
Spline curvesin polar and Cartesian coordinatesGiulio Casciola and Serena MorigiDepartment of Mathematics, University of Bologna, ItalyAbstract. A new class of spline curves in polar coordinates has beenpresented in [11] and independently considered in [5] . These are rationaltrigonometric curves in Cartesian coordinates and can be represented asNURBS. An alternative way to derive some useful tools for modellingsplines in polar coordinates is provided. Moreover, an ad hoc algorithmof degree elevation for splines in polar coordinates is presented, and itse�ciency and stability is proved.x1. IntroductionRecently, in [11] a class of spline curves in polar coordinates was proposed.We refer to these curves as p-splines. They have proved to be a generalizationof those considered in [10], which we call p-B�ezier curves.The p-splines were independently considered in [5], and called Focalsplines. These classes of curves are interesting because they allow for mod-elling and interpolation of free forms in polar coordinates with the same fa-cilities as Cartesian splines.In [11], S�anchez-Reyes emphasizes the fact that the p-spline curves arepiecewise rational B�ezier in Cartesian coordinates but they are not rationalsplines. Actually, this last assertion is neither proved nor supported by anyjusti�cation. In this paper we will provide the algorithm that leads to arepresentation of these curves as NURBS.In addition to knot insertion, knot removal and subdivision, anotherknown result from S�anchez-Reyes' papers is the possibility of making degreeelevation from degree n to degree kn. In [2] and [4] we proposed di�erent al-gorithms for degree elevation of p-B�ezier curves. In this paper we will suggesthow to use these results for p-splines, and we will provide some computationalresults.Proceedings of Chamonix 1996 1A. Le M�ehaut�e, C. Rabut, and L. L. Schumaker (eds.), pp. 1{8.Copyright oc 1997 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reproduction in any form reserved.



2 G.Casciola and S.MorigiThese two results, together with their generalization to surfaces, haveconvinced us of the usefulness of extending our NURBS-based modelling sys-tem by supplying it with a modelling environment for p-spline curves andsurfaces in polar, spherical, and mixed polar-Cartesian coordinates. This al-lows us to manage polar and spherical models as NURBS [3].x2. P-spline curvesA p-spline curve c(t) of degree n is de�ned asc(t) = � �(t)�(t)� =  1PK+ni=0 �iMi;n(t)nt !where �(t) denotes the polar angle and �(t) is the radius de�ned as the re-ciprocal of a trigonometric spline. Without loss of generality, we considert 2 [��;�]. The functionsMi;n(t) are normalized trigonometric B-splines [8]and are de�ned by the following recurrence relationMi;n(t) = sin(t� ti)sin(ti+n � ti)Mi;n�1(t) + sin(ti+n+1 � t)sin(ti+n+1 � ti+1)Mi+1;n�1(t) (1)Mi;0(t) = � 1; if ti � t < ti+1,0; otherwise.on a non-decreasing knot sequence ftigK+2n+1i=0 satisfying the constraint ti+n�ti < �, 8i. Note that each trigonometric spline piece is a trigonometricpolynomial belonging to the spaceTn = � spanf1; cos 2t; sin2t; cos 4t; sin 4t; :::; cosnt; sinntg; n evenspanfcos t; sin t; cos 3t; sin 3t; :::; cosnt; sinntg; n oddThe coe�cients ��1i and the Greville radial directions �i =Pi+nj=i+1 tj de�ne,in polar coordinates, the control points di = ��i; ��1i � of the p-spline c(t). Theknot constraint implies that, in polar coordinates, �i� �i�1 < � holds. Figure1 illustrates an example of a p-spline curve and relative control polygon.P-spline curves enjoy properties of local control, linear precision, convexhull, and variation diminishing inherited from splines in Cartesian coordinates.Moreover, p-splines of degree 2 are conic sections with foci at the origin ofthe coordinates.x3. NURBS representation of p-splinesIt is known [11] that the class of p-spline restricted to a single segment (p-B�ezier curves) represents a subclass of rational B�ezier curves in Cartesiancoordinates. Therefore, we can state that p-splines represent a subclass ofNURBS.
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Fig. 1. p-spline curve of degree n = 3 together with its control poly-gon - ftig = f0; 0; 0; 0; 0:75; 1:5; 2:25; 3; 3; 3; 3g, di = f(0; 0:3); (0:75; 0:3);(2:25; 0:22); (4:5; 0:3); (6:75; 0:22); (8:25; 0:3); (9; 0:3)g .A �rst approach to obtain a NURBS representation of a p-spline curvehas been suggested in [11]. Given a p-spline curve over an arbitrary knotsequence, this can be converted by subdivision into a piecewise curve whoseindividual pieces are p-B�ezier curves, so that every p-B�ezier curve can berepresented in terms of rational B�ezier curves in Cartesian coordinates.In the alternative approach proposed here, a non-piecewise B�ezier repre-sentation of a p-spline c(t) as a NURBS curve q(v) will be provided.Let c(t) be the p-spline represented as a scalar function�( �n ) = 1PK+ni=0 �iMi;n( �n ) (2)where � 2 [�n�; n�]. Then the correspondent curve of (2) in Cartesiancoordinates will be obtained by a simple change of coordinates:�( �n )� cos �sin � � (3)Applying the identities [6]cos � =PK+ni=0 cos �iMi;n( �n) sin � =PK+ni=0 sin �iMi;n( �n)relation (3) assumes the following trigonometric rational form:PK+ni=0 �cos �isin �i�Mi;n( �n )PK+ni=0 �iMi;n( �n) (4)In [7] the important transformation 
n : Pn� > Tn ; (
nf)(x) = cosn x�f(tan x), was provided; more precisely, if p 2 Pn on [tan�; tan�], then 
np 2Tn on [�; �] when ��2 < � < � < �2 . From this assertion it follows that apolynomial B-spline is proportional to a trigonometric B-spline. In particular,the following important relation can easily be proved:Mi;n(t) = cosn ti+nQj=i+1 cos tjNi;n('(t)) (5)



4 G.Casciola and S.Morigi'(t) = tan t � �2 < t < �2where the Ni;n are the polynomial B-spline functions de�ned on the knotsequence f'(ti)g. In virtue of (5), relation (4) becomesq(v) = PK+ni=0 � cos �isin �i � i+nQj=i+1 cos tj!�1Ni;n(v)PK+ni=0  i+nQj=i+1 cos tj!�1 �iNi;n(v)where v = '(t) = 12 �1 + tan ttan�� (6)Thus, we can conclude that a p-spline in Cartesian coordinates has thefollowing NURBS representation:q(v) = PK+ni=0 PiwiNi;n(v)PK+ni=0 wiNi;n(v) v 2 [0; 1] ; (7)with weights wi = �i=( i+nQj=i+1 cos tj) and control points Pi = ��1i �cos �isin �i�; theNi;n(v) functions are de�ned over a knot sequence fvig obtained applyingrelation (6) to the knots ti. Note that the Pi are given by the transformationin Cartesian coordinates of the p-spline control points di.For example, the NURBS representation of the p-spline curve illustratedin Figure 1 has knot vector fvig = f0; 0; 0; 0; 0:4�6; 0:5; 0:5�3; 1; 1; 1; 1g, andweights fwig = f1; 0:09668; 0:00933; 0:00066; 0:00933; 0:09668; 1g.If 2� � � , in order to satisfy the applicability conditions of relation (5),it will be necessary to subdivide the p-spline curve into piecewise p-splinesde�ned on intervals whose size is less than �.x4. Tools for p-splinesOf the many tools that play an important role in a spline-based modelling sys-tem, we report knot insertion, subdivision, knot removal, and degree elevation.Algorithms for knot insertion, subdivision, and knot removal for p-splines canbe obtained from analogous algorithms for trigonometric splines, as can beeasily deduced from the de�nition of c(t).Alternative algorithms can be obtained using relation (5) and the anal-ogous algorithms for polynomial splines. For example, the knot insertionalgorithm for p-splines may be schematized through the following steps:Let t` < t̂ � t`+1 be the knot to be inserted.1. Compute ci = �i=( i+nQj=i+1 cos tj) i = `� n; � � � ; ` ;



Spline curves.. 52. Insert knot '(t̂) by means of the polynomial spline algorithm on ci coef-�cients to achieve ĉi over the fv̂ig knot partition;3. Compute �̂i = ( i+nQj=i+1 cos t̂j)=ĉi i = `� n; � � � ; `+ 1.In fact, applying (5) to c(t), we have1PK+ni=0 �iMi;n(t) = 1cosnt PK+ni=0 ciNi;n(v) (8)executing knot insertion for polynomial splines, and applying relation (5) onceagain, we obtain= 1cosnt PK+n+1i=0 ĉiN̂i;n(v) = 1PK+n+1i=0 �̂iM̂i;n(t)with ci, ĉi and �̂i as indicated in 1.,2. and 3.Analogously, relation (5) can be used in order to evaluate the p-splinec(t), referring the evaluation of a trigonometric spline to a polynomial spline.It should be noted that these tips can improve the e�ciency of a p-spline-basedmodelling system.
(a) (b)(c) (d)Fig. 2. Degree elevation steps; (a) original cubic p-spline curve , (b)subdivision in 3 p-B�ezier curves, (c) degree elevation of each p-B�eziercurve , (d) degree-elevated curve after the knot removal step.Unlike the above-considered tools, the algorithm for the degree elevationof a p-spline is not achievable either from the degree elevation algorithm fora trigonometric polynomial considered in [1], or from the degree elevationalgorithm for polynomial splines. In fact, the application of such algorithmsdoes not modify the parametric interval size, as results from the de�nition ofc(t). From this the need emerges for an ad hoc algorithm to determine thedegree elevated p-spline curve.



6 G.Casciola and S.Morigi4.1. Degree elevation for p-splinesFrom the expression of a p-spline in terms of the Fourier basis, one can deducethat this subset of curves is closed with respect to degree elevation from degreen to degree kn, for any natural value k [10].Following the idea in [9] for polynomial splines, we propose a degreeelevation technique for p-splines that consists in the following steps:1. decompose the p-spline into piecewise p-B�ezier curves (subdivision);2. apply degree elevation to each p-B�ezier curve;3. remove unnecessary knots until the continuity of the original curve isguaranteed (knot removal).In order to realize step 2., the following result is exploited [4].Degree elevation formula for p-B�ezier curvesLet p(t) = nPj=0 cjAj;n(t); t 2 [��;�] be a generic trigonometric polyno-mial of degree n in the Bernstein trigonometric basis, thenp(s) = knXr=0 crAr;kn(s); s = t=k; s 2 ���k ; �k �where cr = dr�knr � sinn(2�)and dr are the components of the vectord = nXj=0�nj�cjan�j 
 bj :with bj = �kj� sin(2j�k ); aj = bk�j ; j = 0; : : : ; k:The symbol 
 means convolution between two vectors, and bj meansconvolution b
 b
 � � � 
 b, (j � 1) times.Our implementation of the above formula provides a preprocessing phasethat performs the vectors a and b, and the binomial coe�cients.Note that step 2. uses an optimized version of this algorithm, in factit requires only one preprocessing phase for the degree elevation of all the p-B�ezier curves, and this also contributes to the e�ciency of the degree elevationalgorithm for p-splines.In addition, the algorithm results to be numerically stable as the p-B�ezierdegree elevation algorithm is intrinsically stable [4].In Figure 2, the three main algorithm steps are tested on an initial p-spline curve of degree n = 3 with 2 single interior knots, to obtain a p-splineof degree kn = 6 with 2 interior knots, both having a multeplicity of 4.



Spline curves.. 7Computational resultsThe algorithm has been implemented in Pascal (BORLAND 7.0), carried outin double precision (15-16 signi�cant �gures), and tested on a Pentium 90 PC.The test curves considered, without loss of generality, have been cho-sen with � 2 [0; �], the coe�cients ��1i = 1 , i = 0; � � � ; n, and randomlydistributed knots.knn 1 2 3 42 0.024 0.025 0.055 0.1103 0.025 0.055 0.110 0.1894 0.029 0.055 0.134 0.2505 0.030 0.085 0.135 0.305 knn 1 2 3 42 0.109 0.293 0.733 1.4703 0.187 0.733 2.010 4.0674 0.293 1.470 4.216 9.1335 0.473 2.600 7.910 17.53(1a) (1b)knn 1 2 3 42 0.024 0.055 0.135 0.2993 0.025 0.109 0.190 0.3844 0.029 0.110 0.250 0.4955 0.030 0.135 0.329 0.580 knn 1 2 3 42 0.180 0.547 1.313 2.6403 0.326 1.420 3.880 8.1274 0.620 2.900 8.453 18.575 0.993 5.380 16.07 36.50(2a) (2b)Table 1: Execution time (10�2sec) results of degree elevation.(a) (b)Fig. 3. Degree elevation results.In order to evaluate performance, the algorithm for the degree elevationof p-splines was compared with the interpolation technique, the only meansat our disposal for degree-elevating a p-spline. Table 1 reports a comparisonof execution times required by our algorithm (a) and by the interpolationtechnique (b) for 1 and 3 interior knots.The graphs in Figure 3 provide a clearer understanding of these results.The graph (a) shows timings in the second column in Table (2a) and (2b);the graph (b) illustrates the execution times as functions of the number ofinternal knots, while the degree kn remains unchanged at value 4 � 3. Notethat the execution times of our algorithm result to be widely winner.All of the tests considered used p-spline curves with single interior knots.It is clear that our algorithm performs better when the knot multeplicity isincreased.
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