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Abstract. A new class of spline curves in polar coordinates has been
presented in [11] and independently considered in [5] . These are rational
trigonometric curves in Cartesian coordinates and can be represented as
NURBS. An alternative way to derive some useful tools for modelling
splines in polar coordinates is provided. Moreover, an ad hoc algorithm
of degree elevation for splines in polar coordinates is presented, and its
efficiency and stability is proved.

§1. Introduction

Recently, in [11] a class of spline curves in polar coordinates was proposed.
We refer to these curves as p-splines. They have proved to be a generalization
of those considered in [10], which we call p-Bézier curves.

The p-splines were independently considered in [5], and called Focal
splines. These classes of curves are interesting because they allow for mod-
elling and interpolation of free forms in polar coordinates with the same fa-
cilities as Cartesian splines.

In [11], Sanchez-Reyes emphasizes the fact that the p-spline curves are
piecewise rational Bézier in Cartesian coordinates but they are not rational
splines. Actually, this last assertion is neither proved nor supported by any
justification. In this paper we will provide the algorithm that leads to a
representation of these curves as NURBS.

In addition to knot insertion, knot removal and subdivision, another
known result from Sanchez-Reyes’ papers is the possibility of making degree
elevation from degree n to degree kn. In [2] and [4] we proposed different al-
gorithms for degree elevation of p-Bézier curves. In this paper we will suggest
how to use these results for p-splines, and we will provide some computational
results.
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These two results, together with their generalization to surfaces, have
convinced us of the usefulness of extending our NURBS-based modelling sys-
tem by supplying it with a modelling environment for p-spline curves and
surfaces in polar, spherical, and mixed polar-Cartesian coordinates. This al-
lows us to manage polar and spherical models as NURBS [3].

§2. P-spline curves

A p-spline curve ¢(t) of degree n is defined as

oft) = <§§f§> = (Zfit"j;me)

where 6(t) denotes the polar angle and p(t) is the radius defined as the re-
ciprocal of a trigonometric spline. Without loss of generality, we consider
t € [-A,A]. The functions M; ,(t) are normalized trigonometric B-splines [§]
and are defined by the following recurrence relation

sin(t — t;) sin(tipny1 — 1)

z,n( ) sin(tH_n _ ti) 1,n 1( )‘I' Sin(tH_n_H — ti—|—1) +1,n 1( ) ( )
. _ 17 if t; §t<ti+17
Mio(t) = {O, otherwise.
on a non-decreasing knot sequence {ti}i[i"gzn"i'l satisfying the constraint #;4, —

t; < w, Vi. Note that each trigonometric spline piece is a trigonometric
polynomial belonging to the space

| span{1,cos2t,sin2t, cos 4t,sin4t, ..., cosnt,sinnt}, n even
" | span{cost,sint, cos 3t,sin 3t, ..., cos nt, sin nt }, n odd

The coefficients (5;1 and the Greville radial directions §; = 23—1:—7—1—1 t; define,
in polar coordinates, the control points d; = (.fl, (5i_l> of the p-spline ¢(t). The
knot constraint implies that, in polar coordinates, £; — &;—1 < 7 holds. Figure
1 illustrates an example of a p-spline curve and relative control polygon.
P-spline curves enjoy properties of local control, linear precision, convex
hull, and variation diminishinginherited from splines in Cartesian coordinates.
Moreover, p-splines of degree 2 are conic sections with foci at the origin of

the coordinates.

63. NURBS representation of p-splines

It is known [11] that the class of p-spline restricted to a single segment (p-
Bézier curves) represents a subclass of rational Bézier curves in Cartesian
coordinates. Therefore, we can state that p-splines represent a subclass of

NURBS.
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Fig. 1. p-spline curve of degree n = 3 together with its control poly-
gon - {t;; = {0,0,0,0,0.75,1.5,2.25,3,3,3,3}, d; = {(0,0.3),(0.75,0.3),
(2.25,0.22),(4.5,0.3),(6.75,0.22),(8.25,0.3),(9,0.3)} .

A first approach to obtain a NURBS representation of a p-spline curve
has been suggested in [11]. Given a p-spline curve over an arbitrary knot
sequence, this can be converted by subdivision into a piecewise curve whose
individual pieces are p-Bézier curves, so that every p-Bézier curve can be
represented in terms of rational Bézier curves in Cartesian coordinates.

In the alternative approach proposed here, a non-piecewise Bézier repre-
sentation of a p-spline ¢(t) as a NURBS curve ¢(v) will be provided.

Let ¢(t) be the p-spline represented as a scalar function

&) 1
PA) = K+n

ne Y M)
where 8 € [—nA,nA]. Then the correspondent curve of (2) in Cartesian
coordinates will be obtained by a simple change of coordinates:

() (3)

sin 6

(2)

Applying the identities [6]
cosf = 34" cos &M n( £) sin 6 = Y1 b sin &M (2)

=0 n 1=0

relation (3) assumes the following trigonometric rational form:

L () Min(3)
Sy 6iMin()
In [7] the important transformation v, : Po— > Ty 5 (vn f)(2) = cos™ a-
f(tan x), was provided; more precisely, if p € P, on [tan «, tan ], then ~,p €
T, on [a, ] when —F < a < # < . From this assertion it follows that a
polynomial B-spline is proportional to a trigonometric B-spline. In particular,
the following important relation can easily be proved:

(4)

cos™t

M) = N th) g
[[ cost;

j=it1
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T T
) = tant _lct<t
¢(t) = tan 5 5

where the N;, are the polynomial B-spline functions defined on the knot
sequence {¢(t;)}. In virtue of (5), relation (4) becomes

-1
cos &; i+n
el 5)( i costj) Nonl®)

sin &; j=i+1

q(v) = ‘ —T
K4+n vrn
Ei:o I[ cost; 0iN; n(v)
j=it1
where
1 tant
o=t =y 1 (©)

Thus, we can conclude that a p-spline in Cartesian coordinates has the
following NURBS representation:

St PawiNiu(v)

9(v) = e v €[0,1], (7)
Ei:O wiNi’n(v)
‘ ‘ t+n . —1 /cos &;
with weights w; = (Si/(j:];[H cost;) and control points P; = ¢, <sin 5i); the

N; n(v) functions are defined over a knot sequence {v;} obtained applying
relation (6) to the knots #;. Note that the P; are given by the transformation
in Cartesian coordinates of the p-spline control points d;.

For example, the NURBS representation of the p-spline curve illustrated
in Figure 1 has knot vector {v;} = {0,0,0,0,0.46,0.5,0.53,1,1,1,1}, and
weights {w;} = {1,0.09668,0.00933, 0.00066, 0.00933,0.09668,1}.

If 2A > 7, in order to satisfy the applicability conditions of relation (5),
it will be necessary to subdivide the p-spline curve into piecewise p-splines
defined on intervals whose size is less than «.

64. Tools for p-splines

Of the many tools that play an important role in a spline-based modelling sys-
tem, we report knot insertion, subdivision, knot removal, and degree elevation.
Algorithms for knot insertion, subdivision, and knot removal for p-splines can
be obtained from analogous algorithms for trigonometric splines, as can be
easily deduced from the definition of ¢(t).

Alternative algorithms can be obtained using relation (5) and the anal-
ogous algorithms for polynomial splines. For example, the knot insertion
algorithm for p-splines may be schematized through the following steps:

Let tp <1< t¢+1 be the knot to be inserted.
i+n
1. Compute ¢; = 6;/( [[ cost;) i=L0—mn,---
j=it1

s
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2. Insert knot ¢(#) by means of the polynomial spline algorithm on ¢; coef-

ficients to achieve ¢; over the {¥;} knot partition;
N i+n
3. Compute 6; = ( [[ cost;)/é i=0—mn,---,0+1.
j=1+1
In fact, applying (5) to ¢(t), we have

1 1

= 8
SIS Mi (1) cosmt 3 Th" iy n(v) ¥

executing knot insertion for polynomial splines, and applying relation (5) once
again, we obtain

1 1

cos™t ZI\—I—n—I—l AN ( ) - ZI\—I—n—I—l(S M ( )

=0

with ¢;, ¢; and (SAZ as indicated in 1.,2. and 3.

Analogously, relation (5) can be used in order to evaluate the p-spline
c(t), referring the evaluation of a trigonometric spline to a polynomial spline.
It should be noted that these tips can improve the efficiency of a p-spline-based

modelling system.

d)

—
@‘%
~

N

Fig. 2. Degree elevation steps; (a) original cubic p-spline curve , (b)
subdivision in 3 p-Bézier curves, (c) degree elevation of each p-Bézier
curve , (d) degree-elevated curve after the knot removal step.

Unlike the above-considered tools, the algorithm for the degree elevation
of a p-spline is not achievable either from the degree elevation algorithm for
a trigonometric polynomial considered in [1], or from the degree elevation
algorithm for polynomial splines. In fact, the application of such algorithms
does not modify the parametric interval size, as results from the definition of
¢(t). From this the need emerges for an ad hoc algorithm to determine the
degree elevated p-spline curve.
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4.1. Degree elevation for p-splines

From the expression of a p-spline in terms of the Fourier basis, one can deduce
that this subset of curves is closed with respect to degree elevation from degree
n to degree kn, for any natural value & [10].
Following the idea in [9] for polynomial splines, we propose a degree
elevation technique for p-splines that consists in the following steps:
1. decompose the p-spline into piecewise p-Bézier curves (subdivision);
2. apply degree elevation to each p-Bézier curve;
3. remove unnecessary knots until the continuity of the original curve is
guaranteed (knot removal).
In order to realize step 2., the following result is exploited [4].

Degree elevation formula for p-Bézier curves
Let p(t) = > ¢;A;n(t), t € [-A,A] be a generic trigonometric polyno-

J=0
mial of degree n in the Bernstein trigonometric basis, then

kn

E A A
p(s) = ErAr,kn(3)7 s = t/k, s € |:_?7 ?:|

r=0

where

S S
" (") sin"(24)

T

and d, are the components of the vector

n n . .
d= e;a™ 7 @bl
> (5)e

with L A
b = () sin(Qj?), a; = by—j, 7=0,... k.
J

The symbol @ means convolution between two vectors, and b’ means

convolution b@b ®@--- @b, (j — 1) times.

Our implementation of the above formula provides a preprocessing phase
that performs the vectors a and b, and the binomial coefficients.

Note that step 2. uses an optimized version of this algorithm, in fact
it requires only one preprocessing phase for the degree elevation of all the p-
Bézier curves, and this also contributes to the efficiency of the degree elevation
algorithm for p-splines.

In addition, the algorithm results to be numerically stable as the p-Bezier
degree elevation algorithm is intrinsically stable [4].

In Figure 2, the three main algorithm steps are tested on an initial p-
spline curve of degree n = 3 with 2 single interior knots, to obtain a p-spline
of degree kn = 6 with 2 interior knots, both having a multeplicity of 4.
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Computational results

The algorithm has been implemented in Pascal (BORLAND 7.0), carried out
in double precision (15-16 significant figures), and tested on a Pentium 90 PC.

The test curves considered, without loss of generality, have been cho-
sen with 8 € [0,7], the coefficients 6;' = 1, i = 0,---,n, and randomly
distributed knots.

K\n | 1 2 3 4 K\n | 1 2 3 4

2 0.024 | 0.025 | 0.055 | 0.110 0.109 | 0.293 | 0.733 | 1.470
3 0.025 | 0.055 | 0.110 | 0.189 0.187 | 0.733 | 2.010 | 4.067
4 0.029 | 0.055 | 0.134 | 0.250 0.293 | 1.470 | 4.216 | 9.133
5 0.030 | 0.085 | 0.135 | 0.305 0.473 | 2.600 | 7.910 | 17.53

(la) (1b)
K\n | 1 2 3 4 | 1 2 3 4

2 0.024 | 0.055 | 0.135 | 0.299 0.180 | 0.547 | 1.313 | 2.640
3 0.025 | 0.109 | 0.190 | 0.384 0.326 | 1.420 | 3.880 | 8.127
4 0.029 | 0.110 | 0.250 | 0.495 0.620 | 2.900 | 8.453 | 18.57
5 0.030 | 0.135 | 0.329 | 0.580 0.993 | 5.380 | 16.07 | 36.50

(2a) (2b)

Table 1: Execution time (107 %sec) results of degree elevation.
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Fig. 3. Degree elevation results.

In order to evaluate performance, the algorithm for the degree elevation
of p-splines was compared with the interpolation technique, the only means
at our disposal for degree-elevating a p-spline. Table 1 reports a comparison
of execution times required by our algorithm (a) and by the interpolation
technique (b) for 1 and 3 interior knots.

The graphs in Figure 3 provide a clearer understanding of these results.
The graph (a) shows timings in the second column in Table (2a) and (2b);
the graph (b) illustrates the execution times as functions of the number of
internal knots, while the degree kn remains unchanged at value 4 x 3. Note
that the execution times of our algorithm result to be widely winner.

All of the tests considered used p-spline curves with single interior knots.
It is clear that our algorithm performs better when the knot multeplicity is
increased.
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