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Abstract. In this paper we show how interpreting rational Bézier curves and
NURBS as inverse circular curves provides a convenient framework for geometric
modelling with curves defined on circular arcs. Focal splines and p-splines are
included as special cases.

§1. Introduction

Much of CAGD is based on curves and surfaces defined over intervals or planar
domains, respectively. However, there are various applications where it is much
more natural to choose the underlying domain to be some other curve or surface.
The circle and sphere are of particular importance.

There has been a considerable amount of recent work dealing with curves
defined on circular arcs. So-called polar (p-) Bézier curves were first studied in [12]
and later in [2,3]. Analogous classes of splines were studied in [2,13] where they
are called polar (p)-splines, and in [4,9], where they are called focal splines. Related
classes of curves based on trigonometric splines were studied in [7], and certain
dual focal splines were used for the design of cams in [10]. All of these curves were
recognized as special types of rational Bézier curves or NURBS, respectively.

The aim of this paper is to show that more general classes of rational Bézier
curves and NURBS can be used for design over circular domains. These curves
and, as we will see, subclasses of them, provide a better alternative to p-Bézier
and p-spline from the modelling point of view. Moreover, they present a natural
generalization to patches on spherical triangles, that will be considered in a next
paper.

Let P be a single-valued curve defined on the unit circular arc A := {v(t) : ¢t €
I'} with center at the origin, in the form

P(t) := —v(t), (1.1)

where p(t) is a positive scalar function defined over some interval I. Thus P(t) is
the point in IR? which lies at a distance 1/p(t) from the origin in the direction of
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the vector v(t). We will call inverse circular curves (ICC) the curve P(t) of the form

(1.1).

Alternatively, we can consider
t
iy = e (1.2)

where u(t) is a curve in IR? and w(t) is a positive scalar function. Then assuming
that

O(t) := Arg(u(t))

is an increasing function of ¢, we can regard v(¢) as a projection mapping from
U :={u(t) : t € I}, that we will call projection domain, to the circular domain A by

v(t) :== u(t)/||u(t)]|- Thus, if we define p(t) := ”%%))”, then the ICC’s turn out to
be a particular class of the curves defined by (1.2). p-Bézier curves and p-splines
are examples of ICC’s.

We recall that curves on circular arcs of the form vp(v) were studied in [1,7],
where they are called circular Bernstein-Bézier curves. However, as noted there, they
are not particularly useful for modelling since the natural associated control curves
do not do a good job of predicting the shape of the curve. One can also consider
the inverted curves v/p(v), but they do not perform as well as the p-Bézier given
in [12].

The paper is organized as follows. In Sect. 2 we recall some notation and basic
facts about rational Bézier curves. In Sect. 3 we discuss a class of inverse circular
curves defined by a de Casteljau type algorithm, and in Sect. 4 the corresponding
class of circular Bernstein basis functions. The special case of p-Bézier is discussed
in Sect. 5. Modelling and computational aspects of special ICC subclasses are shown
in Sect. 6, and in Sect. 7 we discuss how ICC’s can be smoothly joined together.
Sect. 8 is devoted to a generalization of the results to NURBS.

§2. Rational Bézier Curves

In this section we recall some well-known facts about rational Bézier curves, see
[5,6,11]. Let

BI(t) := <"> (1—t)" i,  0<i<n,

]

be the classical Bernstein polynomials defined on [0, 1]. Then a rational Bézier curve
is a curve of the form

1=0

s(t) == == . telo,1],

S B ()
1=0
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where {b;}7, is a set of points in R? (called the control points), and {w;}7_, is a
set of positive real numbers (called the weights).

A point on the curve s can be computed from the following de Casteljau algo-
rithm, [6,11]:

Algorithm 2.1. Let wgo) :— w,; and uz(.o) :=w;b; fori =0,...,n, and let t € [0, 1].
For k=1 to n
For 1 =0 to n—k
ugk) = (1 — t)ul (E=1) 4 10, (k 1)
wi(k) = (1-— )wz(k D twﬁll)

Set u(t) := US”), w(t) == w(()n) and s(t) := 48

It is well-known that rational Bézier curves have a convenient control structure
defined by the polygon IP which is formed by connecting the points b;, b; 1 with
straight lines for ¢ = 0,...,n — 1. The curve s interpolates at its endpoints and
assuming that the weights are positive, it lies in the convex hull of IP.

63. A Class of Inverse Circular Curves

Let U := {ug, ..., u,} be aset of points in IR?. Considering u; as a vector, let ; :=
Arg(u;) be the angle between u; and the z-axis measured in the counterclockwise
direction. Suppose that 6y < --- < 0,,, and let ¢y, ..., c, be positive real numbers.
We define an associated ICC S on the unit circular arc A := (y, 0,,) as follows:

Algorithm 3.1. Let uE )= = u,; and c( )= =c¢; fori=0,...,n, and let t € [0,1].
For k=1 to n
For i1 =0 to n—k
Uz(k) = (1 — t)u (E=1) | 4y (k 1)

(k—1)
(k) ._ ||U l (k—1) || z+1 || (k—1)
K GG

set u(t) :=ug”, p(t) =i, v(t) = iy

Then the corresponding inverse circular curve is given by S(t) := ;’((tt))_

It is clear that this algorithm produces the projection domain U

= ZuiBf(t). (3.1)

As 0(t) := Arg(u(t)) is monotone increasing for ¢ € [0, 1], then we can also regard S
as a single-valued curve defined on the circular arc A by making use of the one-one

correspondence v(t) = % between points on U and points on A. Comparing
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Algorithms 2.1 and 3.1, we see that the curve S is just a rational Bézier curve
corresponding to setting w; = ¢;||u;]| in Algorithm 2.1. As such, it inherits all of
the usual properties of rational Bézier curves. Here we briefly discuss a few of these
properties.

Using the identification u; = w;b;, it is clear that the control polygon TP asso-
ciated with the curve S is obtained by connecting the control points

v-
Ci:=—, 1=0,...,n,
Ci
where v; := wu;/||u;|| with straight lines. Trivially, the curve S lies in the convex

hull of IP, and interpolates at its endpoints. Using the connection between the
inverse circular curve S produced by Algorithm 3.1 and the rational Bézier curve
s produced by Algorithm 2.1, we immediately get algorithms for degree-raising and
subdividing ICC curves.

In the following we will show how Algorithm 3.1 can be seen as a de Casteljau
like scheme. Given an arc A := (fy,0,) on the unit circle with endpoints v, vy,
then it is easy to see [1] that any v on A can be uniquely written in the form
v = Bivg + Bov, with

_ sin(f, —0) sin(f — )
b= sin(6,, — 0g)’ sin(6,, — 0g)’

where 6; := Arg(v;) for i = 0,n. The numbers 3, 32 are called the circular barycen-
tric coordinates of v relative to A and, in general, 81 + B2 > 1.
The second statement in the inner loop, in Algorithm 3.1, can be rewritten as

(k) B(k) (k— 1)+5(k) (k—1)

Ba =

2,1 z 2,2 z+1 )
where o) )
k k ||Uz |
/51'(,1) = (1 - )wa Bz-(,z) =1 “ ”Z;)” . (3.2)
We note that
(k) (k—1) (k 1)

k 7 (t) i U; k k— k k
o () = O] (k)()n—a—t)“ o +<’1’|| BV @) +8E v (@) (3.3)
U,i’ -4

fori =0,...,n—kand k =1,...,n, where v( ) .= v;. The relation (3.3) asserts that
(k)

BZ-(, and B( .o are the circular barycentrlc coordinates of the unit vector v;” in terms

of the circular arc (vz( -, Z(f_l 1)> More explicitly, if we define 9( ) = Arg(v; (k ))
g S0y~ 00) w _ sne® -0t
sin( 7D — o=y’ M sin(0® 7Y — oY) ’

where 6(t) := Gz(k_l) +t(9§_’:1) - ng_l)). Thus Algorithm 3.1 uses different circular
baricentric coordinates for i-th arc at each step k. This allows us, as in the classical

(k) (k)

de Casteljau scheme, to obtain at each step k, values c;"’, associated to vectors v;

on the unit circular domain A.



§4. A Class of circular Bernstein basis functions

To better understand the nature of S, suppose we run Algorithm 3.1 with all
coefficients equal to zero except for ¢; = 1. Let BP(t) be the corresponding value

of cgn). Then
= B (t)
i=0

where the B, ..., B, will be called circular Bernstein basis functions.
The next result shows that there is a close connection between the Bf*(t) and
the classical Bernstein polynomials.

Theorem 4.1. For each 0 <1 < n,

B (1) =

i

ol

Bi'(t), (4.1)
where u(t) is given by (3.1).
Proof: From definitions (1.2) and (1.1), and from the fact that p(t) =

S oG ”L'ZE;;'”B"( ) the result follows. O

The next results shows that the linear precision property, on the unit circle,
holds.

Theorem 4.2. Given a set of points v; on a circular arc, then a point v(t) =
(cosf(t),sinf(t))T can be represented as

=S wBl()
=0

Proof: The result follows from Theorem 4.1 or from (3.3). O

We conclude this section with one example of basis functions B}’ for a simple
case of n = 2, by using relation (4.1) or by the explicit form given in Appendix.
Notice that these basis are, in general, irrational functions.

Example 4.3. Let A be the arc associated with a projection domain U defined
by uo := (1,0)T uy := (1/2,1/2)T and uy := (0,1)T, and let n = 2. Then the
associated basis functions are
1—1t)2
B2 (u(t) = g2 =
2 (W@ , spae _ _ (L=1tV2
Bl(v(t)) 5025 +B1 02 — (2t2_2t+1)1/27
t2

(282 — 2t + 1)1/2
Fig. 1 shows the basis functions B? (solid lines) and the classical Bernstein basis
polynomials B? (dashed lines) for i = 0,1, 2.

B3(v(t)) = B3 85y =



Fig. 1. {B;}?_, (solid lines) and {B2}7_, (dashed lines).

§5. Polar (p-)Bézier Curves

In this section we show that p-Bézier curves of degree n are just ICC’s corresponding
to vectors u; which are chosen to be equally spaced on a circular arc A. Suppose
the endpoints of the circular arc are the unit vectors ug and wu, with arguments
0y < 0,,. To describe p-Bézier curves, suppose

h = (0, —0o)/n, (5.1)
and let
. 0,—0(t) . 0(t)—bo
sin(22==-) sin(=2—2)
by(t) = ———2— ba(t) i= ———2—= 5.2
1( ) Sll’l(h) ) 2( ) Sll’l(h) ) ( )
where
Q(t) = 90 + t(gn - 90)
Let
Brt) = — " by (1) by (1) (5.3)
The BY,...,B" are fan-transformed versions of certain basis functions defined in
[1].
Now given coefficients ¢, ..., c,, the corresponding p- Bézier curve [12] is de-
fined by
si="0 " o<,
p(t)
where
p(t) == eBp(t), (5.4)
i=0

and v(t) is the unit vector with Arg(v(t)) = 0(t). Clearly, the p-Bézier curve S can
be evaluated by the following version of the de Casteljau algorithm:
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Algorithm 5.1. Suppose c( Vi=¢; fori=0,....,n. Givente [0,1], let v(t) be
the unit vector with 0(t) = Arg( (t)), and let b1, b2 be as in (5.2).

For k=1 ton
For :=0 to n—k&
cgk) = blcgk_l) -+ bzcg:l)

Set p(t) := cgn) and S(t) = u(t)
We can now identify a p-Bézier curve as an ICC curve.
Theorem 5.2. Suppose uy, . .., U, are unit vectors with

0; = Arg(u;) = 6y + ih, i=0,...,n,

where h is given in (5.1). Then the p-Bézier curve S produced by Algorithm 5.1 is
the same curve as the ICC' S produced by Algorithm 3.1.

Proof: By (3.3), it is easy to see by induction that
o —0®) —nh,  i=0,...n—k—Lk=1,...n

which implies by (3.4) that

B8 = by, B%) = ba(0),

foralli=0,...,n—k and all k = 1,...,n. It follows that the value produced by
Algorithm 3.1 is the same produces by Algorithm 5.1 as asserted. O

As functions of 0, it follows from (5.2) and (5.3) that the B%,..., B® and thus
also the function p defined in (5.4) is a trigonometric polynomial in the space (see

[21,[81)

span {1, cos(22),sin(22),.. ., cos(f),sin(9)}, n even,

T =

S

span {cos(2),sin(£), cos(3¢),sin(22), ..., cos(d),sin(f)}, n odd.

n n

66. Modelling with ICC

In this section we describe the use of ICC for a circular modelling environment com-
paring flexibility and performance with the p-Bézier approach.

Modelling in a circular modelling environment means to design a single-valued
curve that approximates a control polygon defined by n + 1 control points (v;, 01 ),

where v; lie on a given circular arc A, and - represents the distance from the origin
in the direction v;. An interactive modelhng tool has to guarantee the single-valued
request and provide good shape approximation.
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For example, the p-Bézier framework is a good circular modelling environment,
as described in [12], where, given a circular domain A and the number n+1 of control
points, the directions v; are fixed to be equally spaced on A and ¢; are free scalar
parameters for modelling. As suggested in [12], the most efficient way to evaluate
these curves turns out to be by evaluating their Bézier rational representation, that
requires given a domain point ¥ € A, the evaluation of £ by means of an explicit
and expensive trigonometric relation [12].

Our ICC proposal is a circular modelling environment extremely flexible be-
cause we can exploit the modelling parameters and tools inherited from rational
Bézier curves, and we are not limited to equally spaced v; on A. However, the
evaluation of a generic ICC is cumbersome due to the fact that given a domain
point ¥ € A, we need to determine the corresponding parameter ¢ by intersection.

In any case the evaluation of an ICC can be performed by its rational repre-
sentation and not using algorithm 3.1, that we have proposed only as a theoretical
tool.

In this section we present two ICC subclasses that lead to a simplification in
the ICC evaluation while keeping good modelling properties in order to get a class
of curves more powerful and efficient than p-Bézier curves. These subclasses are
characterized by special projection domains U which automatically guarantee that
Arg(u(t)) is an increasing function of ¢, thus obtaining single-valued curves.

6.1. ICC on linear projection domain

Suppose we choose two arbitrary vectors ug, u, € IR? with Arg(ug) < Arg(uy,), then
we define the u; equally spaced in the straight segment defined by wug, u,,, such that
U is the linear projection domain defined as u(t) = (1 —t)ug+tu, = Y ;o ui B (t).

A more advantageous way, with respect to Algorithm 2.1 or 3.1, to evalu-

ate an ICC derives directly from its representation in the form S(t) = % =

u(t)/ > g llug|le; B (t). In fact, given o = v(£) on A, the corresponding value S(¢)
can be evaluated following the steps:

Compute ¢ as intersection between u(t) and {av : a > 0};
Compute u(t);

Apply de Casteljau algorithm to compute the scalar function w(t);
Set S(t) := u(t)

ul||ed *

In this case (|)|f ?i!lgar projection domain U, step 1 trivially reduces to an explicit
and simple formula, while step 2 is given by u(t) = ug + t(un — ug). Thus the ICC
evaluation algorithm has a total cost of 3n(n+1)+6 multiplications/divisions, and
in(n+ 1) + 6 additions/subtractions.

This choice of projection domain is particularly easy to work with in a circular
modelling environment. Fig. 2 shows several curves corresponding to linear pro-
jection domains. Note that in all figures presented the ICC curves are drawn with
solid lines while their control polygons are drawn with dashed lines and the control
points are marked with open disks. The wu; are marked with black dots and the
circular domain, together with black arrows denoting the v;, is also illustrated.

- R =
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Fig. 2. ICC with linear projection domain U, n = 3; (left) the pulling effect
of a control point; (right) the change of ||ug|| with the values {1.0,0.75,0.5}.

Fig. 2 on the left shows the effect of adjusting the values of the ¢; while holding
the v; fixed. This moves the control points and pulls the curve along with them.
Note that, in this case, only the modulus of each control point can be modified, while
in a general ICC, also the control point positions can be changed, but constrained
to keep the increasing angular order.

Fig. 2 on the right shows the effect of changing the module of the vector wug
while holding the ¢; fixed. This leads to alter the position of the v; and consequently
of the control points.

6.2. ICC on quadratic projection domain

The case where u(t) is a quadratic projection domain is important because it allows
the construction of conic sections. To obtain a quadratic projection domain U, we
can begin with any three vectors wg, t1, g, with Arg(ug) < Arg(uy) < Arg(us),
and create the curve

u(t) == ZﬂiBE(t). (6.1)

In order to define u(t) as in (3.1) we can degree elevate u(¢) in (6.1) thus obtaining
the vectors ug, ..., uy,.

Concerning the evaluation of this ICC subclass we refer to the procedure given
in subsection 6.1 where steps 1 and 2 are suitable modified by using (6.1). This
algorithm has a total cost of $n(n+1)+ 11 multiplications/divisions, a square root
and $n(n + 1) 4+ 12 additions/subtractions.

Figure 3 shows the representation of a quarter circle with center at the origin
and radius 2 as an ICC with a quadratic projection domain U. Here ug = (1,0)7,

up = (1/v/2,1/v/2)7, and uy = (0,1)7.



Fig. 4. S and S joining with C! (left) and G (right) parametric continuity.

The two proposed subclasses result more computational efficient than the p-
Bézier proposal and more flexible for a circular modelling environment. These
advantages will be more significant in the circular spline setting (see section 8).

§7. Joining ICC’s Smoothly

In this section we briefly explore the question of how to join two inverse circu-
lar curves smoothly. Suppose S and S are the inverse circular curves defined for
t € [0,A] and t € [0,A] corresponding to {u;}q, {ci}iy and {;}1 g, {Gi} 0o,
respectively. We denote the corresponding control points of S and S by C; == v; /ci
and C; := 0; /¢, for i =0,...,n.

Clearly, S and S join with C° continuity at Cy if and only if

Co=C,

that is
co=cn and ||ugl] = af|lunl, (7.1)
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Fig. 5. S and S joining with C! (left) and G (right) rational continuity.

where « is a free non zero parameter (see Fig.h, where o = 0.5 on the left, and
a =1 on the right) Moreover, by the well-known results on rational Bézier curves
[5,6], S and S join with G continuity at Cj (i.e., their tangents at Co point have
the same direction) if and only if C,_1,C,,, C’O, C’1 lie on a common line. This is
simply given modifying ¢; in the following manner:

sin(@n — Gn_l)

&= —— _ (7.2)
Sin(91 — Qn_l)cn + sin(ﬁn — 91)Cn_1

where ; = Arg(w;) (0; = Arg(u;)).
They join with C! continuity at Cy (i.e., they have the same tangent at Cj) if
and only if in addition to (7.1), we have

cillug]] 1

Cn—1|tUn—_1]|
C,—Ch_1)——. 7.3
Sollioll = A D= ] (7:3)

A(Cl Co)

In practice, mantaining the given vy direction, we compute ¢; by (7.2), thus obtain-
ing a modified C; and we choose ||uy|| by relation (7.3) so that the two tangents at
6’0 have also the same modulo.

The above formula comprises both the sufficient continuity conditions on the
components of the rational curve represented in homogeneous coordinates (para-
metric continuity), and the necessary and sufficient conditions on the components
of the rational curve itself that lead to the so-called rational continuity, see [5,6].

Fig. 4 and 5 show examples of two inverse circular curves S and S with n = 3
joined together with C! (left) and G! (right) continuity in the linear projection
domain case. In this case the C! parametric continuity requires that U and U
are aligned (see Fig. 4), while the C! rational continuity allows linear projection
domains which are not aligned with each other (see Fig. 5). As a consequence of
this, using a sequence of such projection domains, we can define inverse circular
curves on circular arcs of arbitrary length, where each segment of the curve is
defined over a circular arc of length less than .
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§8. A class of ICC spline

We first recall some well-known facts about NURBS curves, see [5,6,11]. Given pos-
itive integers m and n, suppose top = =ty <tma1 < - <tpy1 = =tntm+1
where ¢;4m+1 > t; for all &. Let NJ*,..., N]” be the corresponding normalized
B-splines of degree m (order m + 1, see [14]). Then a non-uniform rational B-spline
(NURBS) is a curve of the form

> wib N ()
s(t) == = =0 ; t € [tmstnt1l,

i wi N{™ (t)
=0

where {b;}7, is a set of points in R? (called the control points), and {w;}7_, is a
set of positive real numbers (called the weights). If we connect b; and b;; with
a straight line for each ¢ = 0,...,n — 1, the resulting curve is called the control
polygon.

It is well known that s(¢,,) = bo, $(tn+1) = bn, and that the curve s is tangent
to the control polygon at the points by and b,,. It is also known that if the weights
are all nonnegative, then the curve s lies in the convex hull of the control polygon.
The following algorithm [6,11] can be used to compute NURBS:

Algorithm 8.1. Let wi(o) = w; and ugo) = w;b; for i = 0,...,n, and let t €
[te,tey1) for some m < £ < n.
For k=1 tom
For i=/—m to /—k
NI Gl 27D
' (Citm+1 — titr)
uz(-k) = (1- agk))ugk_l) + Py kD)

2 1+1
0l = (1= o) 4 ol

Set wu(t) := ué@n, w(t) == wi™  and s(t) == u(t)

l—m?

To get an associated class of inverse circular curves, we can follow the con-

struction of Sect. 3. Suppose U := {ug, ..., u,} is a set of vectors in R?, and let
0; := Arg(u;) be the angle between wu; and the z-axis measured in the counter-
clockwise direction. Suppose that 6y < --- < 6,,, and let co, ..., ¢, be positive real
numbers.

We define an associated ICC spline S by the following algorithm:

Algorithm 8.2. Let uEO) := u; and C,EO) :=c¢; fori=0,...,n, and let t € [ty,tp11)
for some m < ¢ < n.

For k=1 to m

12



For i=/¢—m to ¢ —k
NI Gl 27D
t (titmt1 — titk)

= (1l i

(k—1)
(k) ._ o®) s l o(E=1) (k)“uz-l-l || k=1
K M I T OIS

Set u(t) = uf”),, p(t) = "), () = iy
Then the associated ICC' is given by S(t) := o(t)

It is clear that this algorithm produces the projection domain U

= uN(
1=0

Comparing Algorithms 8.1 and 8.2, we see that the curve S is just a NURBS curve
s corresponding to setting w; = ¢;||u;|| in Algorithm 8.1.

For each 0 < i < n, let /™ be the function which is defined by Algorithm 8.2
using the coefficient vector with all zero components except for ¢; = 1. Then

= i N7 (t)
=0

Following the proof of 4.1, it is not hard to see that

iy il
N (E) = N ). (5.1)

Since these ICC’s are just special cases of NURBS useful in a circular environ-
ment, it is clear that they inherit all the advantages of NURBS. In particular, we
can define a control polygon IP by connecting the control points C; := v;/c¢; and
Ci+1 = vi+1/¢i+1 with straight lines for i = 0,...,n—1. Then the curve S lies in the
convex hull of IP, and interpolates it at the endpoints. Moreover, the well-known
algorithms for degree raising, knot insertion, and subdivision can be applied.

As 0(t) := Arg(u(t)) is monotone increasing for ¢ € [0,1], then we can also
regard S as single-valued curve defined on the circular arc A := (f, 0,,) by making
use of the one-one correspondence v(t) = T Et;II between points on U and points
on A.

As in the rational Bézier curve case, in practice we propose to use the special
ICC spline subclasses with linear or quadratic projection domain U.

Fig. 6 shows two examples of ICC splines. In both cases m = 3 and n = 11, and
the B-splines are defined using the knot sequence {ti}ilio withtg =t1 =ta =t3 =0

13



Fig. 6. Two ICC splines of degree 2.

and 0 < t4 < - < t11 < 1 and t19 = t13 = t14 = t15 = 1. In the ﬁgure on the
left U is a linear projection domain, while on the right it is a quadratic projection
domain.

Analogously to what has been asserted by Theorem 5.2, we can establish the
following connection between p-splines and the inverse circular curves described by
Algorithm 8.2.

Theorem 8.3. An ICC spline S(t) = %, where p(t) = 7" c;N7™(t), with knots
A7) where p(r) = Y21, c;iN™(7), and knots {r;},

{t;} is a p-spline curve S(1) =

p(7)’
if t = tan(r), the projection domain U for the ICC is defined by vectors u; with
Uj _ Z+m —
||us|| = ﬁ, and v; = i = = (cos&;,sing&;), where & = 710 | tan™ 1 (t5).
Proof: The proof is simply reduced to verify that
N (1) = N[ (). (8.2)
Using the following relation given in [3]
\ /T COS( )m m
NMr) = — o NI(1)
HJ L1 COST;
where 7 € [—7/2,7/2] and ¢ € [0, 1], and relation (8.1), we have
m cos(m)™  |u())ll \ rm
Ni™(7) = =m0 Ni™ (). (8.3)

[[;Zi41 cosT; i

Now,
L COSTj _

()l =11 wlN™ (¢ I—IIZ #N ()l
1=0
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and applying the linear precision property v = > v;N/™(7)(see[3]) and relation
given for [|u;||,
1

cos(T)m’

[l =

Replacing (8.4) and relation given for ||u;|| in (8.3) we have (8.2). O

(8.4)

The advantage that we have got computationally in the ICC case with respect
to the p-Bézier is even more magnified in the ICC-spline case. In fact, by a compu-
tational point of view, the ICC spline with linear or quadratic projection domain
can be evaluated using procedure suggested in subsection 6.1, where de Casteljau
scheme in step 3. is replaced by the de Boor scheme, while p-splines require an
expensive conversion to NURBS (see [2]) and the NURBS curve evaluation itself
that is certainly more expensive.

69. Appendix

An explicit representation of the basis function B}* can be derived from the algo-
rithm 3.1. Each of the basis functions B* consists of a sum of products of the
form

with 0 < i < i and my, € {1,2}. The number of such terms in the sum is equal to
(0)

the number of paths in the de Casteljau diagram leading from the coefficient c;

to the value Bl'(t) = . To make this more precise, let Z; be the set of distinct
n-vectors obtained by permuting the components of (1,...,1,2,...,2), where 1
appears n — ¢ times and 2 appears ¢ times.

Theorem 9.1. For all) < <n,

gry= > I8P (9.1)

(ml,...,mn)EIi k=1

where .
=i+ Y (1—my).
v=1
Proof: Each vector (mg,...,m,) describes a distinct path from C,EO) to c(()"). The

value my = 1 corresponds to moving down and to the right in the de Casteljau
array. This corresponds to multiplying by a Bl(f)l factor. my = 2 corresponds to

moving down and to the left, and corresponds to multiplying by a Bi(f,)z factor. O
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