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Abstract

In this paper we describe a new way to design rational parametric surfaces defined
on spherical triangles which are useful for modelling in a spherical environment.
These surfaces can be seen as single-valued functions in spherical coordinates.

Key words: Geometric Modelling; Spherical Coordinates; Rational Triangular
Bézier Patch; Single-Valued Surfaces

1 Introduction

The problem of defining curves on curves, or surfaces on surfaces, plays an
important role in Computer Aided Geometric Design (CAGD), in particular,
the problem of defining curves and surfaces over the sphere is of a certain
interest since it allows us to model circular/spherical phenomena in a more
natural way. The reader is referred to [9], chapter 9, for a detailed description
of this subject.

In this work we address the problem of defining convenient modelling tools
involving patches defined over spherical triangles. This problem has not re-
ceived much attention in the literature, possibly because until recently it was
incorrectly believed that there were no suitable form of spherical barycentric
coordinates. This myth was dispelled in [2] where coordinates used already
more than 100 years ago by Mobius were employed to create the so-called
CBB curves on circular arcs [1], and their generalization, called SBB-patches,
on spherical triangles [2]. These patches turn out to be suitable for data fitting
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on the sphere [3], although, as already observed in [2], they are not partic-
ularly useful for design purposes because, in general, they are not close to
their control curve/surface. To overcome this deficiency, interesting proposals
for modelling curves on circular arc were presented in [13],[17], and known as
polar(p)-Bézier curves and in [4],[18], and named polar(p)-spline curves, while
their generalization to tensor product surfaces is given in [19]. Unfortunately,
an extension of p-Bézier curves to spherical patches on spherical triangles, due
to the geometry of the sphere, does not exist.

In fact, the key aspect of the curve proposal in [17] is a fan-transformation of
the circular arc of a factor n that gives an n-partition on the arc defined by
n sub-arcs of the same arc length. This concept has no natural generalization
to the spherical setting. Let us motivate this issue in more details.

An n-partition of a planar triangle 7 := (uy, uy, u3), consists of n? identical
sized and shaped triangles on 7. It is well-known that all the triangles of this
n-partition on 7 have edges of lengths < uy,us >, < ug,uz >, < uy,uz >
divided by a factor n.

As observed in [2], for general n > 1, there is no analogous way to parti-
tion a spherical triangle T := (vq, vy, v3), with geodesic boundaries. That is,
the sub-triangles of the n-partition of 7" have boundaries that are not given
by a reduction of a factor n of the geodesic lengths of the boundaries of T
< V1,V >, < VUg,V3 >, < VU1,V3 >.

For a better understanding, let us see the case n = 2. Connecting, for ex-
ample, the middle points of (v1,vs) and (vqy,v3) of a spherical triangle T' we
get an arc of length x on the great circle through these points. From spherical
trigonometry, cos(z) = cos(A) cos(=%2:%32) where A is the area of the spherical
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triangle 7". This trivially shows that z # =722~

In this paper we characterize a special subset of rational Bézier patches defined
on spherical triangular domains that allows us to model with single-valued
surfaces in spherical coordinate system. These patches, that we call Inverse
Spherical Surfaces (ISS), exhibit most of the important modeling properties
such as for example a good sketch of their control surface. Moreover, they also
offer a natural way to model surfaces with complex shapes on the sphere, while
modelling such surfaces with rectangular patches would require degenerate
patches.

The ISS can be proposed as basic representation for a spherical modelling
environment which can be seen as a powerful tool in a classical CAD system
based on Non-Uniform Rational B-Splines (NURBS) in order to extend its
potentiality.

The paper is organized as follows. In Sect. 2 we briefly review some notations
and basic facts about rational Bézier patches defined on triangular domains.
In Sect. 3 we consider a special class of rational Bézier patches as ISS, and
in Sect. 4 surfaces in this class are analyzed in the spherical setting as single-
valued surfaces. Our proposal of a simple ISS subclass, efficient and useful for



modelling, is described in Sect. 5, and in Sect. 6 we discuss how these ISSs can
be smoothly joined together. We conclude the paper with remarks in Sect. 7.

2 Rational Triangular Bezier Patches

In this section we recall some well-known facts about rational triangular Bezier
patches, see [6],[10]. Let 7" be a triangle with vertices in IR?. Given a point
€ € T*, let (a1, ag, a3) be its barycentric coordinates relative to 7*. Then the
Bernstein basis polynomials of degree n on 7™ are defined by

n nl
B () == Tozlozéo/yf, (1)

for all integers 4, j, k with i + j + k = n. Now suppose that {w;;x}itj1k=n are
given real positive numbers, and that {b;}i:j1+r=n are points in R®. Then

Ei Wijkbije Biji (€)
— i+j+k=n 9
5(€) S wg By (2)

i+j+k=n

is called the associated rational triangular Bézier patch.

The points b;;;, are called the control points of the patch s, and the positive
scalar w;j, are called its weights. The control surface of s is the polytope in R?
formed by the control points.

It is well known that the patch s lies in the convex hull of the control surface,
and that s interpolates the control surface at the three vertices of 1. The
curves which arise when ¢ is restricted to one of the sides of 7™ are rational
Bézier curves. The following algorithm can be used to compute s(§) for any
given & in T™.

(0)

Algorithm 1 Let wg-),)c i= wij, and let uj = wijgbijr fori+j+k =n. Given

€ €T+, let (o, g, a3) be its corresponding barycentric coordinates.
For/=1ton

Fori+j+k=n—/{¢

Set iy = anujh + oouffy i + osulfy)
Set wif, = ey + awfiii) + ogwlj )
Setu(€) = ulfy, w(E) = wll), and s(€):= 4.



3 A Class of Inverse Spherical Surfaces

We now introduce a general class of spherical single-valued surfaces defined
on a spherical triangle. We recall that a spherical triangle T = (v, vo, v3) on
a unit sphere has, as boundaries, three circular arcs (vi,vs), (v2,v3), (v1,v3)
on great circles, that are thus geodesic curves. Here and in the sequel, we
shall denote by v either a generic point on the unit sphere or a unit vector
depending on the context.

Definition 1 (Spherical n-partition) Let T := (vn00, YVono, Yoon) b€ a spherical
triangle. Given a set of points vijx, ¢ + 7 +k = n that lie on T, then the set of
associated spherical triangles

71% (i1, Vit 1,k Vijik+1) s t+j+k=n—1, 3

TD = (Vis1j41,k Vi1 jk+1, Vit k1), 1+ J +k=n—2,

form a spherical n-partition of T if

1) their interiors are disjoint;
2) their union is the spherical triangle T itself.

Suppose now that {c;jx}itj+r=n is a set of given positive coefficients, and let
{wijk }itj+k=n be aset of points in R?, whose corresponding points on the unit
sphere

Vijk = uzyk/”uz]k” (4)

form a spherical n-partition of 7. Then we can define an associated spherical
surface S parametrized on the triangle 7™ by the following modified version
of Algorithm 1.

Algorithm 2 Let c( ,)C = ¢iji and u k = uyy fori+j+k=mn. Giwen§ €T,
let (a1, g, a3) be its barycentmc coordmates relative to T™.

Fort=1ton
Fori+j+k=n—1¢
_ (1) (1) (13*1)
Set uzgk QUi T Qoly; g + Q350
£—1 £—1 £—1
Set ol [ Emin A g, Gl (=1 o ;kﬁlnc(e—n
zyk (6) z+1]k (6) zg—l—lk [O) i7k+1
U gl IIU,-jkII 3 gl

Set u(§) := Uggg); p(§) = c(()g%, v(€) = IIzggH'



Then the corresponding Inverse Spherical Surface (ISS) is defined by

S(€) = ]%v(é), £eT (5)

It is clear that the algorithm produces the surface

u(§) = Z Uz’jkB?jk(f)a EeTr (6)

i+j+k=n

that we call the projection domain U. Our ISS is a single-valued surface defined
on a spherical triangle domain 7" by making use of the one-one correspondence
v(€) = I\U(ﬁ)ll between points on U and points on 7. Comparing Algorithms 1
and 2 we see that the surface S is just a rational Bézier patch corresponding to
setting wijx = cijk||wiji|| in Algorithm 1. As such, it inherits its control points
and control surface. Hence, we can represent S(£) in the following explicit
form:

. Zk wijk B (€)
S _ t+)+k=n . 7
O = el B @) ")

i+j+k=n

Conversely, suppose s is a rational Bézier patch (2) with control points b;;;, and
weights w;ji, for i+ j+k = n; if the set of v;j;, defined as viji, := biji/||biji|| form
a spherical n-partition then s can be interpreted as an ISS with ¢;jy, := 1/||b;j ||
and Uik = wijkbijk for ¢ +] + k =n.

4 1ISS as a single-valued surface on a spherical domain

So far, we have parametrized our ISS on the standard domain triangle 7™,
however, in order to better understand the nature and the potentialities of an
ISS as a tool for modelling in a spherical domain, in this section we revisit ISS
as a single-valued function in spherical coordinates.

In Algorithm 2, the second statement in the inner loop can be rewritten as

4 14 1) 1) -1
Ej;c Bz(jl)c lcz(—l—ljk + Bzgk QCz(j—l—lk + Bzgk 3cz(jk—|—)1’ (8)
where
¢ || 41 k” ¢ || —|—1k|| ¢ [t
ﬁi(jl)c,l = o J 51’(9'11,2 =o g1l 51’(7'11,3 = Qg m (9)
|| z]k” ” z]k” || z]k:”



We note that

l -1 -1 {—1
0) L “Eg)e(f) _ us-f—].]}(: u§g+13c U/S]k'f—)l .
oG (€)= ST g Ttk L] (10)
(ARG el T ”kH " Uil
4 £—1) (-1
ﬂz(]])c 1V z(+1]k(§) + Bz]k 2U2]+1k(€) + 5@]]«: 3V z]lc-l-)l (g) (11)

for z'+j+k =n—fandf=1,...,n, where vg.),)c := ;. The relation (11) asserts

that ﬁ”k 1 ﬁg,)m, and ﬁz(f,)c:,) are the spherical barycentric coordinates of the unit

vector vfﬁc with respect to the spherical triangle T( ) — = (v Z(iljl-,)c, vg;i,)c, vz(fk_i)l)

Note that, analogously to the planar triangle case on the boundaries of 7T,
the spherical barycentric coordinates reduce to ratios of geodesic lengths, and
in contrast to the usual barycentric coordinates, 51 + B2 + f3 > 1 in general.
The spherical barycentric coordinates were introduced in [2] where explicit
representations are given in terms of certain geometric quantities, in the form:

sin(d;)
sin(7;)

Bi = 1= 17 273a (12)

where §; is the oriented angle between v and the plane P; spanned by v;i1, Vit2,
while y; is the oriented angle between v; and FP;. The authors used them to
define associated spaces of BB-polynomials on spherical triangles which exhibit
most of the important properties of the classical BB-polynomials on planar
triangles, even if some of the geometric properties of planar BB-methods are
not carry over.

We now can reinterpret Algorithm 2 as a de Casteljau algorithm which uses
different (spherical) barycentric coordinates for each sub-triangle T(J ,2 instead
of using the same barycentric coordinates for each triangle as in Algorithm 1.

This has been our key idea in order to take into account the different shape of
the triangles composing the spherical n-partition. In fact, replacing the first
statement in Algorithm 2 with (11) and the second statement with (8) we get

an algorithm that computes a single-valued ISS providing the value c(()gg) and
the associated spherical domain point v(()g()).

Now suppose we run Algorithm 2 with all coefficients e(%ual to zero except for
cijik = 1, V€. Let Bj(€) be the corresponding value of 0000 Then it is evident

that

p&) = 2 cinBi(); (13)
i+j+k=n
we call the B, spherical Bernstein basis functions and we refer the reader to the

Remark section for their explicit representation. Moreover, considering (11) as



first step in Algorithm 2, the linear precision property on the unit sphere can
be easily derived:

v(§) = Z 'UijkB%k(f) el (14)

i+j+k=n

We now give a geometric interpretation of the Algorithm 2 for ISS, that has
been made possible by the linear precision property.
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Fig. 1. An ISS and its associated control surface (left); composition of eight ISS
patches (right)

Given the spherical n-partition vectors v;;; of the spherical triangle T', and
the set of non-negative coefficients c;;, an ISS is a single-valued surface on T
defined by the control points

1 L
Cijk = " Uijk, 7 +] + k= n, (15)
Cijk

and the corresponding piecewise control surface G' can be explicitly expressed
as the union of the n? patches

GY(v) = o = Y , (16)

906W)  BijkiCir1 gk + Bijr2Cijrik + BijksCigkt

veTl, i+j+k=n—1,and

1

v v
GP, (v) :== = (17)
" gi[;k(v) Bijk,1Cit1,5+1,6 + Bijh,2Cit1,jk+1 + Bijk,3Cij+1,k+1

veTh, i+j+k=n—2



Each g;;x, is the unique function which interpolates the vertices c;j; corre-
sponding to Tijx in P = span{Bijk1, Bijk2, Bijks}- Since, as shown in [2],
g(v)v,g € P represents a sphere passing through the origin, then v/g(v) is
a planar patch. This, in the spherical setting, reconfirms what was already
known by the rational representation, that is that the control surface of an
ISS is piecewise planar.

The geometric interpretation of Algorithm 2 in the spherical setting gives rise
to the intermediate control points

1
C= v i+i+thk=n—f €=1,..,n, (18)
Cijk

that are generated in the 'upright’ sub-triangles.

Fig. 1 illustrates, on the left, an ISS of degree 6, together with its associated
control surface and the boundaries of the spherical triangle; on the right, a
shaded composition of eight ISSs is shown.

Algorithm 2 for ISS, when one of the spherical barycentric coordinates van-
ishes, computes curves on arcs of great circles, that we will call inverse circular
curve (ICC). Then boundary curves of an ISS turn out to be ICCs with con-
trol polygons given by the boundaries of the control surface G. For a detailed
discussion on ICC for design on circular arcs we refer the reader to [5].

5 Modelling with ISS

In this section we propose a special class of ISS useful for a spherical modelling
environment, which offers an efficient evaluation, and provides the classical
modelling tools, such as degree raising, subdivision, and joining.

This subclass of ISS is characterized by a special projection domain U that is
a planar triangle 7 in IR® with vertices g0, Uono, Ugon- In order to mantain
this planar triangle as a Bézier patch of degree one, we choose the u;;; in (6)
as an n-partition of 7:

_ WUpoo t JUono + Koo

This trivially guarantees that the v;;, = HZ%H form a spherical n-partition.
ij

In this case a single-valued surface ISS is defined by w positive scalar

coefficients c;;, associated with vectors v;j; which form a spherical n-partition.
The associated piecewise planar control surface is given by the control points
1

Ciix = —vi;;, where - represents the distance from the origin in the direc-
J cijk M Cijk

tion Vijk-



In this case we can evaluate S(&) via (7) by the following simplified Algorithm
3 which is much more efficient than Algorithm 2.

Algorithm 3 Let wg-),)c = ciji||uijk|| for i+ j+k = n. Given & € T*, let
(a1, o, ai3) be its barycentric coordinates relative to T*.

Fort¢=1ton
Fori+j+k=n—-/

O (e-1) (f—i) (1)

Set w(§) = w(()g())a u(€) = a1Unoo + QaUono + A3Uoon
Then the ISS is defined by

S(6) = % (20)

Note that, the evaluation of an ISS at a given point v € T with spherical
barycentric coordinates (31, 82, and S3 is obtained by computing

t

||Un00||’

t

||U0n0||’

t
o = oy = 3y o3 = BSW (21)
00n

where t = tv N7 and ¢ > 0 is computed explicitly.

Fig. 2. ISS patch, n = 3; the pulling effect of the central control point

We now illustrate some examples of modelling in a spherical setting using ISS
with a planar triangle 7 as projection domain.

Given a degree n for the patch to be modelled, and a spherical triangle 7" =
(Vno0s Yono, Yoon), @ modelling system can initially set T with w00 := vnoo,
Uono = Vono, Uoon ‘= Ugon, and the remaining wu;jx by (19). The designer can
now choose the control points C;j; as in (15) along the directions v;;;, setting
the appropriate distances from the origin. In a modelling session the designer
is able to change both the given distances, and the position of the planar



Fig. 3. ISS patch, n = 3; the effect of changing ||usool|
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Fig. 4. Degree elevation of an ISS from n =2 to n = 6 (left); Subdivision of an ISS,

n = 3, into three ISS patches (right)

triangle 7 modifying the modulus of its vertices. Adjusting, for example, the
control point distances we obtain a classic pulling effect for the patch, see
Fig. 2, while the change of one or more modulus of g0, Uono, Uoon, produces
a shape deformation of the patch, see, for an example, Fig. 3. Note that the
latter slightly move the control points directions keeping their distance from

the origin.

In all figures the ISS patches are presented together with their control surfaces,
when needed, and with the boundaries of their spherical triangle domains 7.
As concerning the modelling tools, while the degree elevation for ISS can be
easily inherited from the rational case, the subdivision requires special care.

In fact, by using the modified de Casteljau scheme 2, we would expect to
subdivide an ISS into three ISS patches touching at a given point v with
control points given combining several steps of Algorithm 2. Trivially, the

10



boundary of the three ISSs must be curves defined on great circles. In case
of a generic projection domain U, this is not guaranted; see Remark 7.1 for a
counterexample. However, using planar projection domains with n-partition,
this trivially always holds. In the planar projection domain case we suggest
for the subdivision to use Algorithm 3. Using the subdivision tool we can
easily obtain that the restriction of an ISS to any circular arc that acrosses
the spherical triangle T (radial curve) is still an ICC curve.

For an example of degree elevation see Fig. 4 on the left, and for a subdivision
example see Fig. 4 on the right.

Our spherical modelling system has been provided with conversion tools from
triangular to rectangular patches in order to export models into a classical
NURBS tensor-product environment (see [14] and references therein). This
allows us to design models in a more natural and suitable way and it let us
exploit the well-known techniques for NURBS to ISS patches, as, for example,
the rendering algorithms.

6 Joining ISSs smoothly

In this section we consider sufficient continuity conditions between adjacent
ISS patches derived from imposing continuity conditions to the components
of the rational patch represented in homogeneous space.

In our modelling environment, starting from two ISSs on spherical triangles,
associated with given projection domains, we apply to one of the two ISSs, the
conditions given by the following proposition in order to join the two patches
with G' parametric continuity.

Proposition 2 Let T =< vy, vy,v3 > and T =< U1, v2,v3 >, be adjacent
spherical triangles, and let S and S be two ISSs defined on T and T by the
coefficients cijp, and C;ji. If the following conditions hold:

(C1) tgon := Ugon, Uono ‘= Uono, Cojk ‘= Cojk, J + Kk =mn;

(02) Unoo = )\Un()o + VUgno + Uloon and

[kl S V||U0j—|—1k||00j+1k N ,u||quk+1||
12l

~ 1 ~
@1l (1%

gljk: =\ Cojk+1 (22)

for j+k =n—1, where Uy, are given by (19) and (\, v, u) are arbitrary
scalar parameters such that A\ +v + p=1;

(C3) A < 0;

11



then S and S join together with tangent plane continuity across the common
boundary.

Before proceeding with the proof of the proposition, let us give an intuitive
comprehension of the given assertions.

Condition (C1) guarantee that S and S share a common boundary curve
associated to < vy, v3 > (so-called GY continuity). Condition (C2) guarantees
that S and S share a common tangent plane at all points of their common
boundary (denoted by G'). Condition (C'3) ensures that S and S have the
proper orientation with respect to one another. Intuitively, this means that
the surfaces must lie in the opposite sides of the boundary curve.

From proposition 2 we can obtain conditions for C' continuity in the sense
that the patches are continuous as we across by any great circle the common
boundary < wy,v3 >. Let, in fact, 7" =< t},%5,t3 > and T =< oty 15 >
in R? be the triangle domains associated respectively with the underlying
spherical triangular domains T and T of S and S. In case (), v, i) are the
barycentric coordinates of ¢} with respect to T*, then (C1), (C2), and (C3) in
proposition 2 become sufficient conditions for C! continuity.

Proof

To derive suitable continuity conditions for ISS we follow the general approach
used in literature for ensuring the G* tangent plane continuity of rational sur-
faces by requiring that the associated homogeneous surfaces possess the same
continuity. In the following we consider S and S in the rational form (7) where

we call wyjg == ||uijil|Ciji- N
The G° continuity is guaranteed assuming that S and S share the same bound-
ary; that is @, 1= uoj, Wojk := Wojk, J+k = n.Since we are considering

a planar projection domain where the u;;; form an n-partition, then (C1) con-
ditions follow.

G,

Fig. 5. Notations for the continuity conditions between adjacent ISS patches S and
S along their common boundary, degree n = 2

Following the Liu’s paper [12], the G' necessary and sufficient conditions be-

12



tween two triangular rational patches of arbitrary degree n are given by

HX,+ F(D,X) + E(DoX) 4+ G(D;X) = 0 (23)

where X = {u(&),w(§)} is the homogeneous representation of S(£), and anal-
ogously, X for S (&), Xo is  the homogeneous representation of the common
boundary curve, D, X, (D, X) is the first derivative of X(X) with respect to
the direction < #,t5 >, (< #,t5 >), while D, X is the first derivative of X
along the common boundary < t3,t5 >. Xy, D1.X, D, X and Dly are vector
valued polynomials of degree n,n —1,n — 1, and n — 1 respectively. Following
[12], H(t), F(t), E(t) and G(t) are polynomials in ¢t € (t3,t}), the degree of
which are not larger than 3n — 3,3n — 2,3n — 2, and 3n — 2, respectively. We
NOW assume

H=0, F=01/n)fo G=(1/n)gy and E = (1/n)eg (24)
where, fo, go, and ey are constants, in order to obtain explicit but only suffi-

cient conditions from (23). In this case, replacing (24) in (23), we obtain the
following G' conditions:

~ Jo €0 Jo | €0
Wijk = ——wWijx — —Woj41k T (1 + — + —)wo; 25
1 gg Uk T g woe (L0 ok (25)
~ € € .
Uy = —@Uuk — gk + (1 + To + Dugjess jHEk=n—-1 (26
9o 9o go 9o

These continuity conditions can also be interpreted geometrically, in fact they
involve that every pair of triangles of the control surfaces of the ISSs, along
the common boundary, be coplanar. Thus in case of planar projection domains
conditions (26) impose that also the projection domains 7 and T are coplanar.
Moreover, conditions (26) are trivially reduced to the computation of the
vector Uygp of T from the first relation in (C2), where

fo €0 fo €0
——v=—-—— n= 14+ =4+ —). 27
90 90 ( 90 go) ( )

A=

Then applying relation (19) we obtain an n-partition of T. Finally, relation
(25) can be rewritten replacing (27) and considering that wi;x := ||uijk|ciji S0
that to obtain the second relation in (C2). O

The coplanarity of 7 and T represents the major drawback related to this
special proposal of planar projection domain. In fact, given a spherical tri-
angulation, we can construct ISSs joining G' on less than a semisphere, that

13



is, the corresponding projection domains 7 and 7 must lie on a same plane,
while we could not model an ISS on a triangulation of the entire sphere.
Note that our modelling system conveniently compute %, on the direction v,
to be coplanar with the first projection domain 7, then choose (A, v, i), to be
the barycentric coordinates of #,,5o with respect to < 00, %ono, Ugon >- In this
case, the modelling system maintains the original spherical triangles T and T
and leaves the coefficients cgx, ¢ = 2,...,n,0+ j+k =mn of S unchanged.

Fig. 7. A G' spherical patch composed of 6 ISSs around a vertex

In Fig. 6 an example of C* join of two ISSs of degree 2 with projection domain
T, is shown before (left) and after (right) applying the continuity conditions.
In this figure the two ISSs with the associated control surfaces are shown to-
gether with the projection domains 7" and the boundaries of the corresponding
spherical triangles 7" and 7. We can also notice that since vy, vy, 91 lie on the

14



same great circle, the two corresponding ICC’s boundaries of S and S join
with C' continuity.

In case of a collection of patches, S, Ss, -+, Sy, that meet at a corner with
G' continuity (problem known as vertex enclosure or twist compatibility) ad-
ditional conditions to (C1)-(C3) must be satisfied. In general, this problem
is not solvable when N is even [16]. Several proposals have been introduced
to deal with the twist compatibility problem; in our modelling system we fol-
lowed and extended the Loop’s approach in order to guarantee that a solution
will always exist for a collection of N ISS patches, for any N.

In Fig. 7 an example of G join of six ISS patches of degree n = 6 around a
vertex is shown. In this case, the twist compatibility problem is solved using
fo= %, go = %, and ey = —% for each ISS patch. Note that the corresponding
ICC boundaries are sestic curves.

7 Remarks

Remark 7.1 Let S(&) given as in (7) with non-planar projection domain U;
then to see that subdivision is not in general guaranteed, let us take n = 2,
and uggy = (17070)T’ Uo20 = (07170)T7 Uoo2 = (0:07 1)T7 U0 = (171:0)T7
U101 = (1,0, 1)T, Uo11 = (0, %,1)T. We subdivide S(&) in f = (%, %,O)T, by
applying Algorithm 1 on numerator and denominator of (7), thus obtaining
two patches with projection domains having a common boundary defined by
the vectors: ugez = (0,0,1)”, ugor = (5,%,1)", and ugee = (2,2,0)”. The
projection of this common boundary into the unit sphere gives raise to a
circular arc that does not lie on a great circle. In fact, g2, go1, Ugoo lie on a

plane that does not contain the origin. Thus the two obtained patches are not
ISS.

Remark 7.2 An explicit representation of the basis functions Bf, is given by
the following result.

Theorem 3 Given 1 + j + k = n, let Z;j, be the set of distinct n-vectors
obtained by permuting the components of (1,...,1,2,...,2,3,...,3), where 1
appears 1 times, 2 appears j times and 3 appears k times. Then

O T SR | 1 (28)

(M1 yeeeymin ) €L g, £=1

where iy = (3,7, k) — S5, em, with e; := (1,0,0), e := (0,1,0), and ez :=
(0,0,1).

15



Proof

Each vector (my, ..., my) describes a distinct path through the steps of the
algorithm whereby the value cgg,)c = 1 can contribute to the final value of c(()g%.

At the /-th step we multiply by the factor 52'(2,1 ,- The triple 4, describe the
subscripts of the intermediate values cgf) that are created as we follow the path

0 0 ) g

from ¢, t0 ¢jpp-

The following result shows that there is a close connection between the basis

functions Bj}, and the classical Bernstein basis functions B}, defined in (1).

Theorem 4 For eachi+ j+k =n,

n oy — ikl pn

Proof
Using the fact that s(§) = S(£), comparing (2) and (5), then

p(€) = w(§) _ Z Cijk”uiijBn

W@ = 2, @l (30)

and the result follows. O

Remark 7.3 The octant of the unit sphere presented in [8] as a rational
quartic Bézier patch, has a quartic ISS representation with quartic projection
domain U. Note that using quadratic ISS with quadratic projection domain
U we are able to obtain a spherical patch having boundaries that do not lie
on great circles [7].
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