
University of Bologna - Department of Mathematics

Piazza di Porta S.Donato, 5 - 40127 - Bologna

descriptor library

Programming Guide - Version 3.0

G. Casciola

Department of Mathematics
University of Bologna

Bologna 2007

Abstract

This report presents the descriptor library. It is designed to describe a
virtual 3D scene by making a scene-graph. From this scene-graph it is
possible to obtain a photorealistic image of the 3D scene using a ray tracing
algorithm.

G. Casciola

Department of Mathematics, University of Bologna, P.zza di Porta S.Donato 5,
Bologna, Italy. E-mail: casciola@dm.unibo.it.

descriptor Programming Guide - Version 3.0. . .

Contents

Contents i

1 What is descriptor ? 1

2 Classes of objects 3

3 descriptor library functions 5

3.1 Item instantiation . 5
3.2 Transformations . 7
3.3 Attributes . 8
3.4 Textures . 11
3.5 Texture mapping . 13
3.6 Bump mapping . 15
3.7 Light sources . 15
3.8 Animation Design . 19

3.8.1 Lights . 19
3.8.2 Objects . 19
3.8.3 Transformations . 19
3.8.4 Attributes and Textures 19

4 Error codes 21

5 A programming example 23

6 Another programming example 27

7 How to compile 31

List of Figures 33

Bibliography 35

descriptor Programming Guide - Version 3.0. . .

Chapter 1

What is descriptor ?

descriptor is a library designed to describe a 3D scene. Its functions must
be called up using a program in C language. They make a graph of the
scene that can be saved on a file. From this scene-graph it is possible to
obtain a realistic view of the 3D scene using a ray tracing algorithm through
hrayt (see [XCRAYT07]). This manual describes the functions to insert and
position objects within the scene, to create attributes and textures to link
them to objects and to create and position light sources.
Recently, descriptor library has been extended to design little animations.

descriptor Programming Guide - Version 3.0. . .

Chapter 2

Classes of objects

We will define the following classes which enable the functions to be used
effectively. Every item of data is defined as ITEM and always belongs to
one of the following classes:

A primitive, list, hierarchy;

B light, primitive, list, hierarchy;

C attribute.

where items of class A can have an attribute, items of class B can be trand-
formed and items of class C are attributes.

primitive: consists in a trimmed or untrimmed NURBS surface or in a
NURBS object (a set of surfaces).

list: is a list of primitives that describes how primitives have been clustered.

hierarchy: is a list of lists (graph) that describes how primitives and lists
have been clustered; this organization simplifies a lot of operations
and allows the hrayt program, operating on the model, to perform
efficiently.

light: different types of light sources;

attribute: solid and color properties for objects described geometrically by
primitives.

The following is a list of functions included in library along with a short
description.

descriptor Programming Guide - Version 3.0. . .

Chapter 3

descriptor library functions

3.1 Item instantiation

ITEM read_nurbs(char *filename)

reads a NURBS surface (.db file) or a trimmed NURBS surface (.dbe file);
the parameter is the filename.

ITEM create_nurbs(int order_u,

int order_v,

int num_vertices_u,

int num_vertices_v,

VEC_vector_t **vertices,

VEC_real_t **coefficients,

VEC_real_t *knots_u,

VEC_real_t *knots_v,

BOOLEAN is_surface,

BOOLEAN normal_inside,

Trimming_tree_t trimming_tree,

char *name)

creates a NURBS surface or a trimmed NURBS surface with the given pa-
rameters.

ITEM read_obj(char *filename,

char *name)

reads a NURBS object (.obj file); the parameters are the object file name
and the list name. Returns the list identifier.

6 Transformations

ITEM create_copy(ITEM item,

char *name)

creates a copy of item and its name in the hierarchy will be name; every
kind of ITEM can be duplicated. Returns the new identifier.

ITEM create_list(ITEM item,

char *name)

creates a new list with only one element; the list name in the hierarchy will
be name. item must belong to class A. Returns the list identifier.

ITEM insert_in_list(ITEM list,

ITEM item)

inserts item in the list identified by list; returns the new list identifier.
item must belong to class A. Note that item is just inserted in the list and
not duplicated.

BOOLEAN save_scene(char *name,

char *title,

ITEM hierarchy)

saves the model of the scene (hierarchy) on the file name with extension
.md; if the file name already exists, it will be ovewritten. title is the name
used as header in the scene graph file name.md. hierarchy is the name list
of lists defined; it is used in XCRayt environment.
Returns TRUE if it is all ok, otherwise FALSE.

BOOLEAN save_scene_ani(int nframe,

char *ani_name,

char *name,

char *title,

ITEM hierarchy)

Create the file ani name with extension .ani containing the animation de-
fined by nframe frames. Saves the current model of the scene (hierarchy)
on the file name with extension .md; if these files already exist, they will
be ovewritten. title is the name used as header in the scene graph file
name.md. hierarchy is the name list of lists defined; it is used in XCRayt

environment.
Returns TRUE if it is all ok, otherwise FALSE.

descriptor library functions 7

3.2 Transformations

A set of standard transformation functions is provided to translate, scale,
rotate and shear objects. The name functions that end with abs are absolute
transformations, the others are relative transformations i.e. composed with
the previous transformation. All the following functions need a class B item.

BOOLEAN set_scale(ITEM item,

VEC_real_t sx,

VEC_real_t sy,

VEC_real_t sz)

BOOLEAN set_scale_abs(ITEM item,

VEC_real_t sx,

VEC_real_t sy,

VEC_real_t sz)

scale item by sx, sy and sz along the respective axes. The scale is relative
to the origin of the coordinates system.

BOOLEAN set_translate(ITEM item,

VEC_real_t tx,

VEC_real_t ty,

VEC_real_t tz)

BOOLEAN set_translate_abs(ITEM item,

VEC_real_t tx,

VEC_real_t ty,

VEC_real_t tz)

translate item by tx, ty and tz along the respective axes.

BOOLEAN set_x_rotate(ITEM item,

VEC_real_t angle,

int deg_fg)

BOOLEAN set_x_rotate_abs(ITEM item,

VEC_real_t angle,

int deg_fg)

BOOLEAN set_y_rotate(ITEM item,

VEC_real_t angle,

int deg_fg)

BOOLEAN set_y_rotate_abs(ITEM item,

VEC_real_t angle,

int deg_fg)

BOOLEAN set_z_rotate(ITEM item,

VEC_real_t angle,

8 Attributes

int deg_fg)

BOOLEAN set_z_rotate_abs(ITEM item,

VEC_real_t angle,

int deg_fg)

rotate item by an angle around the x axes (y or z); if deg fg = 0, the angle
is measured in radiants, otherwise in degrees.

BOOLEAN set_x_shear(ITEM item,

VEC_real_t a,

VEC_real_t b)

BOOLEAN set_x_shear_abs(ITEM item,

VEC_real_t a,

VEC_real_t b)

BOOLEAN set_y_shear(ITEM item,

VEC_real_t a,

VEC_real_t b)

BOOLEAN set_y_shear_abs(ITEM item,

VEC_real_t a,

VEC_real_t b)

BOOLEAN set_z_shear(ITEM item,

VEC_real_t a,

VEC_real_t b)

BOOLEAN set_z_shear_abs(ITEM item,

VEC_real_t a,

VEC_real_t b)

shear item by a and b with respect to the x axes (y or z); for example,
set x shear transforms P = (x, y, z) in Q = (x’, y’, z’) where: x’ = x, y’ =
y + ax, z’ = z + bx.

BOOLEAN set_transform(ITEM item,

MAT_matrix_t mat)

transforms item by the transformation matrix mat. mat is a 4x3 matrix and
represents a 4x4 transformation matrix where the last colum is (0, 0, 0, 1).

3.3 Attributes

Attributes are considered items and can be created, manipulated and linked
to objects.

ITEM create_attribute(char *name)

descriptor library functions 9

creates a new attribute with the default values listed below. A return value
equal to UNDEF ITEM indicates an error.

void set_attribute(ITEM item,

ITEM attribute)

sets the attribute for item with attribute.

BOOLEAN set_color(ITEM item,

float r,

float g,

float b,

float pa,

float pd)

sets the color in RGB coordinates and the proportion of ambient and diffuse
reflection. The parameters r, g and b determine the color. pa=0 means that
no ambient light is reflected, pa=1 means that all ambient light is reflected.
pd controls the proportion of diffuse reflection and its meaning is similar to
that of pa.

BOOLEAN set_reflectivity(ITEM item,

float ps,

float n)

sets the proportion of specular reflected light (ps) and Phong’s exponent
(n) for highlighting from direct light sources. the greater the exponent, the
narrower the highlight.

Description Name Default Range

r, g, b 1, 1, 1 [0,1][0,1][0,1]
ambient reflection pa 0.3 [0,1]
diffuse reflection pd 0.7 [0,1]
specular reflection ps 0 [0,1]
Phong’s specular exponent n 0 ≥ 0
max trasparency maxt 0 [0,1]
min trasparency mint 0 [0,1]
trasparency power factor tpwr 0 ≥ 0
refraction index ri 1 see Table 2

Table 3.1: attribute

10 Textures

BOOLEAN set_trasparency(ITEM item,

float maxt,

float mint,

int tpwr,

float ri)

sets the transparency and the index of refraction ri (see table 2). The
parameters specify a maximum (maxt) and a minimun (mint) transparency
and a transparency power factor (tpwr). The transparency for a given point
is determined according to the following formula:

t = (maxt−mint) ∗ (1− (1− cos(alpha))tpwr) +mint

Transparency t varies over an object according to the alpha angle between
the incident vector and the normal to the surface object at the point con-
sidered. If tpwr is set to zero transparency will not vary across the object.
Values of tpwr that are near 5 or 6 already simulate thin objects.

Materials Refraction Index

ethyl alcool 1.36
water 1.33
air (1 atm, 20o) 1.0003
bisulphide of carbon 1.63
calcite 1.486 - 1.658
diamond 2.42
dolomite 1.5 - 1.681
ethane 1.36
ice 1.309 - 1.313
polystyrene 1.55
quartz 1.544 - 1.553
molten quartz 1.46
sodium chloride 1.53
siderite 1.635 - 1.875
sugar in water 30o 1.38
sugar in water 80o 1.49
empty space 1.0
glass crown 1.52
glass (dense flint) 1.66
glass (flint) 1.72 - 1.89
wurtzite 2.356 - 2.378
sapphire 1.77

Table 3.2: refraction index for some materials

descriptor library functions 11

3.4 Textures

A procedural texture is an analytical function defined in 3D space, that is, a
function which assigns some visual property to every point in a space. Thus,
when an object is placed in that space, it acquires visual properties depend-
ing on where it is located. In other words, properties such as reflectivity,
refractive, color, transparency, etc. defined for a surface can vary within
the texture space. The texture space has its own coordinate system; the
user decides where to place an object in this space using the transformation
functions described above. The steps needed are:

1. create object;

2. transform object (scale, rotate, translate) to put into the texture space;

3. assign chosen texture to the object;

4. apply inverse transform to object;

5. position object, as desired, in the scene.

BOOLEAN set_angle_texture(ITEM item,

ITEM attribute1,

ITEM attribute2,

int sections)

divides the space into angular sections alternating between attribute1 and
attribute2. The angular sections radiate from the y-axis. sections spec-
ifies the number of sections (> 0) in which to divide the 360 degrees about
the y-axis.

BOOLEAN set_cross_texture(ITEM item,

ITEM attribute1,

ITEM attribute2,

double x_wid,

double y_wid)

is defined by the x and z coordinates of an object, thus no change occurs
along the y-axis. The cross texture is defined as a bar of width x wid, which
lies parallel to the x-axis, and a bar of width z wid which lies parallel to
the z-axis. x wid and z wid must belong to [0,1]. These bars are defined
within the positive unit square, but the texture space coordinates are first
absolute-valued and then calculated modulo to 1. Thus, the resulting tex-
ture is outlined squares repeated to infinity, with the x and z axes having
bars which are twice as thick.

12 Textures

BOOLEAN set_cube_texture(ITEM item,

ITEM attribute1,

ITEM attribute2)

divides the texture space into cubes, alternating two different attributes.
This texture is defined only for the positive octant of the space. Cube sides
are parallel to the coordinate axes and have a length equal to unity.

BOOLEAN set_gradient_rand_texture(ITEM item,

ITEM attribute1,

ITEM attribute2,

double axis,

double resolution,

double start,

double end)

sets a texture that randomly chooses between attribute1 and attribute2,
but with a distribution along a gradient in the axis specified by axis (0
means x-axis, 1 y-axis and 2 z-axis); resolution is the range for the rand
function. start and end specify, along the given axis, where this texture is
applied.

BOOLEAN set_layer_texture(ITEM item,

ITEM attribute1,

ITEM attribute2)

divides the texture space into layers parallel to the xz plane, each with a
thickness of one. The layers alternate the two attributes.

BOOLEAN set_octant_texture(ITEM item,

ITEM attribute1,

ITEM attribute2)

divides the texture space into 8 octants alternating the two attributes.

BOOLEAN set_shade_texture(ITEM item,

ITEM attribute1,

ITEM attribute2,

double axis,

double start,

double end)

makes an interpolation between the colors of attribute1 and attribute2.
The interpolation is calculated along the axis specified by axis (0 means
the x-axis, 1 y-axis and 2 z-axis). start and end specify where to start with
attribute1 and end with attribute2.

descriptor library functions 13

BOOLEAN set_triangle_texture(ITEM item,

ITEM attribute1,

ITEM attribute2,

double x_wid,

double z_wid)

is defined by the x and z coordinates of an object, thus no changes occur
along the y-axis. The triangle texture is defined as a rectangle of width
x wid along the x-axis and width z wid along z-axis. x wid and z wid must
belong to [0,1]. The rectangle is divided into two by a diagonal line, with
attribute1 on one side and attribute2 on the other. This rectangle is
repeated to infinity.

BOOLEAN set_weighted_rand_texture(ITEM item,

ITEM attribute1,

ITEM attribute2,

ITEM attribute3,

ITEM attribute4,

int p1,

int p2,

int p3,

int p4)

sets a texture that randomly chooses attributes 1, 2, 3 and 4, but each at-
tribute has a certain probability of being chosen. Each attribute probability
is specified by its corresponding p number: p1, p2, p3 and p4. The proba-
bility can be calculated by its probability number divided by the sum of all
the probability numbers.

BOOLEAN set_wood_texture(ITEM item,

ITEM attribute1,

ITEM attribute2)

is defined by the x and z coordinates of an object, thus no change occurs
along the y-axis. The wood texture divides the texture space into concentric
cylinders: the first has a radius equal to unity, the second a radius equal to
two and so on, one more at every new cylinder. Attributes attribute1 and
attribute2 are assigned alternatively to these cylinders.

3.5 Texture mapping

BOOLEAN set_projection_texture(ITEM item,

ITEM attribute1,

14 Texture mapping

char *image_name,

int axis_flag,

int r_flag,

float pa,

float pd)

This function allows an image to be attached to an object, like a postage
stamp. The function needs an attribute in order to be defined, whose prop-
erties (color, reflection etc.) affect the final outcome. The image can be
only a .hr file; to convert another image format to hr see xmovie package
[XCRAYT07]. The object should be appropriately positioned in order to
project the image. r flag is a repetitive Boolean flag and axis flag (0 for
x-axis, 1 for y-axis and 2 for z-axis) sets the direction where to project. The
pa and pd parameters are the contributions of ambient light and diffusion.

BOOLEAN set_domain_texture(ITEM it,

ITEM attribute1,

char *image_name,

float umin,

float umax,

float vmin,

float vmax,

int r_flag,

float pa,

float pd)

This function allows an image to be applied to an object in according to its
parameterization. The function needs an attribute in order to be defined,
whose properties (color, reflection etc.) affect the final outcome. The image
can be only a .hr file; to convert another image format to hr see xmovie

package [XCRAYT07]. umin, umax, vmin and vmax define the rectangular
surface parametric subdomain where consider and map the image. r flag

is a repetitive Boolean flag. The pa and pd parameters are the contributions
of ambient light and diffusion.

BOOLEAN set_border_texture(ITEM it,

ITEM attribute1,

ITEM attribute2,

double umin,

double umax,

double vmin,

double vmax)

descriptor library functions 15

This function alternates attribute1 with attribute2 on a surfaces in ac-
cording to a rectangular parametric subdomain defined by textttumin, umax,
vmin and vmax. More precisely inside the rectangle uses attribute2 and
outside attribute1.

3.6 Bump mapping

BOOLEAN set_bump_texture(ITEM it,

ITEM attribute1,

char *image_name,

float umin,

float umax,

float vmin,

float vmax,

int r_flag,

float pa,

float pd)

This function allows a grey color image to be used as a two-dimensional
bump map to angularly perturb the surface normal. The function needs
an attribute in order to be defined, whose properties (color, reflection etc.)
affect the final outcome. The image can be only a .hr file; to convert another
image format to hr see xmovie package [XCRAYT07]. umin, umax, vmin and
vmax define the rectangular surface parametric subdomain where consider
the bump mapping. r flag is a repetitive Boolean flag. The pa parame-
ter allows to scale the perturbation and must be between 0 and 1. The pd
parameter can be 1 or -1 enabling surface to appear as if were wrinkled or
dimped.

3.7 Light sources

ITEM create_distant_light(VEC_real_t dx,

VEC_real_t dy,

VEC_real_t dz,

float r,

float g,

float b,

float intensity,

char *name)

creates a light source at an infinite distance from the scene with rays point-
ing in the direction given by the vector (dx,dy,dz), color defined in the RGB

16 Light sources

space by the triplet r, g, b and intensity equal to the value of the parameter
intensity. dx, dy and dz must not all be zero at the same time. intensity
must be greater than zero. intensity should be less than one or, at most,
just over one. Returns the ITEM identifier.

void set_distant_light(VEC_real_t dx,

VEC_real_t dy,

VEC_real_t dz,

float r,

float g,

float b,

float i,

ITEM it)

allows to redefine the parameters of the point light with ITEM it and
previously created.

ITEM create_point_light(VEC_real_t cx,

VEC_real_t cy,

VEC_real_t cz,

float r,

float g,

float b,

float intensity,

VEC_real_t range,

char *name)

creates a point light source centered at (cx,cy,cz), with color defined in the
RGB space by the triplet r, g, b and intensity equal to the value of the
parameter intensity at the source and fading linearly to zero at a distance
equal to range. intensity must be greater than zero. If range is less than
or equal to zero, the light intensity will not be dependent on the distance
travelled.

void set_point_light(VEC_real_t cx,

VEC_real_t cy,

VEC_real_t cz,

float r,

float g,

float b,

float i,

VEC_real_t max_range,

ITEM it)

descriptor library functions 17

allows to redefine the parameters of the point light with ITEM it and
previously created.

ITEM create_warn_light(VEC_real_t cx,

VEC_real_t cy,

VEC_real_t cz,

VEC_real_t dx,

VEC_real_t dy,

VEC_real_t dz,

float r,

float g,

float b,

float intensity,

VEC_real_t range,

int concentration,

VEC_real_t maximum_angle,

VEC_real_t flap[4],

char *name)

creates a light source centered at (cx,cy,cz), with color defined in the RGB
space by the triplet r, g, b and intensity equal to the value of the parame-
ter intensity at the source and fading linearly to zero at a distance equal
to range. Moreover, dx, dy and dz are the components of a vector that
specify a light direction in order to aim a light at a particular area of an
object. concentration is used to define the way in which light intensity
decreases away from the aim direction: a larger value means that the light
decreases, when away from the aim direction, quicker than for smaller val-
ues. Finally maximum angle and flap can be used to restrict the path of
a light. maximum angle defines a cone surrounding the light direction: the
light intensity is set to zero if the angle between the aim direction and the
direction of the ray to the point being illuminated is greater than the cone
angle maximum angle. flap is the plane equation:

flap[0]x+ flap[1]y + flap[2]z + flap[3] = 0

Points on the same side of the light location with respect to the plane will
be illuminated, while all the others will not. dx, dy and dz must define a
non-null vector. intensity must be greater than zero. If the parameter
range is less than or equal to zero, the light intensity won’t decrease with
distance. concentration must be non-negative. angle is given in degrees.
flap must be a valid plane equation or be the null pointer; in the latter case
no flap will be used to stop light.

void set_warn_light(VEC_real_t cx,

18 Animation Design

VEC_real_t cy,

VEC_real_t cz,

VEC_real_t dx,

VEC_real_t dy,

VEC_real_t dz,

float r,

float g,

float b,

float i,

VEC_real_t max_range,

int conc,

VEC_real_t angle,

int flap_on,

VEC_real_t fa,

VEC_real_t fb,

VEC_real_t fc,

VEC_real_t fd,

ITEM it)

allows to redefine the parameters of the warn light with ITEM it and pre-
viously created.

BOOLEAN set_ambient_light(float r,

float g,

float b,

float intensity)

sets the ambient light to have a color defined in the RGB space by the triplet
r, g, b and intensity equal to the value of the parameter intensity. The
ambient light is such that it illuminates an object equally from every direc-
tion. intensity must be greater than zero.

BOOLEAN set_background(float r,

float g,

float b,

BOOLEAN is_refl)

sets the scene background to have a color defined in the RGB space by
the triplet r, g, b. is refl gives a reflectent property to the background.
is refl is a boolean flag.

descriptor library functions 19

3.8 Animation Design

Recently, decriptor library has been extended to design little animations.
This section describes the guide lines to follow to design a correct list of
scene graphs. We remember that to describe a single scene we must insert
and position objects within the scene, create attributes and textures and
link them to the objects and create and position light sources. To design
a scene graph of a list (frame list) we must understand what we must/can
modify respect to the previous in the list.

3.8.1 Lights

A light must be initially created using one of the create xxx light func-
tions and then it can be modified in position and parameters by using the
set xxx light correspondent functions. Note that a light cannot be deleted;
it is possible to act on the intensity parameter or on the ray of influence to
reduce its effect.

3.8.2 Objects

An object must be loaded using one of the following functions: read nurbs,
create nurbs or read obj. The loaded objects will do part of the scene
only if they will be inserted in it by the inser in list function. After an
object was inserted in the scene removing it is not possible. This involves
that in the design of an animation in which in the next frame we want to add
objects it is possible to use the same list in which we insert the new ones,
while if we want to remove objects in the next frame it will be necessary
create a new one list with only the necessary objects.

3.8.3 Transformations

The geometrical transformations can be absolute or relative depending on
whether the name of the function finishes with abs or not. Several absolute
transformations on the same object only make real the last one, while several
relative transformations on the same object compose themselves.

3.8.4 Attributes and Textures

An attribute must be initially created and can be then modified with the
specific functions. Using the set attribute functions will be possible to
apply it to an object. Since an object can have only an attribute, if more
than one is applied, only the last application will be real.

descriptor Programming Guide - Version 3.0. . .

Chapter 4

Error codes

In Table 4.1 is shown a list of possible errors from calls to functions in the
descriptor library, together with their mnemonic names, which are defined
in descriptor.h.

Value Meaning

NOMEM memory not avalible
ZERPAR parameter value 0
CONSTR constrain violated
DOMAIN parameter value out of range
TYPE item/attribute does not belong to the right class
IO I/O file error

Table 4.1: error codes

descriptor Programming Guide - Version 3.0. . .

Chapter 5

A programming example

The following is the sequence of instructions used to produce a marble chess
tower, obtained with a texture mapping, a light blue reflecting background,
a white ambient light and three light sources. Note the creation of the tower,
which is not a whole surface, but a slice of a surface, inserted 4 times into
the hierarchy and rotated each time. The loaded NURBS surface is the slice.
The following is the commented code:

/* chess_tower.c */

#include "descriptor/descriptor.h"

#define DIM_CHESS (0.5)

int main(void) {

ITEM objectB;

ITEM Qtower,tower;

/* background setting */

set_background(0.6,0.7,0.8,TRUE);

/* ambient light setting */

set_ambient_light(1,1,1,0.7);

/* distant light creation */

create_distant_light(0,0,1, 1,1,1, 0.7, "distant_light");

/* point light creation */

create_point_light(35.68,5.21,7.49, 1,1,1,

0.7, 0, "point_light");

/* spot light creation */

create_warn_light(1,0,0, 0,1,0, 1,1,1, 0.8,

40, 5, 70, 1,0,0,1,5, "warn_light");

24 A programming example

/* attribute definition */

objectB=create_attribute("black_chess");

set_color(objectB,1,0.062,0.031,0.5,0.5);

set_reflectivity(objectB,0.4,2);

/* hierarchy initialization and construction */

Qtower=read_nurbs("Qtower.db");

tower=create_list(create_copy(Qtower,"slice_1"), "tower");

set_z_rotate(Qtower,90,1);

tower=insert_in_list(tower, create_copy(Qtower,"slice_2"));

set_z_rotate(Qtower,90,1);

tower=insert_in_list(tower, create_copy(Qtower,"slice_3"));

set_z_rotate(Qtower,90,1);

tower=insert_in_list(tower, create_copy(Qtower,"slice_4"));

/* tower positioning to immerge into texture space */

set_scale(tower,1.0/0.26,1.0/0.26,1);

/* textute mapping */

set_projection_texture(tower,objectB,

"marble_5_black.hr",

FALSE,FALSE,0.6,0.8);

/* tower repositioning */

set_scale(tower,0.26,0.26,1);

/* tower positioning in the scene */

set_translate(tower,DIM_CHESS/2,DIM_CHESS/2,0);

set_translate(tower,0,DIM_CHESS*3,0);

save_scene("chess_tower.md", "tower", tower);

return(0);

}

The first part of the code is devoted to the description of the objects in the
scene. They are all of the type ITEM, and therefore generic. They will later
gain specificity, during the creation of the attributes:

objectB=create_attribute("black_chess");

or in the creation of the hierarchy:

Qtower=read_nurbs("Qtower.db");

tower=create_list(create_copy(Qtower,"slice_1"), "tower");

This mode of scene description has the disadvantage of not immediately
being able to visualise the scene itself, but only after the process of realistic

A programming example 25

rendering, that is very expensive in terms of time. The scene adaptation
phase is therefore a very slow process. Another disadvantage is that C
language must be used.

Figure 5.1: rendering obtained by the scene model produced with the pre-
sented C code

descriptor Programming Guide - Version 3.0. . .

Chapter 6

Another programming

example

The following is the sequence of instructions used to produce a marble chess
tower animation. The scene is similar to the previous one; there is a base
plane and a light source move around the tower producing an animated
shadow on the base plane. The following is the commented code:

/* chess_tower_anim.c */

#include "descriptor/descriptor.h"

#define DIM_CHESS (0.5)

int main(void) {

ITEM objectB,attr_plane;

ITEM Qtower,tower,plane,scene;

ITEM DistantL,WarnL,PointL;

float teta,xi,yi,xip1,yip1,ct,st;

int i;

/* background setting */

set_background(0.6,0.7,0.8,TRUE);

/* ambient light setting */

set_ambient_light(1,1,1,0.7);

/* distant light creation */

DistantL=create_distant_light(0,0,1, 1,1,1, 0.7, "distant_light");

/* point light creation */

PointL=create_point_light(35.68,5.21,7.49, 1,1,1,

0.7, 0, "point_light");

/* spot light creation */

28 Another programming example

WarnL=create_warn_light(1,0,0, 0,1,0, 1,1,1, 0.8,

40, 5, 70, 1,0,0,1,5, "warn_light");

/* attribute definition */

objectB=create_attribute("black_chess");

set_color(objectB,0.1,0.062,0.031,0.5,0.5);

set_reflectivity(objectB,0.4,2);

attr_plane=create_attribute("attr_plane");

set_color(attr_plane,0.1,0.75,0.1,0.5,0.5);

/* hierarchy initialization and construction */

tower=read_nurbs("tower.db");

set_attribute(tower,objectB);

set_scale(tower,1.0/0.26,1.0/0.26,1);

/* texture mapping */

set_projection_texture(tower,objectB,

"marble_5_black.hr",

0,FALSE,0.6,0.8);

/* tower repositioning */

set_scale(tower,0.26,0.26,1);

plane=read_nurbs("plane.db");

set_attribute(plane,attr_plane);

scene=create_list(tower, "scene");

scene=insert_in_list(scene, plane);

/* parameters initialization for anumation */

teta=6.28/15;

ct=cosf(teta);

st=sinf(teta);

xi=8.0;

yi=0.0;

/* loop: the point_light rotates around the object */

/* render with shadow on */

for (i=0; i<16; i++)

{

xip1=xi*ct-yi*st;

yip1=yi*ct+xi*st;

set_point_light(xip1,yip1,7.49, 1,1,1,

Another programming example 29

2.0, 0, PointL);

/* save the i-th of 16 frames */

save_scene_ani(16,"chess_tower_anim.ani",

"chess_tower_anim", "scene", scene);

xi=xip1;

yi=yip1;

}

return(0);

}

descriptor Programming Guide - Version 3.0. . .

Chapter 7

How to compile

This section describes how to compile, link and execute a program in C
language with Unix Operating System. A program, to call the descriptor

library functions, should include the file descriptor.h, that is, it should
have the line

#include "descriptor/descriptor.h"

An Imakefile is provided to build a specific Makefile on your computer and
operating system. Note that the C code file name must be update manually
in the Imakefile (chess tower for the above example). Give the following
commands:

xmkmf

now it is possible to compile and execute the program with:

make

What happens is that from a C code (chess tower.c), an exe-file is pro-
duced (chess tower), whose execution creates an .md description file of the
scene (chess tower.md).
If errors occur during execution, these will be marked with the descrip-

tor errno value.
The use of a Makefile.ok present in every models subdirectory is advised

for that who do not have imake available.

descriptor Programming Guide - Version 3.0. . .

List of Figures

5.1 rendering obtained by the scene model produced with the
presented C code . 25

descriptor Programming Guide - Version 3.0. . .

Bibliography

[XCRAYT07] G.Casciola XCRayt: the scene descriptor; User’s Guide - Ver-
sion 2.0, 2007
http://www.dm.unibo.it/∼casciola/html/xcmodel.html.

