Degree elevation for p-Bézier curves
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Abstract

A class of single-valued curves in polar coordinates, which we refer
to as p-Bézier curve, has been recently presented by Sanchez-Reyes
and independently discovered by P.de Casteljau. From their definition
and expression in terms of the Fourier basis it is obvious that every
curve of degree n can be expressed as a curve of degree kn, for any
natural value k.

In this paper, we provide a formula for degree elevation and we
describe a simple and efficient implementation of it.
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1 Introduction

The p-Bézier curves are a special class of rational Bézier curves recently pre-
sented in (Sanchez-Reyes, 1990) and independently in (P.de Casteljau, 1994)
where they are referred to as Focal Bézier curves. These curves have been
obtained by re-examining, in polar coordinates, the algorithm for evaluat-
ing a rational Bézier curve in Cartesian coordinates (which we call c-Bézier
curve). This was made possible by an interpretation in polar coordinates of
its well-known geometric meaning. It is interesting to note that the recursive
algorithm for evaluating a rational Bézier curve defines, in polar coordinates,
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certain sinusoidal functions that form the direct analog, in the trigonomet-
ric field, of the Bernstein polynomials. Note that in both (Goodman and
Lee,1984) and (Lyche and Winther, 1979) similar functions, called trigono-
metric polynomials, were defined, but there they used half angles.

This class of curves is interesting because it allows modeling and data
best-fitting problems to be dealt with in polar coordinates. One advantage of
this class of curves is that it provides a fast response to the Point Membership
Classification problem in solid modeling. In addition, recently in (Neamtu
et al., 1996) and (Pottmann, 1996), it has been shown that these curves play
a chief role for constructing a certain family of rational curves and surfaces
with rational offsets. The generalisation that has been made for spline curves
in (Sanchez-Reyes, 1992) and for single-valued surfaces in cylindrical and
spherical coordinates in (Sanchez-Reyes, 1991) and (Sanchez-Reyes, 1994) is
even more interesting. All these are ideal for modeling since they have the
same properties as the c-Bézier curves.

Tools such as knot-insertion, subdivision, and knot-removal are automati-
cally derived from the procedure followed to generate these curves, as pointed
out in (Sanchez-Reyes, 1990). Another fundamental tool is degree elevation
which, for example, is needed to build a surface starting from several profile
curves with different degrees.

This paper is organized as follows. Section 2 introduces the notation
needed to describe p-Bézier curves, and Section 3 introduces the degree ele-
vation problem. In Section 4, a formula for the degree elevation of p-Bézier
curves is presented and, in Section 5, some details regarding its implementa-
tion are given.

2 Single-valued curves in polar coordinates

A p-Bézier curve c(t) of degree n is defined as:

t)=1/p(t
clt) = { ZEt; - ntp( )

where 6(t) denotes the polar angle and p(¢) is the radius. Without loss of
generality, t € [—A,A], and the restriction 2nA < 7 holds. The function

p(t) = 3 ¢;A;n(t) is a trigonometric polynomial given in terms of Bernstein
i=0

trigonor;letric basis functions A; ,(?) defined as follows:
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Ain(t) = (7;) sin”_i(A — 1) sini(t + A)/T", T = sin(2A).
It is easy to show that functions A, , () span the linear space
7, = span {sin”_i(t) cosi(t)} 1=0,....n

of trigonometric polynomials of degree n, see (Goodman and Lee,1984).
Moreover, it was also shown in (Lyche and Winther, 1979) that

T span{l, cos(2t),sin(2t), cos(4t),sin(4t), .., cos(nt),sin(nt)}, n even
" | span{cos(t),sin(t),cos(3t),sin(3t), .., cos(nt),sin(nt)}, n odd.

The coefficients ¢; and the Greville radial directions & = —nA4+2tA, ¢ =
0,..,n define the control points in polar coordinates P; = (¢ ', &) of c(t).

As an alternative to the geometric approach followed in (Sdnchez-Reyes,
1990) to obtain p-Bézier curves from c-Bézier curves, we present an analytical
proof by changing the coordinates.

Let c(?) be the p-Bézier curve represented as a scalar function

1

pl) = 57—

where 6 € [—nA,nA], then the corresponding curve in Cartesian coordinates

will be given by
0
0 (50 ). )

sin #

Substitute in (1) the following relations (Goodman and Lee, 1984)

COSG—ZCOS VA (0/n) San—Zsm VA (0/n)

and the relationship between the functions A; ,,(6/n) and the Bernstein poly-
nomial functions B, ,(u) (Sanchez-Reyes, 1994)

Ain(0/n) = (%) Bin(u)  uelo,1]
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where parameters u and € are related by the equation:

E[HM].

2 tan A

U =

(2)

Then p(#) in Cartesian coordinates will admit the following c-Bézier curve
representation:

WE

> Qiwi B (u)
Q(u) = =5 u € [0,1]

wiBm(u)

0

K3

cos(&;)
sin(§;) )

Vice-versa every c-Bézier curve with an associated p-Bézier curve is char-
acterized by the following properties or constraints:

with weights w; = ¢;, and control points Q; =c;" (

1. control points Q; on Greville radial directions regularly spaced by a 2A
angle,

2. 1Qilly = 1/wi.

3 The degree elevation problem

From their definition and expression in terms of Fourier basis it is obvious
that every p-Bézier curve of degree n can be expressed as a curve of degree
kn, for any natural value k.

Suppose n is even. The curve of degree n can be written in terms of the
Fourier basis of arguments 2it or 2i0/n, i = 0,...,n/2, but also of arguments
% or 2iks, with k2 = 0,...,kn/2, and s € [—%, % . Thus, s corresponds to
the parameter of a curve of degree kn. Analogously for n odd.

It must be stressed that the p-Bézier curves of degree n are not a subset
of those of degree n 4+ 1. Hence, in general, a curve of degree n cannot be
expressed as a curve of degree n + 1, except for the case of a line segment.
A straight line is given by a trigonometric polynomial p(t) that is a linear
combination of Fourier bases of argument 6§, which are always contained in
the linear space 7, regardless the value n.



Given the explicit relation between a p-Bézier curve, see Section 2, it
seems natural to ask oneself whether it would be possible to derive a de-
gree elevation algorithm by means of reparametrizations. In fact the degree
elevated curve c(s), of degree kn, has an associated Cartesian curve Q(v)
that can be directly obtained from Q(u) by means of the following rational
reparametrization function of degree k

u = % 1+ %tam (k arctan [(2v — 1) A]) (3)

where A = tan(A/k) and B = tan A. Relation (3) is deduced from the
relationship (2) between parameters u and ¢ and the analogous between pa-
rameters v and s. In (Casciola et al., 1996), an explicit formula for the
weights of the rational Cartesian curve Q(v) is provided, but this leads to a
rather involving expression.

In the next Section we present an alternative formula for the degree-
elevation, based on geometric concepts, which allows a simpler and more
efficient implementation.

4 The degree elevation formula

At first glance it seems that there is no geometric algorithm for degree-
elevating a single-valued curve in polar coordinates. This holds true except
for the simple case of a line segment.

Assume we have a segment c(t) of degree 1, t € [-A,A], spanning an
angle 2A, and that we want to express it as a curve c(s) of degree k, s =
t/k over [-2,2]. As the new control points lie on the line segment, the
coefficients for the new representation are readily obtained by evaluating
p(t) at regularly spaced angular values ¢; over [—A, A]:

A

For the particular case of a segment with coefficients ¢ = 0 and ¢; = 1,
we have:



p(t) =sin(A+1)/T

p(t;) = sin(2j2)/T, 7=0,...,k

§s) = 5 (1) Ajus)

J

By equating p(f) = p(s), we obtain the relationship:

k A A 2A
sin(A+1) = Z b; sink_](? —s) sin](? + 5)/5’“, S = sin(T) (4)
=0
where we denote by b; the j-th constant coefficient:
. A ,
b; :(I;) s1n(2j?), J=0,... k. (5)

In a similar way, for the case of a line segment with coefficients ¢y = 1
and ¢; = 0, we would obtain for sin(A — ¢) an expression, that we will call
(4bis), analogous to (4), in which the coefficient b; is replaced by a;, where

Cl]‘:bk_]‘ jZO,...,k. (6)

Equations (4) and (4bis) are exactly what we need to degree-elevate a
general curve spanning an angle 2nA from degree n to kn.

It is worth mentioning that such coefficients a;, b; depend only on the
angle spanned by the curve and its final degree.

Theorem 1 Let p(t) = 3 ¢jA; (1), t € [A,A] be a generic trigonometric
J=0
polynomial of degree n, then

S A A
p(S) = ZETAT,kn(S), S = t/k7 s E |:__7 _:|
r=0 k k

where




and d, are the components of the vector
d=%" (;)cja”—f @ b, (8)
7=0

a and b are vectors given by (6) and (5) respectively. The symbol @ means
convolution between two vectors, and b? denotes j — 1 convolutions, that is,

b =ba@b®---@b.

Proof Substituting (4) and (4bis) in the expression of p(t) we obtain:

n

os) = S ei(2) [Z ot - [z biak-fﬁi]j )

=0

where

A A
a:sin(?—s)/s and ﬂ:sin(?—l—s)/s.

Multiplying and raising to a power the sums between brackets in (9) is
equivalent to multiplying polynomials in Bernstein form. As the multiplica-
tion of two polynomials in Bernstein form results to be a polynomial still in
Bernstein form with coefficient vector given by the convolution of the coet-
ficient vectors, save that a binomial factor, (Farouki and Rajan, 1988), we
obtain directly the formula (8) and hence (7). O

For the particular case of degree-elevation of a line segment p(t) of coef-
ficients {co, 1}, from degree n = 1 to k, formula (8) admits a very compact
closed expression:

d, = cpa, + c1b,.

For the general case, one could try to expand (8) to get a closed formula,
following the ideas presented in (Casciola et al. 1996). Nevertheless this ap-
proach leads to complex expressions that involve non-trivial cycling through
combinations of indexes.

Example. Let c(t) be a p-Bézier curve of degree n = 2 with coefficients
c = {l,cos(2A),1} and t € [—A, A], representing a unit circular arc (see
Fig.1). Applying (8) and (7) we obtain:



Figure 1: Degree elevation of a circular arc from n =2 to kn, k =1,2,3,5

2

d= (j)cja%f @ bi

7=0
sin2(2A) 0 0
4sin(A)sin(24) 4sin(A) sin(2A) 0
= Cp 4sin2(A) + 2C1 4sin2(A) + sin2(2A) + co 4sin2(A)
0 2sin(A)sin(2A) 4sin(A)sin(24)
0 0 sin?(2A)
Cop = ¢y = 1
—= 1
. = m(CO + Cl) = cosA

& = [tz 2alhs + D+ o) = 4L+ 20054

C3 = ﬁ(el + CQ) = cosA

Cq4 = €9 = 1
that are the coefficients of the curve c(s) of degree kn =4, s € [—%, %]

Note that these are the same obtained in (Sanchez-Reyes, 1994), but in
a different manner.



5 Implementation and numerical results

Based on the results of Section 4, we now present a simple algorithm for
degree elevation. Equation (8) can be interpreted as the evaluation of a
Bézier curve of degree n and coeflicients ¢;, replacing the parameter u by the
vector b, (1 — u) by a, and multiplications by convolutions when required.
Therefore, any known algorithm to evaluate a Bézier curve can be employed;
in particular the algorithm that we implemented uses the de Casteljau scheme
(see Farin, 1993) as follows:

Input: c initial coefficient vector
n initial degree
k multiplying factor
Output: € final coefficient vector
1. preproc(a,b,bckn)
2. for i=0,n
d[i,0]=c[i]
m=1
for j=1,n
for i=0,n-j
d[i]=sumuvect(conv(k+1,a,m, d[i]),conv(k+1,b,m,d[i+1]))
m=m-+k
3. ps=pow(sin(2A),n)
for r=0,k * n

¢[r|=d[0,r]/(pskbckn[r])

In step 1. the preproc procedure computes the vectors a and b in (6)
and (5) and the vector bekn containing the binomial coefficients (kf),r =

0,...,kn. Steps 2. evaluates (8) by employing the de Casteljau scheme. As
already commented, we replace the traditional parameters (1 — u) and u by
the vectors a, b respectively, and now each iteration involves two convolutions
and a sum of vectors instead of two products and a sum of numbers. Steps 3.
evaluates the final coefficients of the degree elevated curve by applying (7).
Thus we have managed to decompose our problem in terms of standard,
well-known algorithms and then we open up many possibilities. For example
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3

O~ | TY = | WD —|—

2 3 4 5 6 7 8 16 | 32
38.0122.6 | 19.1 | 14.7 | 12.8 | 10.7 | 9.59 | 4.81 | 2.41
12.4110.0 | 8.14 | 6.77 | 5.78 | 5.04 | 4.46 | 2.32 | 1.18
7.4216.20 | 5.17 | 4.32 | 3.74 | 3.27| 291 | 1.53 | 0.79
5.30 1 4.56 | 3.79 | 3.20 | 2.76 | 2.42 | 2.16 | 1.14 | 0.59
4.12(3.571299 253219192 |1.71]0.91|0.47
3.37 12951247210 1.81|1.59|1.42|0.76 | 0.39
2.8512.5012.10(1.79|1.55|1.36|1.21|0.65|0.33
2471218 11.831.56 | 1.35|1.19 | 1.06 | 0.57 | 0.29
1.1911.07]0.90| 0.77 ] 0.67 | 0.59 | 0.53 | 0.28 | 0.15
0.59 10.5310.45|0.38 {0.33|0.29 | 0.26 | 0.14 | 0.07

—
D

o
[\

Table 1: Convergence of control points to the curve; each entry has to be
multiplied by 1073

we could apply the Discrete Fourier Transform technique in order to compute
convolutions for extremely large k£ and n values.

Our implementation, in spite of computing all convolutions directly as
a sum of products, turns out to be very efficient also for k& and n greater
than those practically used in CAGD applications. The complexity analysis
shows that the number of products and divisions computed by the proposed
algorithm is O(k*n*). Furthermore, since it involves only sums and products
of positive quantities, it is intrinsically stable.

We can check that the proposed algorithm enjoys good numerical prop-
erties by means of a convergence test of the control polygon of the degree-
elevated curve to the curve itself for high values of k. We have chosen a
test curve of unit coeflicients ¢; = 1, y = 0,---,n. As a measure of the
convergence, we have computed in Table 1 the magnitude:

Maxi=o,... kn|p(&) —

for different values k, n. All calculation have been carried out using double-
precision floating-point arithmetic. A convergent behaviour is clearly ob-
served by reading Table 1 in columns.

The control polygons in the example of Fig.1, obtained by successive
degree elevation, also show a convergence to the curve.

10



6 Conclusions

We have developed a simple algorithm for elevating the degree of p-Bézier
curves from degree n to kn, where k is an arbitrary natural number. This
work carries over to the degree elevation of single-valued spline curves in
polar coordinates, that is, piecewise p-Bézier curves, through the following
steps: (a) decompose the spline curve in polar coordinates into piecewise
p-Bézier curves (knot-insertion); (b) apply degree elevation to each p-Bézier
curve, and (c) remove unnecessary knots (knot-removal).

In the Cartesian case, in (Piegl and Tiller, 1994), it is shown that this
method is very competitive with existing direct algorithms for the degree
elevation of B-spline curves.

Acknowledgments

This research was supported by CNR-Italy, contract n.95.00730.CT01 and
by the Direccio General de Recerca of the ”Generalitat de Catalunya”, Spain.

References

Casciola G., Lacchini M., Morigi S. (1996), Degree elevation for single-
valued curves in polar coordinates, Technical Report no.13, Dept. Math.,
University of Bologna.

de Casteljau P. (1994), Splines Focales, in: Laurent P.J. et al.eds., Curves
and Surfaces in Geometric Design , Peters A.K. Wellesley, 91-103.

Farin G., Curves and Surfaces for CAGD, A practical guide, third edition,
Academic Press, 1993.

Farouki, Rajan (1988), Algorithms for polynomials in Bernstein form,
Computer Aided Geometric Design, 5, 1-26.

Goodman T.N.T. and Lee S.L. (1984), B-Splines on the circle and trigono-
metric B-Splines, in: Singh S.P. et al.eds., Approzimation theory and spline
function , Reidel D. Publishing Company, 297-325.

Lyche T. and Winther R.. (1979), A Stable Recurrence Relation for Trigono-
metric B-Splines, Journal of Approximation theory, 25, 266-279.

Neamtu M., Pottmann H., Schumaker L.L. (1996), Homogeneous Splines
and rational curves with rational offsets, Technical Report no.29, Institut fur
Geometrie, Technische Universitat Wien.

Piegl L. and Tiller W. (1994), Software-engineering approach to degree
elevation of B-Spline curves, Computer Aided Design, 26, 17-28.

11



Pottmann H. (1996), General offset surfaces, Technical Report no.33,
Institut fir Geometrie, Technische Universitat Wien.

Sanchez-Reyes J. (1990), Single-valued curves in polar coordinates, Com-
puter Aided Design, 22, 19-26.

Sanchez-Reyes J. (1991), Single-valued surfaces in cylindrical coordinates,
Computer Aided Design, 23, 561-568.

Sanchez-Reyes J. (1992), Single-valued spline curves in polar coordinates,
Computer Aided Design, 24, 307-315.

Sanchez-Reyes J. (1994), Single-valued surfaces in spherical coordinates,
Computer Aided Geometric Design, 11, 491-517.

Author addresses:

Giulio Casciola and Serena Morigi
University of Bologna

Dept. of Mathematics

P.zza di Porta S.Donato, 5

40127 BOLOGNA - ITALY
Email: casciola@dm.unibo.it
Email: morigi@dm.unibo.it

Javier Sanchez-Reyes

Polytechnic University of Catalonia

Dept. of Mechanical Engineering, ETSEIB
Diagonal 647

08028 BARCELONA - SPAIN

Email: sanchez@em.upc.es

12



