Degree elevation for single-valued curves in
polar coordinates

G.Casciola, M.Lacchini and S.Morigi *
Department of Mathematics, University of Bologna, Italy

Abstract

A new class of single-valued curves in polar coordinates obtained
by a transformation of a subset of rational Bézier curves into Cartesian
coordinates has recently been presented in (Sanchez-Reyes, 1990), and
independently considered by P.de Casteljau, who called these curves
focal Bézier. These curves are trigonometric polynomials that can
be represented by a basis similar to the Bernstein polynomial basis.
From their definition and expression in terms of the Fourier basis it
is obvious that every curve of degree n can be expressed as a curve of
degree kn, for any natural value k.

In this paper, two alternative formulae for degree elevation from
degree n to kn are presented and relative proofs are given. A simple
and efficient implementation is provided and its stability is numerically
proved.

Keywords: Degree elevation; Polar curves; Cartesian rational curves;
Reparametrization
1 Introduction

A class of single-valued curves in polar coordinates (which we refer to as p-
Bézier curve), recently presented in (Sanchez-Reyes, 1990) and independently

*This research was supported by CNR-Italy, contract n.95.00730.CT01

in (P.de Casteljau, 1994), has been obtained by re-examining, in polar co-
ordinates, the algorithm for evaluating a rational Bézier curve in Cartesian
coordinates (which we call c-Bézier curve). This was made possible by an
interpretation in polar coordinates of its well-known geometric meaning. It
is interesting to note that the recursive algorithm for evaluating a rational
Bézier curve defines, in polar coordinates, certain sinusoidal functions that
form the direct analog, in the trigonometric field, of the Bernstein polynomi-
als. Note that similar functions have been used in (Goodman and Lee,1984)
and in (Lyche and Winter, 1979), but there trigonometric polynomials are
defined using half angles. The main advantage of this class of curves in po-
lar coordinates is that it provides a fast response to the Point Membership
Classification problem (PMC). In practice, by a restriction of the c-Bézier
curve set to those curves having corresponding p-Bézier curves it is possible
to exploit the polar representation when a PMC problem has to be solved.

At the same time, this class of curves is interesting because it allows
modeling and data best-fitting problems to be dealt with in polar coordinates.
The generalisation that has been made for spline curves in (Sanchez-Reyes,
1992) and for single-valued surfaces in cylindrical and spherical coordinates
in (Sanchez-Reyes, 1991) and (Sdnchez-Reyes, 1994) is even more interesting.
All these are ideal for modeling since they have the same properties as the
c-Bézier curves.

Tools such as knot-insertion, subdivision, and knot-removal are automati-
cally derived from the procedure followed to generate these curves, as pointed
out in (Sanchez-Reyes, 1990). Another fundamental tool in B-spline based
geometric design is degree elevation.

The possibility of carrying out degree elevation of every curve of degree n
to kn, for any natural value k, is clear from their definition and representation
in the Fourier basis, but there is no known method of achieving this, if not
by interpolation. The interpolation technique takes (kn + 1) samples and
sets a linear system of kn + 1 equations, where the (kn + 1) unknowns are
the degree-elevated curve coefficients.

This paper is organized as follows. Section 2 introduces some notations
relating to p-Bézier curves, and sections 3 and 4 present two explicit formulae
for the degree elevation of p-Bézier curves. In section 5 some details regard-
ing the implementation are given, and relative computational and stability
results are shown.

2 Single-valued curves in polar coordinates

A p-Bézier curve ¢(t) of degree n is defined as:

where 0(1) denotes the polar angle and p(#) is the radius, and without loss
of generality, t € [-A,A], 2nA < x. The functions A, (1) are defined as
follows:

1 .
TA)(?) sin” (A — H)sin'(t + A)

Ai’n(t) = = n
sin”(

It is easy to show that functions A, (1), which we call the Bernstein basis
trigonometric polynomials, span the linear space

T, = span {sin”’ﬂ:(t) cosi(t)} 1=0,...,n

of trigonometric polynomials of degree n, see (Goodman and Lee,1984).
Moreover, it was also shown in (Lyche and Winter, 1979) that

T span{1, cos(2t),sin(2t), cos(4t),sin(4t), .., cos(nt),sin(nt)}, n even
"] span{cos(t),sin(t),cos(3t),sin(3t),..,cos(nt),sin(nt)}, n odd.

The coefficients §; and the Greville radial directions & = —nA+21A, 1 =
0,..,n define the control points in polar coordinates d; = (6;,&) of «().

As an alternative to the geometric approach followed in (SanchezReyes,
1990) to obtain p-Bézier curves from c-Bézier curves, we present an analytical
proof by changing the coordinates.

Let ¢(t) be the p-Bézier curve represented as a scalar function

1
6 A (0)/n)

0

p(0) = —

where § € [-nA,nA], then the correspondent curve in Cartesian coordinates
will be given by

cos 8
p(9) (sin 6) ’
Since the following relationship between A;,(0/n) functions and Bern-
stein polynomial functions B;,(u), see (Sanchez-Reyes, 1994), holds:

Ain(0/n) = (%) B(w) welo] (1)

where parameters v and f are related by the equation:

u_llHM]

2 tan A
and from (Goodman and Lee, 1984) it follows that

009’9—2(0@ Ain(0/n) 9’7779—Z<m Ain(0/n) (3)

then p(@) in Cartesian coordinates will admit the following c-Bézier curve
representation:

Piw; By . (1)

u € [0,1]

IS
I

. ISE

25|27

w; By, (u)

2=0

sin(&;)

Vice versa every c-Bézier curve with a correspondent p-Bézier curve is

cos (&)) |

where weights w; = 5;1 and control points P; =é; (

characterized by the following properties or constraints:

1. control points P; on Greville radial directions regularly spaced by a 2A
angle,

2. |Pil, = 1/w;.

In the next sections we deal with the problem of degree elevation following
two possible ways: in section 3, an explicit formula is identified to obtain the
elevated degree ¢(1) via Cartesian coordinates following the ABC path shown
in Fig.1. In section 4 an alternative formula is derived from the direct path

D (see Fig.1).

c-Bézier p-Bézier
degree n Qu) = <(t)
B D

degree kn. Q(v) <= <(s)
C

Figure 1: Degree elevation scheme

3 Degree elevation via Cartesian coordinates

Given the explicit relation between a p-Bézier curve and a c-Bézier curve, it
seems natural to ask oneself whether it would be possible to derive a degree
elevation algorithm for p-Bézier curves through the ABC path by means of
reparametrization.

We have already seen that (1) allows you to pass from p-Bézier curves to
c-Bézier curves where (1) is derived from (2). (Route A in Fig 1.)

Let ¢(s) be the p-Bézier curve of degree kn obtained by degree elevation
from ¢(1); a direct analog of relation (1) obtained by:

1 tan(@/(kn))
"3 [] (AR])

allows you to pass from ¢(s) to the correspondent c¢-Bézier curve Q(v) (Route
C Fig. 1.). a
In the following we attempt to make the relation existing between ()
and Q(v) explicit (Route B in Fig. 1.). a
From (4) we obtain

f
— =k arctan [(2v — 1) A]

n
and substituting in (2)

1
2

u =

1+ %tan (k arctan [(2v — 1)A]) (5)

where A = tan(A/k) and B = tan A.
Applying the formula

k

> FN(—1)792 tand o
SO0
tan(ka) = ! ZM
D lf —1)idiv2 tand o
PO
7 even

into (5), we obtain

- k o —
()R 2e — 1)y A
1 1w p(v)
7 odd
7/,:§]+§ k . B L :q(q)) (6)
> (7;)(4).7%”2(2@ — 1)1 A
j=0 v
| 7 even i

From this we deduce that Q(v) is none other than the reparametrization
of Q(u) through the rational function (6) with numerator and denominator
of degree k at most.

Theorem 1 Let Q(u) be a c-Bézier curve, then the reparametrized curve
Q(v) by the rational function (6) can be expressed in the following form:

i Piw; B; kn (v)
Qv) = — v e [0,1] (7)

- kn o

DO Bjgn(v)

7=0
where ' 4

4 k —a .ol

w= () Sy (T "
' i=0 Ty \I=0 b

and

=B 00) e e R o

6

OGRS M U

i even

rij = {(7:07 “77:/?7.7.07 “7.7./?);7:07 “77:/?7.7.07 “7jk > 0 ’
i+ 20+ R+ 250 R =g,
o+ ..+ir=n—1, jo+..+jpr=1}

Analogously Pjw; can be obtained substituting in (8) w; with Pw;.
Proof

Represent the numerator and denominator of (6) in the Bernstein poly-
nomial basis as follows:

k k
>oavt ST o Brg(v)
U = =0 = =0 (H)
% 4 %
> bivd > BiBig(v)
7=0 =0

with a;, b;, o, and 3 given as in (9) and (10).

Consider the Q(u) denominator and apply reparametrization (6) expressed

in the form (11),

n—1 7

n n Z (51 - (%1) Bl,k(”) Zk: (834 Bl,k(”)
Z“)iBim(“) = “H(?) =0 k ’?)7 (12)
=0 =0 /Z:o BBk (v) /Z:o BiBik(v)

Using Leibniz’s formula for the numerator of (12), we obtain

Sufl) X (i (ﬁ (ﬂlal)h.(y;l)(]7))kn(f+.7)”f+.7

: 117!
1=0 io+ . tipg=mn—1, =0 -1
Jo+ -+ =14
10,0y 1k 005 -y 0k > 0

where

Since 0 < T+ .J < kn, from the index exchange j = I + .J, the j-th term
in (8) is immediately deduced.
Proceeding in a similar manner for Pjw;, the result (7) follows. O

In order to obtain ¢(s) starting from ((v), note that the constraint 1.
of section 2 follows from the assumptions made, while, in general, to satisfy
constraint 2. it is necessary to scale the weights @w;. The scaling factor S can
be computed as:

Wo
Aq - —

o

It should be noted that for the denominator ¢(v) in (6) it holds ¢(v) =
g(1—wv), so that in (11) we have 3; = f;_;. By dividing coefficients a; and 3
in (11) by By we obtain now ag = 0 and o = 1 because the rational function

(6) maps [0,1] in [0,1]. From (8) it results that wy = wq (Wg, = w,) and
therefore it becomes not necessary to scale the weights ;.

4 Degree elevation via polar coordinates

An alternative formulation for the degree elevation itself is derived from a
more careful analysis of the explanation that allows us to obtain the degree
elevation in polar coordinates.

Suppose n is even. The curve of degree n can be written in terms of the
Fourier basis of arguments 2it or 2:0/n, 7 =0, ...,n/2, but also of arguments

% or 2iks, with ki = 0,...,kn/2, and s € [f%, %] that correspond to the
_A é]
Bk
Assume, for example n = 2; the curve can be represented in the Fourier
basis {1, cos(2t),sin(2t)}, for t € [-A, A}, and also {1, cos(4s),sin(4s)} s €
[—%, %], therefore, it can be expressed by the Fourier basis, of elevated

degree kn =4, {1, cos(2s),sin(2s), cos(4s),sin(4s)}.
Analogously for odd n.

arguments of a curve of degree kn defined in [

Following the example above but using the Bernstein polynomial trigono-
metric basis a formula for degree elevation is derived which can be more
widely expressed as follows.

Theorem 2 /el p(t) = Zﬂj ;i Aja(), t €A A] be a generic trigonometric
7=0

polynomial of degree n, then

kn A A
p) =Y e Als), s=tfh se |27 (13)
r=0 k k
where
_ n! o 4% Z
Cr = S]HW(QA)(r) s Cy s Yilljr
and -
tdTld
ddiv2{ k
ﬁ [(]) (d)] fan T+ <2A)
A — " - - ’a’n [
i de1 Zd!.]d! k
d odd

min(k(n—j7)—T,r—.10)

, , , 2A
k(n—7)—1 ky —.J k(n— r—2h
Njr = > (e)(7«47.77}1,) cos T (7)
h=max(0,r—kj) ’
D = max odd less than or equal to k,
rj = {(7:177:37“77:]77.7.17.7.37“7.7.]7);7:177:37“77:777.7.17.7.37“7.7.]7207

hWtist.t+ip=n—J, ji+it+.+ip=7j}

Proof
Given the p(t) of degree n, change parameter ¢ = ks:

1 n o A L A
p(t) = m Z cj(],) sin” ™/ k(? — s)sin? k(s + ?)

from the expansion of sin (k) to the power of sin a and cos &

D
sin(ka) = Z (—])M“’Q(I;) sin ovcos” " v

and applying Leibniz ’s formula, we deduce:

tat+id
ddiv2(k
g 0[]
M0 = GEn) z(){z< | T o
‘ d odd
' sin](? —) Cosk(nﬂ)ﬁ(? — s)sin” (s + ?) cos™ T (s + ?)} (14)

By the angle summation formulae, applying (3) in case n = 1 and devel-

oping the binomial, we have

A [A A]’W‘"

cos]”*](s + —) = |cos s cos 7 sin s sin m

k
1 . A _ A 20 1%
— 7““]{],7](%) [sm(? — 8) +sin(s + ?) COS(T)]
1 E A AT i A
- Gink 7 (28) z: ("71 ') [sm(s + ?)COQ(T)] sin™ (? —)
k =0
and, in a similar manner,
A 1
k(n—j)=T 2 _ y _
COS] (2 8) - Sink(n,j),](%)
E(n—7)—T 4 A A oA k=) -T-h
Z (k(”’ 71{7) - I) sin” (s + ?) [sin(? — 8) COS(T)]
h=0 ’ ’ /

Substituting into (14)

:|77d+.7d

b [(])ddmz(s)

n/! ke
1) = ——— c; — s
) sin”(2A) 72—;) ! T dl:[1 14174 k
d odd

10

Thjod (R =0 =T\ (ki=J
; ((h kw)() !)Cosk(nj)fh+l(%)z41+h+]’kn(3)

I+ h+.T

k(n—j)

h=0

Setting r = l4+h+.J and since 0 < r < kn, summing all the contributions
for each r, (13) is deduced. O

Note that for & = 2 the expression for the coefficients in (13) can be

simplified as follows:

n . min(n—jr—j)

Fo) St X () e))

7=0"- " h=mazn(0,r—27)

Example. Tet ¢(t) be a p-Bézier curve of degree n = 2 with §,' =

65" = 1,67 = cos(2A) and t € [~ A, A], representing an arc of unit circle;

A A

applying (15) we obtain ¢(s) of degree kn =4, s € [—3, 3] and coefficients:

o' = 6 =1

51 = (6 +6;") = cosA
5? — 1& —Cng + 25;1(] + cos?A) + —CSE?A = %[] + 2cos? A
b = (8 +8,") = cosA

6, = 6, =1
Note that these coefficients are the same obtained in (Sanchez-Reyes,
1994), but in a different manner.
5 Implementation and numerical results
Although the formulae (8) and (13) may appear complex and their implemen-

tation may not be immediately comprehensible, this section will demonstrate
how, using simple strategies, it is possible to produce an algorithm easily and

11

efficiently. Formula (13) will be compared to the interpolation technique in
terms of performance and analysed according to its numerical stability.

The main computational bottleneck in formulae (8) and (13) is the cycle
in I';; and T'; respectively. This is partly due to the difficulty in generating
these index sequences, and, above all, to the high cost of the cycle itself.

The problem, in general, requires the determination of all the ordered
sequences of m items, each item referred to as z;, and each having a value
between 0 and VAL. Tt is well known that the total number of these m-tuples
is given by (VAL 4+ 1)". As we are only interested in those m-tuples that
satisfy the following constraints

xytag+ i, =4, (=0,--- VAL (16)
the total number of these is reduced to:

VAL

> NS(m, ()
/=0
where ,
NS(m, () => NS(m —1,7)
=0
with
NS(1,4) =1

Our implementation produces permutations of m — 1 items setting the
m-th item to the value required to reach (.

Furthermore, permutations of items x;, whose sum is greater than £, are
not generated.

The algorithm used to produce the m-tuples is the following:

procedure perm(d,m,end,sum)
begin
for j=0 to end
=i
ssuUM:=sum-j
if (d < m-1) then perm(d+1,/-ssum ssum)
else
s[m]:=/-ssum

12

for i=1 to m
sequence[counttot+count][i]:=s[i]
count:=count-+1
end

procedure seq_generation(m, VAT sequence numseq)
begin
counttot:=0
for /=0 to VAL
count:=(
if (m=1) then
sequence[counttot+count][1]:=/
count:=count-+1
else
perm(1,m./.0)
countot:=counttot-+count
numseq[{]:=count,
end

where the "sequence” array contains the x; items, while "numseq” stores
the number of m-tuples satisfying (16) for a certain (.

As we can see from formulae (8) and (13) the number m of items for any
sequence is (k 4+ 1) and (k + 1)div2 respectively, while the value of VAT is
n for both. Therefore, the cost of cycle T';; in (8) is greater than the cost of
cycle T'; in (13).

As a result, the two formulae differ significantly in cost, which has also
been pointed out in their implementation phase.

Therefore, from this point onwards, only formula (13) will be considered.

In order to be usable in practice our implementation is a compromise
between space consumption and performance time.

The algorithm provides for a preprocessing phase that performs the en-
tities recurring many times in formula (13). In particular, coefficients v; are
preprocessed. Observing that +v; = 7,_;, the number of coefficients actually
computed is reduced to

ndiv2

Z NS((k 4+ 1)div2, i) NS((k + 1)div2,n — i)

=0

13

Figure 2: Control polygons of degree kn curves with n =2 and k= 1,2,3,5

Computation of coefficients ¢;, by means of a direct implementation of
(13), follows the preprocessing phase.

Note that the limits for 7 in (13) can be restricted for any @ to the range
max(0,r — kn 4+ n), min(r,n), because the n;, vanish when j is not part of
the range.

The algorithm has been implemented in Pascal (BORLAND 7.0), carried
out in double precision (15-16 significant figures), and tested on a Pentium
90 PC.

The test curves considered, without loss of generality, have been chosen
with 8 € [0, 7] and the coefficients §; =1 ,7=10,---,n. One of these curves
is shown in Fig 2.

The three tables presented in this section report computation and stabil-
ity results regarding running with kn < 64. This limitation is due to reasons
of practical applicability and to reducing memory storage requirements. The
memory size required by our algorithm for kn < 64 is given by ~ 67K bytes.

A comparison of computational costs is summarized in Tables 1 and 2,
which report the execution times required in order to solve a degree elevation
problem from degree n to degree kn by means of (13) and interpolation
respectively.

As indicated by the results in Table 1, our implementation of (13) oh-

14

o~
3

0| ~J| | Y &= | W| N

2 3 4) 6 7 8 16 32
0.0310.03]0.04|0.04|0.040.07{0.07]0.36|1.79
0.0310.07]0.1810.32|0.56 | 0.92] 1.46 | 19.5 —
0.0410.1110.2910.55|1.02|1.76|2.92|47.9 —
0.11 1037 1.13]2.81|6.48 | 13.5| 26.2 — —
0.1410.51 | 1.65 | 4.28 | 10.1 | 21.7 | 43.0 — —
0.2511.24 1494 | 15.7 | 44.2 | 110 | 254 — —
0.29 |1 1.28 1 6.29 | 20.5 | 59.1 | 150 | 351 — —
2.51 | 27.1 | 207 — — — — — —
24.8 — — — — — — — —

—_
o

w
[\]

Table 1: Execution time (in 1072 sec) by our implementation of (13)

k\n 2 3 4) 6 7 8 16 32
2 0.04 | 0.07| 0.15| 0.25| 0.37| 0.51 | 0.70 | 4.39* | 32.0*
3 0.07] 018 037 0.59| 0.92| 1.35| 1.91 | 13.1* —
4 0.15] 037 0.66 | 1.16 | 1.88 | 2.81 |4.03* | 32.6* —
) 0.25] 0.59 | 1.14 | 2.09| 3.36 | 5.20* | 7.58* — -
6 0.33] 0.88| 1.83| 3.36|5.53* | 8.61* | 12.6* — —
7 0.48 | 1.28 | 2.75|5.09* | 8.57* | 13.3* | 19.6* — —
8 0.66 | 1.83|3.96™ | 7.43* | 12.5* | 19.6™ | 28.8* — —
16 | 3.92* | 12.4* | 32.0* — — — — — —
32 | 28.6* — — — — — — — —

Table 2: Execution time (in 1072 sec) by interpolation technique

15

k\n 2 3 4) 6 7 8 16 32
1 [38.0122.6|19.1 | 14.7]12.8 | 10.7] 9.59 | 4.81 | 2.41
2 124]10.0 | 8.14 | 6.77 | 5.78 | 5.04 | 4.46 | 2.32 | 1.18
3 | 7.4216.20 5171432 |3.74 | 3.27 | 2.91 | 1.53 —
4 15301456 (3.79]3.20]2.76|2.42 | 2.16 | 1.14 —
5 | 4121357299253 (2.19]1.92|1.71 — —
6 |3.37]1295|247]2.101.81]1.59|1.42 — —
7 12.85(2.50]210(1.791.55]1.36 | 1.21 — —
8 2471218 | 1.83]1.561.35]1.19|1.06 — —
16 | 1.19 | 1.07 | 0.90 — — — — — —
32 1 0.59 — — — — — — — —

Table 3: Convergence of control points to the curve; each entry has to be

multiplied by 10~

tained a better performance, when compared with interpolation, for any n

and small &, and for any & and small n.

Experimental tests were performed in order to analyse the numerical sta-

bility of our implementation. For this purpose, a comparison of the degree

elevated curve with the original curve was made by computing

MAXERR = ||c(t) — ¢(5)]|oon

on a uniformly spaced set of points.
With our algorithm,

is obtained for any kn < 64, whereas, by applying interpolation,

results for the tests in Table 2 without *.

107" < MAXERR < 107"

107" < MAXFERR < 107"

(17)

(18)

(19)

Note that the tests marked by * are not reliable, as will be seen below.

Another stability test considered the convergence of the sequence of

values ¢; to the curve. This was evaluated in Table 3 using

MaTi=o,...kn|c(&i) — 6]

16

(20)

A convergent behaviour can be observed by reading Table 3 in columns.
Cases n =2 and k = 1,2,3,5 are illustrated in Fig 2.

Regarding the interpolation technique, tests marked with * in Table 2
emphasize a divergent behaviour of the sequence é; to the curve. This is due
to an increase in the condition number of the matrix associated with the
linear system.

6 Concluding remarks

e We can observe that by decomposing k = ki - ky--- k,, into m prime
factors and performing m steps, the performance generally improves.
In particular, as we can see from Table I, when & is a power of 2, the
repeated applications of the algorithm for & = 2 significantly reduce
the execution time.

e An algorithm for the degree elevation of single-valued spline curves in
polar coordinates has been achieved through the following steps: (a)
decompose the spline curve in polar coordinates into piecewise p-Bézier
curves (knot-insertion); (b) apply degree elevation to each p-Bézier
curve, and (¢) remove unnecessary knots (knot-removal).

Note that step (b) is optimized because the degree elevation for all
p-Bézier curves requires only one preprocessing stage.

In the Cartesian case, in (Piegl and Tiller, 1994), it is shown that
this method is very competitive with existing direct algorithms for the
degree elevation of B-spline curves.

References

de Casteljau P. (1994), Splines Focales, in: Laurent P.J. et al.eds., Curves
and Surfaces in Geometric Design , Peters A.K. Wellesley, 91-103.

Goodman T.N.T. and Lee S.I.. (1984), B-Splines on the circle and trigono-
metric B-Splines, in: Singh S.P. et al.eds., Approximation theory and spline
function , Reidel D. Publishing Company, 297-325.

Lyche T. and Winther R. (1979), A Stable Recurrence Relation for Trigono-
metric B-Splines, Journal of Approximation theory, 25, 266-279.

17

Piegl 1.. and Tiller W. (1994), Software-engineering approach to degree
elevation of B-Spline curves, Computer Aided Design, 26, 17-28.

Sanchez-Reyes J. (1990), Single-valued curves in polar coordinates, Com-
puter Aided Design, 22, 19-26.

Sanchez-Reyes J. (1991), Single-valued surfaces in cylindrical coordinates,
Computer Aided Design, 23, 561-568.

Sanchez-Reyes J. (1992), Single-valued spline curves in polar coordinates,
Computer Aided Design, 24, 307-315.

Sanchez-Reyes J. (1994), Single-valued surfaces in spherical coordinates,

Computer Aided Geometric Design, 11, 491-517.

18

