
Inverse Cir
ular CurvesGiulio Cas
iola 1), Serena Morigi 1)Abstra
t. In this paper we show how interpreting rational B�ezier 
urves andNURBS as inverse 
ir
ular 
urves provides a 
onvenient framework for geometri
modelling with 
urves de�ned on 
ir
ular ar
s. Fo
al splines and p-splines arein
luded as spe
ial 
ases. x1. Introdu
tionMu
h of CAGD is based on 
urves and surfa
es de�ned over intervals or planardomains, respe
tively. However, there are various appli
ations where it is mu
hmore natural to 
hoose the underlying domain to be some other 
urve or surfa
e.The 
ir
le and sphere are of parti
ular importan
e.There has been a 
onsiderable amount of re
ent work dealing with 
urvesde�ned on 
ir
ular ar
s. So-
alled polar (p-) B�ezier 
urves were �rst studied in [12℄and later in [2,3℄. Analogous 
lasses of splines were studied in [2,13℄ where theyare 
alled polar (p)-splines, and in [4,9℄, where they are 
alled fo
al splines. Related
lasses of 
urves based on trigonometri
 splines were studied in [7℄, and 
ertaindual fo
al splines were used for the design of 
ams in [10℄. All of these 
urves werere
ognized as spe
ial types of rational B�ezier 
urves or NURBS, respe
tively.The aim of this paper is to show that more general 
lasses of rational B�ezier
urves and NURBS 
an be used for design over 
ir
ular domains. These 
urvesand, as we will see, sub
lasses of them, provide a better alternative to p-B�ezierand p-spline from the modelling point of view. Moreover, they present a naturalgeneralization to pat
hes on spheri
al triangles, that will be 
onsidered in a nextpaper.Let P be a single-valued 
urve de�ned on the unit 
ir
ular ar
 A := fv(t) : t 2Ig with 
enter at the origin, in the formP (t) := 1p(t)v(t); (1:1)where p(t) is a positive s
alar fun
tion de�ned over some interval I. Thus P (t) isthe point in IR2 whi
h lies at a distan
e 1=p(t) from the origin in the dire
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the ve
tor v(t). We will 
all inverse 
ir
ular 
urves (ICC) the 
urve P (t) of the form(1.1).Alternatively, we 
an 
onsiderP (t) := u(t)w(t) ; t 2 I; (1:2)where u(t) is a 
urve in IR2 and w(t) is a positive s
alar fun
tion. Then assumingthat �(t) := Arg(u(t))is an in
reasing fun
tion of t, we 
an regard v(t) as a proje
tion mapping fromU := fu(t) : t 2 Ig, that we will 
all proje
tion domain, to the 
ir
ular domain A byv(t) := u(t)=ku(t)k. Thus, if we de�ne p(t) := w(t)ku(t)k , then the ICC's turn out tobe a parti
ular 
lass of the 
urves de�ned by (1.2). p-B�ezier 
urves and p-splinesare examples of ICC's.We re
all that 
urves on 
ir
ular ar
s of the form vp(v) were studied in [1,7℄,where they are 
alled 
ir
ular Bernstein-B�ezier 
urves. However, as noted there, theyare not parti
ularly useful for modelling sin
e the natural asso
iated 
ontrol 
urvesdo not do a good job of predi
ting the shape of the 
urve. One 
an also 
onsiderthe inverted 
urves v=p(v), but they do not perform as well as the p-B�ezier givenin [12℄.The paper is organized as follows. In Se
t. 2 we re
all some notation and basi
fa
ts about rational B�ezier 
urves. In Se
t. 3 we dis
uss a 
lass of inverse 
ir
ular
urves de�ned by a deCasteljau type algorithm, and in Se
t. 4 the 
orresponding
lass of 
ir
ular Bernstein basis fun
tions. The spe
ial 
ase of p-B�ezier is dis
ussedin Se
t. 5. Modelling and 
omputational aspe
ts of spe
ial ICC sub
lasses are shownin Se
t. 6, and in Se
t. 7 we dis
uss how ICC's 
an be smoothly joined together.Se
t. 8 is devoted to a generalization of the results to NURBS.x2. Rational B�ezier CurvesIn this se
tion we re
all some well-known fa
ts about rational B�ezier 
urves, see[5,6,11℄. Let Bni (t) := �ni�(1� t)n�iti; 0 � i � n;be the 
lassi
al Bernstein polynomials de�ned on [0; 1℄. Then a rational B�ezier 
urveis a 
urve of the forms(t) := u(t)w(t) = nXi=0 wibiBni (t)nXi=0 wiBni (t) ; t 2 [0; 1℄;2



where fbigni=0 is a set of points in IR2 (
alled the 
ontrol points), and fwigni=0 is aset of positive real numbers (
alled the weights).A point on the 
urve s 
an be 
omputed from the following de Casteljau algo-rithm, [6,11℄:Algorithm 2.1. Let w(0)i := wi and u(0)i := wibi for i = 0; : : : ; n, and let t 2 [0; 1℄.For k = 1 to nFor i = 0 to n� ku(k)i := (1� t)u(k�1)i + tu(k�1)i+1w(k)i := (1� t)w(k�1)i + tw(k�1)i+1Set u(t) := u(n)0 , w(t) := w(n)0 and s(t) := u(t)w(t)It is well-known that rational B�ezier 
urves have a 
onvenient 
ontrol stru
turede�ned by the polygon IP whi
h is formed by 
onne
ting the points bi; bi+1 withstraight lines for i = 0; : : : ; n � 1. The 
urve s interpolates at its endpoints andassuming that the weights are positive, it lies in the 
onvex hull of IP.x3. A Class of Inverse Cir
ular CurvesLet U := fu0; : : : ; ung be a set of points in IR2. Considering ui as a ve
tor, let �i :=Arg(ui) be the angle between ui and the x-axis measured in the 
ounter
lo
kwisedire
tion. Suppose that �0 < � � � < �n, and let 
0; : : : ; 
n be positive real numbers.We de�ne an asso
iated ICC S on the unit 
ir
ular ar
 A := h�0; �ni as follows:Algorithm 3.1. Let u(0)i := ui and 
(0)i := 
i for i = 0; : : : ; n, and let t 2 [0; 1℄.For k = 1 to nFor i = 0 to n� ku(k)i := (1� t)u(k�1)i + tu(k�1)i+1
(k)i := (1� t)ku(k�1)i kku(k)i k 
(k�1)i + tku(k�1)i+1 kku(k)i k 
(k�1)i+1Set u(t) := u(n)0 , p(t) := 
(n)0 , v(t) := u(t)ku(t)k.Then the 
orresponding inverse 
ir
ular 
urve is given by S(t) := v(t)p(t):It is 
lear that this algorithm produ
es the proje
tion domain Uu(t) = nXi=0 uiBni (t): (3:1)As �(t) := Arg(u(t)) is monotone in
reasing for t 2 [0; 1℄, then we 
an also regard Sas a single-valued 
urve de�ned on the 
ir
ular ar
 A by making use of the one{one
orresponden
e v(t) = u(t)ku(t)k between points on U and points on A. Comparing3



Algorithms 2.1 and 3.1, we see that the 
urve S is just a rational B�ezier 
urve
orresponding to setting wi = 
ikuik in Algorithm 2.1. As su
h, it inherits all ofthe usual properties of rational B�ezier 
urves. Here we brie
y dis
uss a few of theseproperties.Using the identi�
ation ui = wibi, it is 
lear that the 
ontrol polygon IP asso-
iated with the 
urve S is obtained by 
onne
ting the 
ontrol pointsCi := vi
i ; i = 0; : : : ; n;where vi := ui=kuik with straight lines. Trivially, the 
urve S lies in the 
onvexhull of IP, and interpolates at its endpoints. Using the 
onne
tion between theinverse 
ir
ular 
urve S produ
ed by Algorithm 3.1 and the rational B�ezier 
urves produ
ed by Algorithm 2.1, we immediately get algorithms for degree-raising andsubdividing ICC 
urves.In the following we will show how Algorithm 3.1 
an be seen as a de Casteljaulike s
heme. Given an ar
 A := h�0; �ni on the unit 
ir
le with endpoints v0; vn,then it is easy to see [1℄ that any v on A 
an be uniquely written in the formv = �1v0 + �2vn with�1 = sin(�n � �)sin(�n � �0) ; �2 = sin(� � �0)sin(�n � �0) ;where �i := Arg(vi) for i = 0; n. The numbers �1; �2 are 
alled the 
ir
ular bary
en-tri
 
oordinates of v relative to A and, in general, �1 + �2 > 1.The se
ond statement in the inner loop, in Algorithm 3.1, 
an be rewritten as
(k)i := �(k)i;1 
(k�1)i + �(k)i;2 
(k�1)i+1 ;where �(k)i;1 := (1� t)ku(k�1)i kku(k)i k ; �(k)i;2 := tku(k�1)i+1 kku(k)i k : (3:2)We note thatv(k)i (t) := u(k)i (t)ku(k)i (t)k = (1�t)u(k�1)iku(k)i k+tu(k�1)i+1ku(k)i k = �(k)i;1 v(k�1)i (t)+�(k)i;2 v(k�1)i+1 (t) (3:3)for i = 0; : : : ; n�k and k = 1; : : : ; n, where v(0)i := vi. The relation (3.3) asserts that�(k)i;1 and �(k)i;2 are the 
ir
ular bary
entri
 
oordinates of the unit ve
tor v(k)i in termsof the 
ir
ular ar
 hv(k�1)i ; v(k�1)i+1 i. More expli
itly, if we de�ne �(k)i := Arg(v(k)i ),�(k)i;1 = sin(�(k�1)i+1 � �(t))sin(�(k�1)i+1 � �(k�1)i ) ; �(k)i;2 = sin(�(t)� �(k�1)i )sin(�(k�1)i+1 � �(k�1)i ) : (3:4);where �(t) := �(k�1)i + t(�(k�1)i+1 � �(k�1)i ): Thus Algorithm 3.1 uses di�erent 
ir
ularbari
entri
 
oordinates for i-th ar
 at ea
h step k. This allows us, as in the 
lassi
alde Casteljau s
heme, to obtain at ea
h step k, values 
(k)i , asso
iated to ve
tors v(k)ion the unit 
ir
ular domain A. 4



x4. A Class of 
ir
ular Bernstein basis fun
tionsTo better understand the nature of S, suppose we run Algorithm 3.1 with all
oeÆ
ients equal to zero ex
ept for 
i = 1. Let Bni (t) be the 
orresponding valueof 
(n)0 . Then p(t) = nXi=0 
iBni (t);where the Bn0 ; : : : ;Bnn will be 
alled 
ir
ular Bernstein basis fun
tions.The next result shows that there is a 
lose 
onne
tion between the Bni (t) andthe 
lassi
al Bernstein polynomials.Theorem 4.1. For ea
h 0 � i � n,Bni (t) = kuikku(t)kBni (t); (4:1)where u(t) is given by (3.1).Proof: From de�nitions (1.2) and (1.1), and from the fa
t that p(t) = w(t)ku(t)k =Pni=0 
i kuikku(t)kBni (t) the result follows.The next results shows that the linear pre
ision property, on the unit 
ir
le,holds.Theorem 4.2. Given a set of points vi on a 
ir
ular ar
, then a point v(t) =(
os �(t); sin �(t))T 
an be represented asv(t) = nXi=0 viBni (t):Proof: The result follows from Theorem 4.1 or from (3.3).We 
on
lude this se
tion with one example of basis fun
tions Bni for a simple
ase of n = 2, by using relation (4.1) or by the expli
it form given in Appendix.Noti
e that these basis are, in general, irrational fun
tions.Example 4.3. Let A be the ar
 asso
iated with a proje
tion domain U de�nedby u0 := (1; 0)T ,u1 := (1=2; 1=2)T and u2 := (0; 1)T , and let n = 2. Then theasso
iated basis fun
tions areB20(v(t)) = �(1)01 �(2)01 = (1� t)2(2t2 � 2t+ 1)1=2B21(v(t)) = �(1)02 �(2)01 + �(1)11 �(2)02 = (1� t)tp2(2t2 � 2t+ 1)1=2 ;B22(v(t)) = �(1)12 �(2)02 = t2(2t2 � 2t+ 1)1=2Fig. 1 shows the basis fun
tions B2i (solid lines) and the 
lassi
al Bernstein basispolynomials B2i (dashed lines) for i = 0; 1; 2.5



Fig. 1. fBig2i=0 (solid lines) and fB2i g2i=0 (dashed lines).x5. Polar (p-)B�ezier CurvesIn this se
tion we show that p-B�ezier 
urves of degree n are just ICC's 
orrespondingto ve
tors ui whi
h are 
hosen to be equally spa
ed on a 
ir
ular ar
 A. Supposethe endpoints of the 
ir
ular ar
 are the unit ve
tors u0 and un with arguments�0 < �n. To des
ribe p-B�ezier 
urves, supposeh = (�n � �0)=n; (5:1)and let b1(t) := sin( �n��(t)n )sin(h) ; b2(t) := sin( �(t)��0n )sin(h) ; (5:2)where �(t) := �0 + t(�n � �0):Let �Bni (t) := n!i! (n� i)! b1(t)n�i b2(t)i: (5:3)The �Bn0 ; : : : ; �Bnn are fan-transformed versions of 
ertain basis fun
tions de�ned in[1℄. Now given 
oeÆ
ients 
0; : : : ; 
n, the 
orresponding p- B�ezier 
urve [12℄ is de-�ned by S(t) = v(t)p(t) ; 0 � t � 1;where p(t) := nXi=0 
i �Bni (t); (5:4)and v(t) is the unit ve
tor with Arg(v(t)) = �(t). Clearly, the p-B�ezier 
urve S 
anbe evaluated by the following version of the deCasteljau algorithm:6



Algorithm 5.1. Suppose 
(0)i := 
i for i = 0; : : : ; n. Given t 2 [0; 1℄, let v(t) bethe unit ve
tor with �(t) = Arg(v(t)), and let b1; b2 be as in (5.2).For k = 1 to nFor i = 0 to n� k
(k)i := b1
(k�1)i + b2
(k�1)i+1Set p(t) := 
(n)0 and S(t) = v(t)p(t)We 
an now identify a p-B�ezier 
urve as an ICC 
urve.Theorem 5.2. Suppose u0; : : : ; un are unit ve
tors with�i := Arg(ui) = �0 + ih; i = 0; : : : ; n;where h is given in (5.1). Then the p-B�ezier 
urve S produ
ed by Algorithm 5.1 isthe same 
urve as the ICC S produ
ed by Algorithm 3.1.Proof: By (3.3), it is easy to see by indu
tion that�(k)i+1 � �(k)i = h; i = 0; : : : ; n� k � 1; k = 1; : : : ; nwhi
h implies by (3.4) that�(k)i;1 = b1(t); �(k)i;2 = b2(t);for all i = 0; : : : ; n� k and all k = 1; : : : ; n. It follows that the value produ
ed byAlgorithm 3.1 is the same produ
es by Algorithm 5.1 as asserted.As fun
tions of �, it follows from (5.2) and (5.3) that the �Bn0 ; : : : ; �Bnn and thusalso the fun
tion p de�ned in (5.4) is a trigonometri
 polynomial in the spa
e (see[2℄,[8℄)Tn := 8<: span f1; 
os(2�n ); sin( 2�n ); : : : ; 
os(�); sin(�)g; n even,span f
os( �n ); sin( �n ); 
os(3�n ); sin(3�n ); : : : ; 
os(�); sin(�)g; n odd.x6. Modelling with ICCIn this se
tion we des
ribe the use of ICC for a 
ir
ular modelling environment 
om-paring 
exibility and performan
e with the p-B�ezier approa
h.Modelling in a 
ir
ular modelling environment means to design a single-valued
urve that approximates a 
ontrol polygon de�ned by n+ 1 
ontrol points (vi; 1
i ),where vi lie on a given 
ir
ular ar
 A, and 1
i represents the distan
e from the originin the dire
tion vi. An intera
tive modelling tool has to guarantee the single-valuedrequest and provide good shape approximation.7



For example, the p-B�ezier framework is a good 
ir
ular modelling environment,as des
ribed in [12℄, where, given a 
ir
ular domainA and the number n+1 of 
ontrolpoints, the dire
tions vi are �xed to be equally spa
ed on A and 
i are free s
alarparameters for modelling. As suggested in [12℄, the most eÆ
ient way to evaluatethese 
urves turns out to be by evaluating their B�ezier rational representation, thatrequires given a domain point �v 2 A, the evaluation of �t by means of an expli
itand expensive trigonometri
 relation [12℄.Our ICC proposal is a 
ir
ular modelling environment extremely 
exible be-
ause we 
an exploit the modelling parameters and tools inherited from rationalB�ezier 
urves, and we are not limited to equally spa
ed vi on A. However, theevaluation of a generi
 ICC is 
umbersome due to the fa
t that given a domainpoint �v 2 A, we need to determine the 
orresponding parameter �t by interse
tion.In any 
ase the evaluation of an ICC 
an be performed by its rational repre-sentation and not using algorithm 3.1, that we have proposed only as a theoreti
altool.In this se
tion we present two ICC sub
lasses that lead to a simpli�
ation inthe ICC evaluation while keeping good modelling properties in order to get a 
lassof 
urves more powerful and eÆ
ient than p-B�ezier 
urves. These sub
lasses are
hara
terized by spe
ial proje
tion domains U whi
h automati
ally guarantee thatArg(u(t)) is an in
reasing fun
tion of t, thus obtaining single-valued 
urves.6.1. ICC on linear proje
tion domainSuppose we 
hoose two arbitrary ve
tors u0; un 2 IR2 with Arg(u0) < Arg(un), thenwe de�ne the ui equally spa
ed in the straight segment de�ned by u0; un, su
h thatU is the linear proje
tion domain de�ned as u(t) = (1� t)u0+ tun =Pni=0 uiBni (t).A more advantageous way, with respe
t to Algorithm 2.1 or 3.1, to evalu-ate an ICC derives dire
tly from its representation in the form S(t) = u(t)w(t) =u(t)=Pni=0 kuik
iBni (t): In fa
t, given �v = v(�t) on A, the 
orresponding value S(�t)
an be evaluated following the steps:1. Compute �t as interse
tion between u(t) and f��v : � � 0g;2. Compute u(�t);3. Apply de Casteljau algorithm to 
ompute the s
alar fun
tion w(t);4. Set S(�t) := u(�t)kun0 k
n0 :In this 
ase of linear proje
tion domain U , step 1 trivially redu
es to an expli
itand simple formula, while step 2 is given by u(�t) = u0 + �t(un � u0): Thus the ICCevaluation algorithm has a total 
ost of 12n(n+1)+6 multipli
ations/divisions, and12n(n+ 1) + 6 additions/subtra
tions.This 
hoi
e of proje
tion domain is parti
ularly easy to work with in a 
ir
ularmodelling environment. Fig. 2 shows several 
urves 
orresponding to linear pro-je
tion domains. Note that in all �gures presented the ICC 
urves are drawn withsolid lines while their 
ontrol polygons are drawn with dashed lines and the 
ontrolpoints are marked with open disks. The ui are marked with bla
k dots and the
ir
ular domain, together with bla
k arrows denoting the vi, is also illustrated.8



Fig. 2. ICC with linear proje
tion domain U , n = 3; (left) the pulling e�e
tof a 
ontrol point; (right) the 
hange of ku0k with the values f1:0; 0:75; 0:5g.Fig. 2 on the left shows the e�e
t of adjusting the values of the 
i while holdingthe vi �xed. This moves the 
ontrol points and pulls the 
urve along with them.Note that, in this 
ase, only the modulus of ea
h 
ontrol point 
an be modi�ed, whilein a general ICC, also the 
ontrol point positions 
an be 
hanged, but 
onstrainedto keep the in
reasing angular order.Fig. 2 on the right shows the e�e
t of 
hanging the module of the ve
tor u0while holding the 
i �xed. This leads to alter the position of the vi and 
onsequentlyof the 
ontrol points.6.2. ICC on quadrati
 proje
tion domainThe 
ase where u(t) is a quadrati
 proje
tion domain is important be
ause it allowsthe 
onstru
tion of 
oni
 se
tions. To obtain a quadrati
 proje
tion domain U , we
an begin with any three ve
tors �u0; �u1; �u2, with Arg(�u0) < Arg(�u1) < Arg(�u2),and 
reate the 
urve u(t) := 2Xi=0 �uiB2i (t): (6:1)In order to de�ne u(t) as in (3.1) we 
an degree elevate u(t) in (6.1) thus obtainingthe ve
tors u0; : : : ; un.Con
erning the evaluation of this ICC sub
lass we refer to the pro
edure givenin subse
tion 6.1 where steps 1 and 2 are suitable modi�ed by using (6.1). Thisalgorithm has a total 
ost of 12n(n+1)+11 multipli
ations/divisions, a square rootand 12n(n+ 1) + 12 additions/subtra
tions.Figure 3 shows the representation of a quarter 
ir
le with 
enter at the originand radius 2 as an ICC with a quadrati
 proje
tion domain U . Here u0 = (1; 0)T ,u1 = (1=p2; 1=p2)T , and u2 = (0; 1)T . 9



Fig. 3. ICC with quadrati
 proje
tion domain representing a quarter of 
ir
le of radius 2.

Fig. 4. S and ~S joining with C1 (left) and G1 (right) parametri
 
ontinuity.The two proposed sub
lasses result more 
omputational eÆ
ient than the p-B�ezier proposal and more 
exible for a 
ir
ular modelling environment. Theseadvantages will be more signi�
ant in the 
ir
ular spline setting (see se
tion 8).x7. Joining ICC's SmoothlyIn this se
tion we brie
y explore the question of how to join two inverse 
ir
u-lar 
urves smoothly. Suppose S and ~S are the inverse 
ir
ular 
urves de�ned fort 2 [0;�℄ and et 2 [0; e�℄ 
orresponding to fuigni=0, f
igni=0 and feuigni=0, fe
igni=0,respe
tively. We denote the 
orresponding 
ontrol points of S and ~S by Ci := vi=
iand eCi := evi=e
i, for i = 0; : : : ; n.Clearly, S and ~S join with C0 
ontinuity at eC0 if and only ifeC0 = Cnthat is e
0 = 
n and keu0k = �kunk; (7:1)10



Fig. 5. S and ~S joining with C1 (left) and G1 (right) rational 
ontinuity.where � is a free non zero parameter (see Fig.5, where � = 0:5 on the left, and� = 1 on the right). Moreover, by the well-known results on rational B�ezier 
urves[5,6℄, S and ~S join with G1 
ontinuity at eC0 (i.e., their tangents at eC0 point havethe same dire
tion) if and only if Cn�1; Cn; eC0; eC1 lie on a 
ommon line. This issimply given modifying e
1 in the following manner:e
1 := sin(�n � �n�1)sin(e�1 � �n�1)
n + sin(�n � e�1)
n�1 (7:2)where e�i = Arg(eui) (�i = Arg(ui)).They join with C1 
ontinuity at eC0 (i.e., they have the same tangent at eC0) ifand only if in addition to (7.1), we have1e�( eC1 � eC0)e
1keu1ke
0keu0k = 1�(Cn � Cn�1)
n�1kun�1k
nkunk : (7:3)In pra
ti
e, mantaining the given v1 dire
tion, we 
ompute e
1 by (7.2), thus obtain-ing a modi�ed eC1 and we 
hoose ku1k by relation (7.3) so that the two tangents ateC0 have also the same modulo.The above formula 
omprises both the suÆ
ient 
ontinuity 
onditions on the
omponents of the rational 
urve represented in homogeneous 
oordinates (para-metri
 
ontinuity), and the ne
essary and suÆ
ient 
onditions on the 
omponentsof the rational 
urve itself that lead to the so-
alled rational 
ontinuity, see [5,6℄.Fig. 4 and 5 show examples of two inverse 
ir
ular 
urves S and ~S with n = 3joined together with C1 (left) and G1 (right) 
ontinuity in the linear proje
tiondomain 
ase. In this 
ase the C1 parametri
 
ontinuity requires that U and eUare aligned (see Fig. 4), while the C1 rational 
ontinuity allows linear proje
tiondomains whi
h are not aligned with ea
h other (see Fig. 5). As a 
onsequen
e ofthis, using a sequen
e of su
h proje
tion domains, we 
an de�ne inverse 
ir
ular
urves on 
ir
ular ar
s of arbitrary length, where ea
h segment of the 
urve isde�ned over a 
ir
ular ar
 of length less than �.11



x8. A 
lass of ICC splineWe �rst re
all some well-known fa
ts about NURBS 
urves, see [5,6,11℄. Given pos-itive integers m and n, suppose t0 = � � � = tm � tm+1 � � � � � tn+1 = � � � = tn+m+1where ti+m+1 > ti for all i. Let Nm0 ; : : : ; Nmn be the 
orresponding normalizedB-splines of degree m (order m+ 1, see [14℄). Then a non-uniform rational B-spline(NURBS) is a 
urve of the forms(t) := u(t)w(t) = nXi=0 wibiNmi (t)nXi=0 wiNmi (t) ; t 2 [tm; tn+1℄;where fbigni=0 is a set of points in IR2 (
alled the 
ontrol points), and fwigni=0 is aset of positive real numbers (
alled the weights). If we 
onne
t bi and bi+1 witha straight line for ea
h i = 0; : : : ; n � 1, the resulting 
urve is 
alled the 
ontrolpolygon.It is well known that s(tm) = b0, s(tn+1) = bn, and that the 
urve s is tangentto the 
ontrol polygon at the points b0 and bn. It is also known that if the weightsare all nonnegative, then the 
urve s lies in the 
onvex hull of the 
ontrol polygon.The following algorithm [6,11℄ 
an be used to 
ompute NURBS:Algorithm 8.1. Let w(0)i := wi and u(0)i := wibi for i = 0; : : : ; n, and let t 2[t`; t`+1) for some m � ` � n.For k = 1 to mFor i = `�m to `� k�(k)i := (t� ti+k)(ti+m+1 � ti+k)u(k)i := (1� �(k)i )u(k�1)i + �(k)i u(k�1)i+1w(k)i := (1� �(k)i )w(k�1)i + �(k)i w(k�1)i+1Set u(t) := u(m)`�m, w(t) := w(m)`�m, and s(t) := u(t)w(t)To get an asso
iated 
lass of inverse 
ir
ular 
urves, we 
an follow the 
on-stru
tion of Se
t. 3. Suppose U := fu0; : : : ; ung is a set of ve
tors in IR2, and let�i := Arg(ui) be the angle between ui and the x-axis measured in the 
ounter-
lo
kwise dire
tion. Suppose that �0 < � � � < �n, and let 
0; : : : ; 
n be positive realnumbers.We de�ne an asso
iated ICC spline S by the following algorithm:Algorithm 8.2. Let u(0)i := ui and 
(0)i := 
i for i = 0; : : : ; n, and let t 2 [t`; t`+1)for some m � ` � n.For k = 1 to m 12



For i = `�m to `� k�(k)i := (t� ti+k)(ti+m+1 � ti+k)u(k)i := (1� �(k)i )u(k�1)i + �(k)i u(k�1)i+1
(k)i := (1� �(k)i )ku(k�1)i kku(k)i k 
(k�1)i + �(k)i ku(k�1)i+1 kku(k)i k 
(k�1)i+1Set u(t) := u(m)`�m, p(t) := 
(m)`�m, v(t) := u(t)ku(t)k.Then the asso
iated ICC is given by S(t) := v(t)p(t)It is 
lear that this algorithm produ
es the proje
tion domain Uu(t) = nXi=0 uiNmi (t):Comparing Algorithms 8.1 and 8.2, we see that the 
urve S is just a NURBS 
urves 
orresponding to setting wi = 
ikuik in Algorithm 8.1.For ea
h 0 � i � n, let Nmi be the fun
tion whi
h is de�ned by Algorithm 8.2using the 
oeÆ
ient ve
tor with all zero 
omponents ex
ept for 
i = 1. Thenp(t) = nXi=0 
iNmi (t):Following the proof of 4.1, it is not hard to see thatNmi (t) = kuikku(t)kNmi (t): (8:1)Sin
e these ICC's are just spe
ial 
ases of NURBS useful in a 
ir
ular environ-ment, it is 
lear that they inherit all the advantages of NURBS. In parti
ular, we
an de�ne a 
ontrol polygon IP by 
onne
ting the 
ontrol points Ci := vi=
i andCi+1 = vi+1=
i+1 with straight lines for i = 0; : : : ; n�1. Then the 
urve S lies in the
onvex hull of IP, and interpolates it at the endpoints. Moreover, the well-knownalgorithms for degree raising, knot insertion, and subdivision 
an be applied.As �(t) := Arg(u(t)) is monotone in
reasing for t 2 [0; 1℄, then we 
an alsoregard S as single-valued 
urve de�ned on the 
ir
ular ar
 A := h�0; �ni by makinguse of the one{one 
orresponden
e v(t) = u(t)ku(t)k between points on U and pointson A.As in the rational B�ezier 
urve 
ase, in pra
ti
e we propose to use the spe
ialICC spline sub
lasses with linear or quadrati
 proje
tion domain U .Fig. 6 shows two examples of ICC splines. In both 
asesm = 3 and n = 11, andthe B-splines are de�ned using the knot sequen
e ftig15i=0 with t0 = t1 = t2 = t3 = 013



Fig. 6. Two ICC splines of degree 2.and 0 < t4 < � � � < t11 < 1 and t12 = t13 = t14 = t15 = 1. In the �gure on theleft U is a linear proje
tion domain, while on the right it is a quadrati
 proje
tiondomain.Analogously to what has been asserted by Theorem 5.2, we 
an establish thefollowing 
onne
tion between p-splines and the inverse 
ir
ular 
urves des
ribed byAlgorithm 8.2.Theorem 8.3. An ICC spline S(t) = v(t)p(t) , where p(t) =Pni=0 
iNmi (t), with knotsftig is a p-spline 
urve S(�) = v(�)p(�) , where p(�) =Pni=0 
i �Nmi (�), and knots f�ig,if t = tan(�), the proje
tion domain U for the ICC is de�ned by ve
tors ui withkuik = 1Qi+mj=i+1 
os �j , and vi = uikuik = (
os �i; sin �i), where �i =Pi+mj=i+1 tan�1(tj).Proof: The proof is simply redu
ed to verify that�Nmi (�) = Nmi (t): (8:2)Using the following relation given in [3℄�Nmi (�) = 
os(�)mQi+mj=i+1 
os �jNmi (t)where � 2 [��=2; �=2℄ and t 2 [0; 1℄, and relation (8.1), we have�Nmi (�) = 
os(�)mQi+mj=i+1 
os �j ku(t)kkuik Nmi (t): (8:3)Now, ku(t)k = k nXi=0 uiNmi (t)k = k nXi=0 uiQi+mj=i+1 
os �j
os(�)m �Nmi (�)k14



and applying the linear pre
ision property v =Pni=0 vi �Nmi (�)(see[3℄) and relationgiven for kuik, ku(t)k = 1
os(�)m : (8:4)Repla
ing (8.4) and relation given for kuik in (8.3) we have (8.2).The advantage that we have got 
omputationally in the ICC 
ase with respe
tto the p-B�ezier is even more magni�ed in the ICC-spline 
ase. In fa
t, by a 
ompu-tational point of view, the ICC spline with linear or quadrati
 proje
tion domain
an be evaluated using pro
edure suggested in subse
tion 6.1, where de Casteljaus
heme in step 3. is repla
ed by the de Boor s
heme, while p-splines require anexpensive 
onversion to NURBS (see [2℄) and the NURBS 
urve evaluation itselfthat is 
ertainly more expensive. x9. AppendixAn expli
it representation of the basis fun
tion Bni 
an be derived from the algo-rithm 3.1. Ea
h of the basis fun
tions Bni 
onsists of a sum of produ
ts of theform nYk=1 �(k)ik;mk ;with 0 � ik � i and mk 2 f1; 2g. The number of su
h terms in the sum is equal tothe number of paths in the deCasteljau diagram leading from the 
oeÆ
ient 
(0)ito the value Bni (t) = 
(0)n . To make this more pre
ise, let Ii be the set of distin
tn-ve
tors obtained by permuting the 
omponents of (1; : : : ; 1; 2; : : : ; 2), where 1appears n� i times and 2 appears i times.Theorem 9.1. For all 0 � i � n,Bni (t) = X(m1;:::;mn)2Ii nYk=1�(k)ik;mk ; (9:1)where ik := i+ kX�=1(1�m�):Proof: Ea
h ve
tor (m1; : : : ;mn) des
ribes a distin
t path from 
(0)i to 
(n)0 . Thevalue mk = 1 
orresponds to moving down and to the right in the deCasteljauarray. This 
orresponds to multiplying by a �(k)ik;1 fa
tor. mk = 2 
orresponds tomoving down and to the left, and 
orresponds to multiplying by a �(k)ik;2 fa
tor.A
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