
Inverse Cirular CurvesGiulio Casiola 1), Serena Morigi 1)Abstrat. In this paper we show how interpreting rational B�ezier urves andNURBS as inverse irular urves provides a onvenient framework for geometrimodelling with urves de�ned on irular ars. Foal splines and p-splines areinluded as speial ases. x1. IntrodutionMuh of CAGD is based on urves and surfaes de�ned over intervals or planardomains, respetively. However, there are various appliations where it is muhmore natural to hoose the underlying domain to be some other urve or surfae.The irle and sphere are of partiular importane.There has been a onsiderable amount of reent work dealing with urvesde�ned on irular ars. So-alled polar (p-) B�ezier urves were �rst studied in [12℄and later in [2,3℄. Analogous lasses of splines were studied in [2,13℄ where theyare alled polar (p)-splines, and in [4,9℄, where they are alled foal splines. Relatedlasses of urves based on trigonometri splines were studied in [7℄, and ertaindual foal splines were used for the design of ams in [10℄. All of these urves werereognized as speial types of rational B�ezier urves or NURBS, respetively.The aim of this paper is to show that more general lasses of rational B�ezierurves and NURBS an be used for design over irular domains. These urvesand, as we will see, sublasses of them, provide a better alternative to p-B�ezierand p-spline from the modelling point of view. Moreover, they present a naturalgeneralization to pathes on spherial triangles, that will be onsidered in a nextpaper.Let P be a single-valued urve de�ned on the unit irular ar A := fv(t) : t 2Ig with enter at the origin, in the formP (t) := 1p(t)v(t); (1:1)where p(t) is a positive salar funtion de�ned over some interval I. Thus P (t) isthe point in IR2 whih lies at a distane 1=p(t) from the origin in the diretion of1) Department of Mathematis, University of Bologna, Italy, asiola�dm.unibo.it, mo-rigi�dm.unibo.it. This work was supported by MURST, Co�n. 2000, by INdAM-GNIMspeial projets 2000, and by University of Bologna "Funds for seleted researh topis"1



the vetor v(t). We will all inverse irular urves (ICC) the urve P (t) of the form(1.1).Alternatively, we an onsiderP (t) := u(t)w(t) ; t 2 I; (1:2)where u(t) is a urve in IR2 and w(t) is a positive salar funtion. Then assumingthat �(t) := Arg(u(t))is an inreasing funtion of t, we an regard v(t) as a projetion mapping fromU := fu(t) : t 2 Ig, that we will all projetion domain, to the irular domain A byv(t) := u(t)=ku(t)k. Thus, if we de�ne p(t) := w(t)ku(t)k , then the ICC's turn out tobe a partiular lass of the urves de�ned by (1.2). p-B�ezier urves and p-splinesare examples of ICC's.We reall that urves on irular ars of the form vp(v) were studied in [1,7℄,where they are alled irular Bernstein-B�ezier urves. However, as noted there, theyare not partiularly useful for modelling sine the natural assoiated ontrol urvesdo not do a good job of prediting the shape of the urve. One an also onsiderthe inverted urves v=p(v), but they do not perform as well as the p-B�ezier givenin [12℄.The paper is organized as follows. In Set. 2 we reall some notation and basifats about rational B�ezier urves. In Set. 3 we disuss a lass of inverse irularurves de�ned by a deCasteljau type algorithm, and in Set. 4 the orrespondinglass of irular Bernstein basis funtions. The speial ase of p-B�ezier is disussedin Set. 5. Modelling and omputational aspets of speial ICC sublasses are shownin Set. 6, and in Set. 7 we disuss how ICC's an be smoothly joined together.Set. 8 is devoted to a generalization of the results to NURBS.x2. Rational B�ezier CurvesIn this setion we reall some well-known fats about rational B�ezier urves, see[5,6,11℄. Let Bni (t) := �ni�(1� t)n�iti; 0 � i � n;be the lassial Bernstein polynomials de�ned on [0; 1℄. Then a rational B�ezier urveis a urve of the forms(t) := u(t)w(t) = nXi=0 wibiBni (t)nXi=0 wiBni (t) ; t 2 [0; 1℄;2



where fbigni=0 is a set of points in IR2 (alled the ontrol points), and fwigni=0 is aset of positive real numbers (alled the weights).A point on the urve s an be omputed from the following de Casteljau algo-rithm, [6,11℄:Algorithm 2.1. Let w(0)i := wi and u(0)i := wibi for i = 0; : : : ; n, and let t 2 [0; 1℄.For k = 1 to nFor i = 0 to n� ku(k)i := (1� t)u(k�1)i + tu(k�1)i+1w(k)i := (1� t)w(k�1)i + tw(k�1)i+1Set u(t) := u(n)0 , w(t) := w(n)0 and s(t) := u(t)w(t)It is well-known that rational B�ezier urves have a onvenient ontrol struturede�ned by the polygon IP whih is formed by onneting the points bi; bi+1 withstraight lines for i = 0; : : : ; n � 1. The urve s interpolates at its endpoints andassuming that the weights are positive, it lies in the onvex hull of IP.x3. A Class of Inverse Cirular CurvesLet U := fu0; : : : ; ung be a set of points in IR2. Considering ui as a vetor, let �i :=Arg(ui) be the angle between ui and the x-axis measured in the ounterlokwisediretion. Suppose that �0 < � � � < �n, and let 0; : : : ; n be positive real numbers.We de�ne an assoiated ICC S on the unit irular ar A := h�0; �ni as follows:Algorithm 3.1. Let u(0)i := ui and (0)i := i for i = 0; : : : ; n, and let t 2 [0; 1℄.For k = 1 to nFor i = 0 to n� ku(k)i := (1� t)u(k�1)i + tu(k�1)i+1(k)i := (1� t)ku(k�1)i kku(k)i k (k�1)i + tku(k�1)i+1 kku(k)i k (k�1)i+1Set u(t) := u(n)0 , p(t) := (n)0 , v(t) := u(t)ku(t)k.Then the orresponding inverse irular urve is given by S(t) := v(t)p(t):It is lear that this algorithm produes the projetion domain Uu(t) = nXi=0 uiBni (t): (3:1)As �(t) := Arg(u(t)) is monotone inreasing for t 2 [0; 1℄, then we an also regard Sas a single-valued urve de�ned on the irular ar A by making use of the one{oneorrespondene v(t) = u(t)ku(t)k between points on U and points on A. Comparing3



Algorithms 2.1 and 3.1, we see that the urve S is just a rational B�ezier urveorresponding to setting wi = ikuik in Algorithm 2.1. As suh, it inherits all ofthe usual properties of rational B�ezier urves. Here we briey disuss a few of theseproperties.Using the identi�ation ui = wibi, it is lear that the ontrol polygon IP asso-iated with the urve S is obtained by onneting the ontrol pointsCi := vii ; i = 0; : : : ; n;where vi := ui=kuik with straight lines. Trivially, the urve S lies in the onvexhull of IP, and interpolates at its endpoints. Using the onnetion between theinverse irular urve S produed by Algorithm 3.1 and the rational B�ezier urves produed by Algorithm 2.1, we immediately get algorithms for degree-raising andsubdividing ICC urves.In the following we will show how Algorithm 3.1 an be seen as a de Casteljaulike sheme. Given an ar A := h�0; �ni on the unit irle with endpoints v0; vn,then it is easy to see [1℄ that any v on A an be uniquely written in the formv = �1v0 + �2vn with�1 = sin(�n � �)sin(�n � �0) ; �2 = sin(� � �0)sin(�n � �0) ;where �i := Arg(vi) for i = 0; n. The numbers �1; �2 are alled the irular baryen-tri oordinates of v relative to A and, in general, �1 + �2 > 1.The seond statement in the inner loop, in Algorithm 3.1, an be rewritten as(k)i := �(k)i;1 (k�1)i + �(k)i;2 (k�1)i+1 ;where �(k)i;1 := (1� t)ku(k�1)i kku(k)i k ; �(k)i;2 := tku(k�1)i+1 kku(k)i k : (3:2)We note thatv(k)i (t) := u(k)i (t)ku(k)i (t)k = (1�t)u(k�1)iku(k)i k+tu(k�1)i+1ku(k)i k = �(k)i;1 v(k�1)i (t)+�(k)i;2 v(k�1)i+1 (t) (3:3)for i = 0; : : : ; n�k and k = 1; : : : ; n, where v(0)i := vi. The relation (3.3) asserts that�(k)i;1 and �(k)i;2 are the irular baryentri oordinates of the unit vetor v(k)i in termsof the irular ar hv(k�1)i ; v(k�1)i+1 i. More expliitly, if we de�ne �(k)i := Arg(v(k)i ),�(k)i;1 = sin(�(k�1)i+1 � �(t))sin(�(k�1)i+1 � �(k�1)i ) ; �(k)i;2 = sin(�(t)� �(k�1)i )sin(�(k�1)i+1 � �(k�1)i ) : (3:4);where �(t) := �(k�1)i + t(�(k�1)i+1 � �(k�1)i ): Thus Algorithm 3.1 uses di�erent irularbarientri oordinates for i-th ar at eah step k. This allows us, as in the lassialde Casteljau sheme, to obtain at eah step k, values (k)i , assoiated to vetors v(k)ion the unit irular domain A. 4



x4. A Class of irular Bernstein basis funtionsTo better understand the nature of S, suppose we run Algorithm 3.1 with alloeÆients equal to zero exept for i = 1. Let Bni (t) be the orresponding valueof (n)0 . Then p(t) = nXi=0 iBni (t);where the Bn0 ; : : : ;Bnn will be alled irular Bernstein basis funtions.The next result shows that there is a lose onnetion between the Bni (t) andthe lassial Bernstein polynomials.Theorem 4.1. For eah 0 � i � n,Bni (t) = kuikku(t)kBni (t); (4:1)where u(t) is given by (3.1).Proof: From de�nitions (1.2) and (1.1), and from the fat that p(t) = w(t)ku(t)k =Pni=0 i kuikku(t)kBni (t) the result follows.The next results shows that the linear preision property, on the unit irle,holds.Theorem 4.2. Given a set of points vi on a irular ar, then a point v(t) =(os �(t); sin �(t))T an be represented asv(t) = nXi=0 viBni (t):Proof: The result follows from Theorem 4.1 or from (3.3).We onlude this setion with one example of basis funtions Bni for a simplease of n = 2, by using relation (4.1) or by the expliit form given in Appendix.Notie that these basis are, in general, irrational funtions.Example 4.3. Let A be the ar assoiated with a projetion domain U de�nedby u0 := (1; 0)T ,u1 := (1=2; 1=2)T and u2 := (0; 1)T , and let n = 2. Then theassoiated basis funtions areB20(v(t)) = �(1)01 �(2)01 = (1� t)2(2t2 � 2t+ 1)1=2B21(v(t)) = �(1)02 �(2)01 + �(1)11 �(2)02 = (1� t)tp2(2t2 � 2t+ 1)1=2 ;B22(v(t)) = �(1)12 �(2)02 = t2(2t2 � 2t+ 1)1=2Fig. 1 shows the basis funtions B2i (solid lines) and the lassial Bernstein basispolynomials B2i (dashed lines) for i = 0; 1; 2.5



Fig. 1. fBig2i=0 (solid lines) and fB2i g2i=0 (dashed lines).x5. Polar (p-)B�ezier CurvesIn this setion we show that p-B�ezier urves of degree n are just ICC's orrespondingto vetors ui whih are hosen to be equally spaed on a irular ar A. Supposethe endpoints of the irular ar are the unit vetors u0 and un with arguments�0 < �n. To desribe p-B�ezier urves, supposeh = (�n � �0)=n; (5:1)and let b1(t) := sin( �n��(t)n )sin(h) ; b2(t) := sin( �(t)��0n )sin(h) ; (5:2)where �(t) := �0 + t(�n � �0):Let �Bni (t) := n!i! (n� i)! b1(t)n�i b2(t)i: (5:3)The �Bn0 ; : : : ; �Bnn are fan-transformed versions of ertain basis funtions de�ned in[1℄. Now given oeÆients 0; : : : ; n, the orresponding p- B�ezier urve [12℄ is de-�ned by S(t) = v(t)p(t) ; 0 � t � 1;where p(t) := nXi=0 i �Bni (t); (5:4)and v(t) is the unit vetor with Arg(v(t)) = �(t). Clearly, the p-B�ezier urve S anbe evaluated by the following version of the deCasteljau algorithm:6



Algorithm 5.1. Suppose (0)i := i for i = 0; : : : ; n. Given t 2 [0; 1℄, let v(t) bethe unit vetor with �(t) = Arg(v(t)), and let b1; b2 be as in (5.2).For k = 1 to nFor i = 0 to n� k(k)i := b1(k�1)i + b2(k�1)i+1Set p(t) := (n)0 and S(t) = v(t)p(t)We an now identify a p-B�ezier urve as an ICC urve.Theorem 5.2. Suppose u0; : : : ; un are unit vetors with�i := Arg(ui) = �0 + ih; i = 0; : : : ; n;where h is given in (5.1). Then the p-B�ezier urve S produed by Algorithm 5.1 isthe same urve as the ICC S produed by Algorithm 3.1.Proof: By (3.3), it is easy to see by indution that�(k)i+1 � �(k)i = h; i = 0; : : : ; n� k � 1; k = 1; : : : ; nwhih implies by (3.4) that�(k)i;1 = b1(t); �(k)i;2 = b2(t);for all i = 0; : : : ; n� k and all k = 1; : : : ; n. It follows that the value produed byAlgorithm 3.1 is the same produes by Algorithm 5.1 as asserted.As funtions of �, it follows from (5.2) and (5.3) that the �Bn0 ; : : : ; �Bnn and thusalso the funtion p de�ned in (5.4) is a trigonometri polynomial in the spae (see[2℄,[8℄)Tn := 8<: span f1; os(2�n ); sin( 2�n ); : : : ; os(�); sin(�)g; n even,span fos( �n ); sin( �n ); os(3�n ); sin(3�n ); : : : ; os(�); sin(�)g; n odd.x6. Modelling with ICCIn this setion we desribe the use of ICC for a irular modelling environment om-paring exibility and performane with the p-B�ezier approah.Modelling in a irular modelling environment means to design a single-valuedurve that approximates a ontrol polygon de�ned by n+ 1 ontrol points (vi; 1i ),where vi lie on a given irular ar A, and 1i represents the distane from the originin the diretion vi. An interative modelling tool has to guarantee the single-valuedrequest and provide good shape approximation.7



For example, the p-B�ezier framework is a good irular modelling environment,as desribed in [12℄, where, given a irular domainA and the number n+1 of ontrolpoints, the diretions vi are �xed to be equally spaed on A and i are free salarparameters for modelling. As suggested in [12℄, the most eÆient way to evaluatethese urves turns out to be by evaluating their B�ezier rational representation, thatrequires given a domain point �v 2 A, the evaluation of �t by means of an expliitand expensive trigonometri relation [12℄.Our ICC proposal is a irular modelling environment extremely exible be-ause we an exploit the modelling parameters and tools inherited from rationalB�ezier urves, and we are not limited to equally spaed vi on A. However, theevaluation of a generi ICC is umbersome due to the fat that given a domainpoint �v 2 A, we need to determine the orresponding parameter �t by intersetion.In any ase the evaluation of an ICC an be performed by its rational repre-sentation and not using algorithm 3.1, that we have proposed only as a theoretialtool.In this setion we present two ICC sublasses that lead to a simpli�ation inthe ICC evaluation while keeping good modelling properties in order to get a lassof urves more powerful and eÆient than p-B�ezier urves. These sublasses areharaterized by speial projetion domains U whih automatially guarantee thatArg(u(t)) is an inreasing funtion of t, thus obtaining single-valued urves.6.1. ICC on linear projetion domainSuppose we hoose two arbitrary vetors u0; un 2 IR2 with Arg(u0) < Arg(un), thenwe de�ne the ui equally spaed in the straight segment de�ned by u0; un, suh thatU is the linear projetion domain de�ned as u(t) = (1� t)u0+ tun =Pni=0 uiBni (t).A more advantageous way, with respet to Algorithm 2.1 or 3.1, to evalu-ate an ICC derives diretly from its representation in the form S(t) = u(t)w(t) =u(t)=Pni=0 kuikiBni (t): In fat, given �v = v(�t) on A, the orresponding value S(�t)an be evaluated following the steps:1. Compute �t as intersetion between u(t) and f��v : � � 0g;2. Compute u(�t);3. Apply de Casteljau algorithm to ompute the salar funtion w(t);4. Set S(�t) := u(�t)kun0 kn0 :In this ase of linear projetion domain U , step 1 trivially redues to an expliitand simple formula, while step 2 is given by u(�t) = u0 + �t(un � u0): Thus the ICCevaluation algorithm has a total ost of 12n(n+1)+6 multipliations/divisions, and12n(n+ 1) + 6 additions/subtrations.This hoie of projetion domain is partiularly easy to work with in a irularmodelling environment. Fig. 2 shows several urves orresponding to linear pro-jetion domains. Note that in all �gures presented the ICC urves are drawn withsolid lines while their ontrol polygons are drawn with dashed lines and the ontrolpoints are marked with open disks. The ui are marked with blak dots and theirular domain, together with blak arrows denoting the vi, is also illustrated.8



Fig. 2. ICC with linear projetion domain U , n = 3; (left) the pulling e�etof a ontrol point; (right) the hange of ku0k with the values f1:0; 0:75; 0:5g.Fig. 2 on the left shows the e�et of adjusting the values of the i while holdingthe vi �xed. This moves the ontrol points and pulls the urve along with them.Note that, in this ase, only the modulus of eah ontrol point an be modi�ed, whilein a general ICC, also the ontrol point positions an be hanged, but onstrainedto keep the inreasing angular order.Fig. 2 on the right shows the e�et of hanging the module of the vetor u0while holding the i �xed. This leads to alter the position of the vi and onsequentlyof the ontrol points.6.2. ICC on quadrati projetion domainThe ase where u(t) is a quadrati projetion domain is important beause it allowsthe onstrution of oni setions. To obtain a quadrati projetion domain U , wean begin with any three vetors �u0; �u1; �u2, with Arg(�u0) < Arg(�u1) < Arg(�u2),and reate the urve u(t) := 2Xi=0 �uiB2i (t): (6:1)In order to de�ne u(t) as in (3.1) we an degree elevate u(t) in (6.1) thus obtainingthe vetors u0; : : : ; un.Conerning the evaluation of this ICC sublass we refer to the proedure givenin subsetion 6.1 where steps 1 and 2 are suitable modi�ed by using (6.1). Thisalgorithm has a total ost of 12n(n+1)+11 multipliations/divisions, a square rootand 12n(n+ 1) + 12 additions/subtrations.Figure 3 shows the representation of a quarter irle with enter at the originand radius 2 as an ICC with a quadrati projetion domain U . Here u0 = (1; 0)T ,u1 = (1=p2; 1=p2)T , and u2 = (0; 1)T . 9



Fig. 3. ICC with quadrati projetion domain representing a quarter of irle of radius 2.

Fig. 4. S and ~S joining with C1 (left) and G1 (right) parametri ontinuity.The two proposed sublasses result more omputational eÆient than the p-B�ezier proposal and more exible for a irular modelling environment. Theseadvantages will be more signi�ant in the irular spline setting (see setion 8).x7. Joining ICC's SmoothlyIn this setion we briey explore the question of how to join two inverse iru-lar urves smoothly. Suppose S and ~S are the inverse irular urves de�ned fort 2 [0;�℄ and et 2 [0; e�℄ orresponding to fuigni=0, figni=0 and feuigni=0, feigni=0,respetively. We denote the orresponding ontrol points of S and ~S by Ci := vi=iand eCi := evi=ei, for i = 0; : : : ; n.Clearly, S and ~S join with C0 ontinuity at eC0 if and only ifeC0 = Cnthat is e0 = n and keu0k = �kunk; (7:1)10



Fig. 5. S and ~S joining with C1 (left) and G1 (right) rational ontinuity.where � is a free non zero parameter (see Fig.5, where � = 0:5 on the left, and� = 1 on the right). Moreover, by the well-known results on rational B�ezier urves[5,6℄, S and ~S join with G1 ontinuity at eC0 (i.e., their tangents at eC0 point havethe same diretion) if and only if Cn�1; Cn; eC0; eC1 lie on a ommon line. This issimply given modifying e1 in the following manner:e1 := sin(�n � �n�1)sin(e�1 � �n�1)n + sin(�n � e�1)n�1 (7:2)where e�i = Arg(eui) (�i = Arg(ui)).They join with C1 ontinuity at eC0 (i.e., they have the same tangent at eC0) ifand only if in addition to (7.1), we have1e�( eC1 � eC0)e1keu1ke0keu0k = 1�(Cn � Cn�1)n�1kun�1knkunk : (7:3)In pratie, mantaining the given v1 diretion, we ompute e1 by (7.2), thus obtain-ing a modi�ed eC1 and we hoose ku1k by relation (7.3) so that the two tangents ateC0 have also the same modulo.The above formula omprises both the suÆient ontinuity onditions on theomponents of the rational urve represented in homogeneous oordinates (para-metri ontinuity), and the neessary and suÆient onditions on the omponentsof the rational urve itself that lead to the so-alled rational ontinuity, see [5,6℄.Fig. 4 and 5 show examples of two inverse irular urves S and ~S with n = 3joined together with C1 (left) and G1 (right) ontinuity in the linear projetiondomain ase. In this ase the C1 parametri ontinuity requires that U and eUare aligned (see Fig. 4), while the C1 rational ontinuity allows linear projetiondomains whih are not aligned with eah other (see Fig. 5). As a onsequene ofthis, using a sequene of suh projetion domains, we an de�ne inverse irularurves on irular ars of arbitrary length, where eah segment of the urve isde�ned over a irular ar of length less than �.11



x8. A lass of ICC splineWe �rst reall some well-known fats about NURBS urves, see [5,6,11℄. Given pos-itive integers m and n, suppose t0 = � � � = tm � tm+1 � � � � � tn+1 = � � � = tn+m+1where ti+m+1 > ti for all i. Let Nm0 ; : : : ; Nmn be the orresponding normalizedB-splines of degree m (order m+ 1, see [14℄). Then a non-uniform rational B-spline(NURBS) is a urve of the forms(t) := u(t)w(t) = nXi=0 wibiNmi (t)nXi=0 wiNmi (t) ; t 2 [tm; tn+1℄;where fbigni=0 is a set of points in IR2 (alled the ontrol points), and fwigni=0 is aset of positive real numbers (alled the weights). If we onnet bi and bi+1 witha straight line for eah i = 0; : : : ; n � 1, the resulting urve is alled the ontrolpolygon.It is well known that s(tm) = b0, s(tn+1) = bn, and that the urve s is tangentto the ontrol polygon at the points b0 and bn. It is also known that if the weightsare all nonnegative, then the urve s lies in the onvex hull of the ontrol polygon.The following algorithm [6,11℄ an be used to ompute NURBS:Algorithm 8.1. Let w(0)i := wi and u(0)i := wibi for i = 0; : : : ; n, and let t 2[t`; t`+1) for some m � ` � n.For k = 1 to mFor i = `�m to `� k�(k)i := (t� ti+k)(ti+m+1 � ti+k)u(k)i := (1� �(k)i )u(k�1)i + �(k)i u(k�1)i+1w(k)i := (1� �(k)i )w(k�1)i + �(k)i w(k�1)i+1Set u(t) := u(m)`�m, w(t) := w(m)`�m, and s(t) := u(t)w(t)To get an assoiated lass of inverse irular urves, we an follow the on-strution of Set. 3. Suppose U := fu0; : : : ; ung is a set of vetors in IR2, and let�i := Arg(ui) be the angle between ui and the x-axis measured in the ounter-lokwise diretion. Suppose that �0 < � � � < �n, and let 0; : : : ; n be positive realnumbers.We de�ne an assoiated ICC spline S by the following algorithm:Algorithm 8.2. Let u(0)i := ui and (0)i := i for i = 0; : : : ; n, and let t 2 [t`; t`+1)for some m � ` � n.For k = 1 to m 12



For i = `�m to `� k�(k)i := (t� ti+k)(ti+m+1 � ti+k)u(k)i := (1� �(k)i )u(k�1)i + �(k)i u(k�1)i+1(k)i := (1� �(k)i )ku(k�1)i kku(k)i k (k�1)i + �(k)i ku(k�1)i+1 kku(k)i k (k�1)i+1Set u(t) := u(m)`�m, p(t) := (m)`�m, v(t) := u(t)ku(t)k.Then the assoiated ICC is given by S(t) := v(t)p(t)It is lear that this algorithm produes the projetion domain Uu(t) = nXi=0 uiNmi (t):Comparing Algorithms 8.1 and 8.2, we see that the urve S is just a NURBS urves orresponding to setting wi = ikuik in Algorithm 8.1.For eah 0 � i � n, let Nmi be the funtion whih is de�ned by Algorithm 8.2using the oeÆient vetor with all zero omponents exept for i = 1. Thenp(t) = nXi=0 iNmi (t):Following the proof of 4.1, it is not hard to see thatNmi (t) = kuikku(t)kNmi (t): (8:1)Sine these ICC's are just speial ases of NURBS useful in a irular environ-ment, it is lear that they inherit all the advantages of NURBS. In partiular, wean de�ne a ontrol polygon IP by onneting the ontrol points Ci := vi=i andCi+1 = vi+1=i+1 with straight lines for i = 0; : : : ; n�1. Then the urve S lies in theonvex hull of IP, and interpolates it at the endpoints. Moreover, the well-knownalgorithms for degree raising, knot insertion, and subdivision an be applied.As �(t) := Arg(u(t)) is monotone inreasing for t 2 [0; 1℄, then we an alsoregard S as single-valued urve de�ned on the irular ar A := h�0; �ni by makinguse of the one{one orrespondene v(t) = u(t)ku(t)k between points on U and pointson A.As in the rational B�ezier urve ase, in pratie we propose to use the speialICC spline sublasses with linear or quadrati projetion domain U .Fig. 6 shows two examples of ICC splines. In both asesm = 3 and n = 11, andthe B-splines are de�ned using the knot sequene ftig15i=0 with t0 = t1 = t2 = t3 = 013



Fig. 6. Two ICC splines of degree 2.and 0 < t4 < � � � < t11 < 1 and t12 = t13 = t14 = t15 = 1. In the �gure on theleft U is a linear projetion domain, while on the right it is a quadrati projetiondomain.Analogously to what has been asserted by Theorem 5.2, we an establish thefollowing onnetion between p-splines and the inverse irular urves desribed byAlgorithm 8.2.Theorem 8.3. An ICC spline S(t) = v(t)p(t) , where p(t) =Pni=0 iNmi (t), with knotsftig is a p-spline urve S(�) = v(�)p(�) , where p(�) =Pni=0 i �Nmi (�), and knots f�ig,if t = tan(�), the projetion domain U for the ICC is de�ned by vetors ui withkuik = 1Qi+mj=i+1 os �j , and vi = uikuik = (os �i; sin �i), where �i =Pi+mj=i+1 tan�1(tj).Proof: The proof is simply redued to verify that�Nmi (�) = Nmi (t): (8:2)Using the following relation given in [3℄�Nmi (�) = os(�)mQi+mj=i+1 os �jNmi (t)where � 2 [��=2; �=2℄ and t 2 [0; 1℄, and relation (8.1), we have�Nmi (�) = os(�)mQi+mj=i+1 os �j ku(t)kkuik Nmi (t): (8:3)Now, ku(t)k = k nXi=0 uiNmi (t)k = k nXi=0 uiQi+mj=i+1 os �jos(�)m �Nmi (�)k14



and applying the linear preision property v =Pni=0 vi �Nmi (�)(see[3℄) and relationgiven for kuik, ku(t)k = 1os(�)m : (8:4)Replaing (8.4) and relation given for kuik in (8.3) we have (8.2).The advantage that we have got omputationally in the ICC ase with respetto the p-B�ezier is even more magni�ed in the ICC-spline ase. In fat, by a ompu-tational point of view, the ICC spline with linear or quadrati projetion domainan be evaluated using proedure suggested in subsetion 6.1, where de Casteljausheme in step 3. is replaed by the de Boor sheme, while p-splines require anexpensive onversion to NURBS (see [2℄) and the NURBS urve evaluation itselfthat is ertainly more expensive. x9. AppendixAn expliit representation of the basis funtion Bni an be derived from the algo-rithm 3.1. Eah of the basis funtions Bni onsists of a sum of produts of theform nYk=1 �(k)ik;mk ;with 0 � ik � i and mk 2 f1; 2g. The number of suh terms in the sum is equal tothe number of paths in the deCasteljau diagram leading from the oeÆient (0)ito the value Bni (t) = (0)n . To make this more preise, let Ii be the set of distintn-vetors obtained by permuting the omponents of (1; : : : ; 1; 2; : : : ; 2), where 1appears n� i times and 2 appears i times.Theorem 9.1. For all 0 � i � n,Bni (t) = X(m1;:::;mn)2Ii nYk=1�(k)ik;mk ; (9:1)where ik := i+ kX�=1(1�m�):Proof: Eah vetor (m1; : : : ;mn) desribes a distint path from (0)i to (n)0 . Thevalue mk = 1 orresponds to moving down and to the right in the deCasteljauarray. This orresponds to multiplying by a �(k)ik;1 fator. mk = 2 orresponds tomoving down and to the left, and orresponds to multiplying by a �(k)ik;2 fator.Aknowledgments. We would like to thank Larry L. Shumaker for many pro-dutive disussions and his valuable suggestions.15
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