satisfy the following relation:nXi=0Ai;n(t) =  cos(t)cos(�)!nso that they do not form a partition of unity.The coe�cients �i and the Greville radial directions �i = �n�+2i�; i =0; ::; n de�ne the control points in polar coordinates di = (�i; ��1i ) of c(t).3 Conic sectionsIt is well known that a rational B�ezier curve of degree n = 2 is a conic, sincea rational curve of degree 2 has an algebraic equation of degree 2 [7][10].Moreover, in [16] has been shown that every p-B�ezier curve of degree 2represents a conic section with focus at the origin.Let us consider the expression of a conic in polar coordinates (�; �) withfocus at the origin O:� = p1 + ecos(� � �a) ; p = ek (1)where by e we denote eccentricity, k is the distance of the focus from thedirectrix, and �a the angle between the direction � = 0 and the axis of theconic. Setting � = 2t in (1), we obtain a p-B�ezier curve of degree 2 expressedin terms of the Fourier basis:1� = a0 + a1cos(2t) + b1sin(2t)where a0, a1 and b1 are constants. 6
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dFigure 2: Unit circular arc as p-B�ezier of degree n = 23.1 Classi�cation of polar conicsThe type classi�cation of the conic depends on the value [16]:(w1)2w0w2 = (�1)2�0�2 8><>: = 1 parabola;< 1 ellipse;> 1 hyperbola;where wi are the weights of the rational B�ezier curve associated to the p-B�ezier de�ned by coe�cients �i.As is known, a rational quadratic B�ezier curve in standard form, that isP0P1P2 forms an isosceles triangle, w0 = 1, w1 = cos(P0ÔP2) and w2 = 1,represents a circular arc [7].From equation (1) we can obtain an expression for a circular arc settinge = 0 and p equal to the radius.4 Circular arc as a p-B�ezier curveWe begin by observing that a representation of a circular arc as a p-B�eziercurve can be obtained only for even-degree, as space Tn for odd n does notcontain constants.Let us now consider the simple case of a unit circular arc of degree 2with center at the origin, spanning an angular interval [�2�; 2�]. Since thep-B�ezier curve interpolates the extreme points d0 and d2 and is tangent tothem, we have 7
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0 0dd2Figure 3: Semicircle as p-B�ezier of degree n = 2�0 = �2 = 1and �1 = cos(2�), see �gure 2.The maximum angle of a circular arc that we can express as a p-B�eziercurve of degree 2 is �2 and represents a semicircle with the control point d1at in�nity, see �gure 3; in fact ��11 = 1cos �2 =1.Since we want to mantain the convex hull property (which is de�ned forpoint sets, not for points and vectors), we are interested in p-B�ezier andp-spline representations with all �nite control points.We now focus on the computation of the coe�cients, that we name vi, ofa unit circular arc represented by a p-B�ezier of even arbitrarily chosen degreen = 2k, for any natural value k, and control points (�i; v�1i ).The coe�cients vi could be obtained by interpolation of n + 1 points onthe circular arc of degree 2.An alternative way to obtain vi is provided from the degree elevationtechnique [2] that allows for coe�cients of the degree elevated n = nk curvestarting from the coe�cients of the curve of degree n, setting n = 2.Finally, an explicit formula to determine the vi coe�cients is known from[18] and can be obtained by solving:1 = [A0;2(t) + cos(2�)A1;2(t) +A2;2(t)]kThus obtaining the formula1 = nXi=0 viAi;n(t); vi = 8><>: k!�ni� P 2p+ q = ip; q � 0 2cos(2�)qp!q!(k�p�q)! i � kvn�i; i > k: (2)8



Figure 4: Circle as p-spline of degree n = 2: using 3 p-B�ezier arcs5 Circle as a p-spline curveIn this section we are interested in the p-spline representation of a circle.By the above considerations, a circle can be represented by a p-spline ofdegree 2 with at least 2 p-B�ezier arcs. But this case involves two controlpoints at in�nity.In order to have all �nite control points, the circle must consist of at least3 p-B�ezier arcs of degree 2 (2 interior single knots).Figures 4 and 5 illustrate a circle as a p-spline of degree 2 using a uniformperiodic knot vector.In �gure 4 we have an equilateral-triangle control polygon, and the knotvector has two single interior knots. In �gure 5 we have a square controlpolygon, and the knot vector has 3 single interior knots.Proposition 1 Using p-spline it is possible to obtain representations of acircle without using double knots, as was forced in the case of rational splines.In fact, in [13] is proved that the knot vector of a NURBS circle of degree2 must have at least one double knot.To provide another proof of this result let us represent the p-spline circleof degree 2 as a NURBS (see section 2). As we noticed, we have to subdividethe circle into at least two p-B�ezier arcs, consequently we get a knot vectorthat contains one interior double knot ( and two control points at in�nity)or two interior double knots with all �nite control points.9



Figure 5: Circle as p-spline of degree n = 2: using 4 p-B�ezier arcsNote that the lowest degree necessary to represent a p-spline circle asa NURBS without double knots is four. In this case, the p-spline spans a�2 parametric interval and the associated knot vector has one single interiorknot.If we are interested in a NURBS representation of a p-spline circle withoutdouble knots , a p-spline of degree at least 6 is required; in this case the p-spline is a p-B�ezier curve spanning a �3 parametric interval, as is describedby the following proposition.Proposition 2 The degree of a p-B�ezier curve representing a circle mustbe at least 6 in order to use only �nite control points.We observe that the circle representation using p-B�ezier arcs of degree 4requires 5 control points but two of them at in�nity.Considering the p-spline circle of degree 6, only one p-B�ezier span isrequired and its NURBS representation is an example of circle representedby a single rational polynomial B�ezier arc. Following a result in [5] and [14],in order to obtain a circle using a rational B�ezier curve with all positiveweights, at least degree 5 is required.5.1 Circle as a p-spline using a uniform periodic knotvectorWe now prove that the p-spline of even degree n de�ned by a uniform knotvector and control points di = (�i; ��1i ) equidistant from the origin, such that10



�i = c 8i, with c 2 IR+, represents a circle. That is:�(t) = 1PK+ni=0 �iMi;n(t) = 1cPK+ni=0 Mi;n(t) = const:Thus, it will be su�cient to prove the identityK+nXi=0 Mi;n(t) = const:In the case n = 2 it is easy to see thatK+2Xi=0 Mi;2(t) = 1cos(h) :where h = �i+1 � �i;8i. In fact, using the trigonometric Marsden identity[11], we have1 = cos2(t) + sin2(t) == PK+2i=0 (cos(�i+1) cos(�i+2) + sin(�i+1) sin(�i+2))Mi;2(t)= PK+2i=0 cos(�i+2 � �i+1)Mi;2(t)= cos(h)PK+2i=0 Mi;2(t):In general, for any even degree n, the following result holds.Theorem 1 Let n = 2k, and ftig be and arbitrarily chosen knot vector.Then K+nXj=0 241=A � Xj�j=A cos0@ n2Xi=1 tj+�i � nXi=n2+1 tj+�i1A35Mj;n(t) = 1 (3)where A = �nn2 �=2, � := (�1; ::; �n) is a multi-index, and the �i 2 f1; ::; ng,i = 1; ::; n; are de�ned as follows:the �rst n2 items, (�1; ::; �n2 ), are taken over the n items given by allpermutations � : f1; ::; ng ! f1; ::; ng considered in lexicographical order;andthe remaining n2 items, (�n2+1; ::; �n), are taken from the set f1; ::; ng andare chosen so that 8(i; j); �i 6= �j. 11



Proof From [15], in case of even degree n, we haveeikt = PK+nj=0 ��nj;k+n2 e�i (tj+1+::+tj+n )2 �� nk + n=2� Mj;n(t) (4)where the �nj;k elements are given bynXk=0(�1)k�nj;kei(n�k)t = nYk=1(eit � eitj+k)Setting k = 0, in (4) and computing the �nj;k+n2 term as coe�cient of ein2 t ,we obtain �nj;n2 = Xj�j=� nn2 �=2 ei(tj+�1+::+tj+� n2 )where � is a multi-index obtained by considering n2 items over the n itemsgiven by all permutations � : f1; ::; ng ! f1; ::; ng considered in lexicograph-ical order; thus obtaining �nn2 �=2 elements for the multi-index �. Then, rela-tion (4) becomesn+KXj=0 (Pj�j ei(tj+�1+::+tj+� n2 ))e�i (tj+1+::+tj+n )2� nn2 �=2 Mj;n(t) = 1 (5)Combining the sums resulting from relation (5) , and applying the trigono-metric identity: cos(x) = eix + e�ix2to each of the � nn2 �=2 summands �i, we obtain relation (3). 2If we consider a uniform knot vector, the coe�cients in (3) are all equal toa constant c, and the associated p-spline represents a circle. Let us considersome examples. 12



Example 1Let n = 2, then relation (3) becomes2+KXj=0 cos(tj+1 � tj+2)Mj;2(t) = 1In this case we have � = (�1; �2) and j�j = 1. Considering uniformly spacedknots, we obtain 2+KXj=0 Mj;2(t) = 1cos(h)where h = ti+1 � ti. The p-spline�(t) = 1P2+Kj=0 cos(h)Mj;2(t) = 1represents a unit circle of degree n = 2 with coe�cients �i = cos(h), 8i.Example 2Let n = 4, then � = (�1; �2; �3; �4). Since j�j = 3, we consider thepermutations: (1; 2),(1; 3),(1; 4), thus obtaining4+KXj=0 �jMj;4(t) = 1where�j = [cos(tj+1 + tj+2 � tj+3 � tj+4) + cos(tj+1 + tj+4 � tj+2 � tj+3)+cos(tj+1 + tj+3 � tj+2 � tj+4)] =3Considering uniformly spaced knots, we obtain�(t) = 1P4+Kj=0 ( cos(4h)+cos(2h)+13 )Mj;4(t) = 1that represents a p-spline unit circle of degree n = 4.13



Then, we can easily represent a circle of radius r in polar coordinates asa p-spline of even degree n , by just considering a uniform knot vector andconstant control points �i given by �i = 1(r�const), whereconst = n+KXj=0 Mj;n(t):We should note that it is more di�cult to obtain this result in the Carte-sian case. In fact, a circle, represented as NURBS, is obtained by projectinga curve that lies on a cone in homogeneous space into the plane z = 1.5.2 Circle as a p-spline using an arbitrary knot vectorWe now focus on the problem of �nding a circle representation as a p-splinecurve on an arbitrary knot vector. Given an arbitrary knot vector and aneven degree n, we are interested in computing the vi coe�cients of the p-spline circle of degree n de�ned on that knot vector. Instead of applyingthe result of theorem 1, we want to investigate two alternative and practicalprocedures.In [18], the author suggested the following three step procedure.Subdivision Method1. Apply knot insertion to each knot of the knot vector until each interiorknot has a multiplicity of n;2. Compute the vi coe�cients for the p-B�ezier representation of each cir-cular arc by (2);3. Remove each interior knot down to the desired multiplicity.A more e�cient technique is the following.Knot insertion-Knot removal Method1. Consider a uniform knot vector on the interval [0; 2�] consisting of theminimum number of knots necessary to represent a p-spline circle ofeven degree n (which, as we know, turns out to be 2);14



2. Insert the knots of the arbitrary initial knot vector;3. Apply knot removal to the interior knots belonging to the uniform knotvector.Note that, as both methods use a periodic knot vector, in order to applyknot insertion to the knots exterior to the parametric interval �0; 2�n �, thesupport has to be extended to the minimum size that permit to insert knotsas internal knots. The added external knots can be ignored.The number of knot insertions in the �rst method increases as functionof both degree and control point number, while, in the second method, itdepends only on the number of control points.Hence we can conclude that the knot-insertion knot-removal procedure iscomputationally favourable.RemarkThe above mentioned considerations give rise to a new basis for p-splines,de�ned as follows: Ni;m(t) = viMi;m(t);where Ni;m(t) denote certain normalized basis functions which form a parti-tion of unity.6 Concluding remarksRemark 1To express the polar form of a trigonometric polynomial of even degreen in terms of the Fourier basis [8] we can use the functions cos(Pni=1 ti),sin(Pni=1 ti) corresponding respectively to the functions cos(nt) and sin(nt).We can obtain the polar form of a constant by considering the result (3)restricted to the Bernstein trigonometric polynomial basis.Remark 2In a spherical coordinates system (�; �; �), a tensor product p-spline sur-face of degree (m;n), is de�ned as s(s; t) =  1Pm+Ki=0 Pn+Hj=0 �i;jMi;m(s)Mj;n(t);15



ms; nt)T , see [3]. The control points of the p-spline surface s(s; t), in cylin-drical coordinates, are given by dij = ( cos(�j)�ij ; �i; vi�ij sin(�j)), where (�i; �j)are the Greville values. The vi coe�cients satisfym+KXi=0 viMi;m(s) = 1;and can be obtained by the Knot insertion - Knot removal method, seesubsection 5.2.For example, a unit sphere can be represented as a p-spline surface ob-tained by revolution, considering the coe�cients �ij = vivj.References[1] Alfeld P.,Neamtu M., Schumaker L.L., Circular Bernstein-B�ezierPolynomials, in Mathematical Methods for Curves and Surfaces,(M.Daehlen, T.Lyche, L.L.Schumaker, eds), Vanderbilt University Press(Nashville) (1995)[2] Casciola G., Morigi S., S�anchez-Reyes J., Degree elevation for p-B�ezier curves, submitted to Computer Aided Geometric Design, October(1996).[3] Casciola G., Morigi S., Modelling of curves and surfaces in polar andCartesian coordinates, Technical Report no.12,Dept. Math., Universityof Bologna (1996)[4] Casciola G., Morigi S., Spline in polar and Cartesian coordinates, Curvesand Surfaces with applications in CAGD, A. Le M�ehaut�e, C. Rabut, andL. L. Schumaker (eds.), to be appear (1997)[5] Chou J.J., Higher order B�ezier circles, CAD, Vol 27, 4, 303-309 (1995)[6] de Casteljau P. , Splines Focales, in: Laurent P.J. et al.eds., Curves andSurfaces in Geometric Design , Peters A.K. Wellesley, 91-103 (1994)[7] Farin G., Curves and Surfaces for CAGD - A practical guide - ,ThirdEdition, Academic Press (1993) 16
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