A New Approach to Perspective Views of
Spherical Coordinate Functions *

Alessandro Amoroso! Giulio Casciola *

Abstract

We present an algorithm for rendering perspective views of grid surfaces
for continuous functions defined in spherical coordinates where hidden lines
are removed. The algorithm operates in screen coordinates, is pixel exact and
renders any continuous function from any viewpoint. The worst-case time
complexity of the algorithm is linear in the number of facets and less than
linear in the size of the viewport. Our experiments show that for dense grids
it provides high-quality images at very low cost.

Categories and subject descriptors from Computing Reviews: 1.3.1[Computer Graph-
ics| Raster display devices, [.3.5[Computer Graphics| Surfaces, Geometric algo-
rithms, [.3.7[Computer Graphics| Hidden line/surface removal, G.4[Mathematical
Software] Algorithm analysis.

General Terms: algorithms, theory, performances.

Additional keywords: hidden line elimination, spherical coordinate functions, screen
coordinates, pseudopolar coordinates.

1 Introduction

An important coordinate system for representing mathematical and scientific func-
tions (and data) is the spherical coordinate system. A spherical coordinate system
(P,0,®) defines a radial distance P from the origin for each angle value of © and

*This research was supported by CNR-Italy, contract n.96.03845PS01

"Dept. of Computer Science, University of Bologna, Mura A.Zamboni 7, 40127 Bologna, Italy

{Dept. of Mathematics, University of Bologna, P.zza Porta S.Donato 5, 40127 Bologna, Italy
Phone +39 051354439, Fax +39 051354490, Email casciola@dm.unibo.it



®. For example, spheres, ellipsoids, toroids, superquadrics, spherical harmonics and
many others shapes and functions are most conveniently represented in spherical co-
ordinates. Methods for interpolating data over a spherical domain [8, 9, 10], such as
methods for modelling [11], have received attention in Computer Aided Geometric
Design.

In practice, a function is often presented as a set of values on the points of a grid.
Its graph can then be approximated by a “grid surface” made up of straight-edge
regions.

The hidden-line problem for plotting perspective views of objects is simpler when
restricted to grid surfaces [4]. In literature several authors have proposed algorithms,
some preferring speed of execution to the detriment of precision and generality
[1, 2,3, 5,6, 14, 15, 16], while others prefers precision and generality [4, 13] though
with some limitations on the point of view. The only scholar who deals with spherical
coordinate functions, extending Anderson’s proposal [4], is Suffern [13].

The proposals mentioned can be classified as those that solve the hidden-line problem
using floating point arithmetic in the projection plane and those that work in the
screen plane using integer arithmetic. The first to propose this second procedure
method was Skala [12] for parallel projections. The present study proposes a new
hidden-line algorithm for spherical coordinate functions that operates in the screen
plane using almost exclusively integer arithmetic and is general, pixel exact and fast.
Our proposal even goes beyond the limits of the Suffern [13] method: the function
can be observed from any viewpoint and spherical coordinate functions with zero
radius can be represented. For example our proposal allows for real time animations
by rendering the grid surface from any viewpoint on a trajectory.

The proposed method, as is already noted in literature [4], exploits the property of
being a function (single-valued) and continuous so that:

1. given the viewpoint, it is possible to determinate an occlusion compatible order
of the facets (OCFO) in a simple manner;

2. when the facets are processed in accordance with an OCFO, the region ob-
tained at each step is star-convex.

The main point of our proposal is to adapt Anderson’s star-convex region to a
discrete space. Then it is possible to store the boundary of the pixel invisibility
star-convex region as a discrete function, TOP, in pseudopolar coordinates. The
main advantage is that the pixel invisibility classification can be now performed with
little effort: a given pixel (8, p), lies within the invisibility region if p < TOP(8).

Section 2 states the problem and defines the geometry of the view that has been
adopted. Section 3 describes the fundamental ideas on which the proposed method
is based. Section 4 provides a variant which is again theoretically seen to be pixel
exact and computationally efficient. Next comes the analysis of the algorithm’s



d

Figure 1: grid points and grid elements

complexity followed by a comparison with Suffern’s proposal. They close with some
implementation details.

2 Problem specification

Let
P=F(0,0) with(0,0)c [0,7] x [0,27)

be a continuous function in spherical coordinates which has to be graphically rep-
resented on a raster display. In practice, the function is represented as a set of
values on the points of a grid. Its graph can then be approximated by a grid surface
consisting of straight-edge regions.

Let Og,...,0 be a strictly increasing sequence of latitude angles where @y = 0
and Oy = m, and let @, ..., Py_1 be a strictly increasing sequence of longitude
angles where @ = 0 and ®n_; < 27(Py = 27) (the spacing need not be uniform).
Points in spherical coordinate of the form (1,0;, ®;) will be called grid points.
Grid points with @ =0 (: = 0) and © = 7 (1 = M) will be called north and south
pole respectively and must be considered as two grid points only.

We call grid element F with index ¢, 7, (E;;), the planar patch (quadrilateral or
triangular) bound by the edges (1,0;, ®;)-(1,0,41,9;), (1,0;,P;11)-(1,0,11,P;11),
(1,0;,9,)-(1,0,,®,41) and (1,041, P;)-(1,0;41, P,;41). The image of a grid element
under a function will be called a facet.

A grid surface is a continuous function ¢ : [0, 7] x [0, 27) —IR which has the given
P values at the grid points and is linear between adjacent grid points.

We represent the function g(©, ®) on a raster device by drawing the image of line seg-
ments connecting adjacent grid points, under a perspective projection and window-
viewport transformation.

To perform hidden-line removal we assume the following condition: the perspective
projection of any facet (i.e. the image of a grid element under g) is bounded by



AZ

Figure 2: viewing geometry

the projection of the facet boundary. This condition means that a facet must never
obscure its edges.
The following assumptions are made about the viewing geometry:

o the grid surface ¢(©,®) is viewed from the viewing position, or center of
projection V, = (X,,,Y,, Z,) in world Cartesian coordinates;

e the viewing direction is V; = (=X, —Y,, —7,) so that it passes through the
origin of the world spherical (P, 0, ®) and Cartesian (X, Y, 7) coordinate sys-
tems;

e the image plane, or projection plane [,, is perpendicular to Vj.

e An z,,y, Cartesian system is defined on the projection plane with origin O,
obtained as the intersection between the plane and V;, and y,, as the projection
of the Z axis on the plane.

The viewing geometry described implies that the grid surface projection is contained
in a circumference with center O,, and a proper radius r,,.
3 Basic algorithm

Anderson was able to exploit the following two geometric properties of the images
of cartesian grid surfaces. Suffern realized that they was also valid for spherical grid
surfaces.

1. An occlusion compatible facet order (OCFO) exists from the nearest to the
furthest facet with respect to V,,. We can define this order to be an enumeration



of the facets g(F;;)1,9(E:ij)2, ..., 9(E;j)nm. Therefore if g(E; ;) occludes
9(Eij)k, then g(E; ;)1 < g(Ei )k

2. When the facets are processed in an occlusion compatible order, the image-
region is star-convex with respect to the origin O,,.

Since ¢ is single-valued, the OCFO is not dependent on g and it is sufficient to define
the above order for the F; ; grid elements. The OCFO depends only on the viewing
position V,, and can be obtained in a simple manner with low computational costs.
There are many OCFOQ’s; the one utilized in this paper has already been proposed
by Suffern [13].

3.1 Pseudopolar coordinate transformation

Let r; be the transformed r,, in accordance with the window-viewport transforma-
tion. Let C be the set of pixels inside the circle centered at the origin and radius
rs; for every pixel in C' we define the transformation in pseudopolar coordinates as:

[':C—=0...m—1] x[0,00)
[ (2,y) = (0 = round(“W) o = /a7 y7)

with [0...m — 1] integer interval
[0,00) real interval

AO =27 /m

For our purposes it is important to utilize a system of pseudopolar coordinates where
I' is injective. Note that infinite choices exist for m so that this may be possible.
Trivially a good example of m is given by:

m = 8 round (\/757“5) +4

which corresponds to the number of pixels generated by Bresenham’s algorithm
[7]for the circumference of radius r;.

3.2 A screen coordinate segment as a pseudopolar discrete
function
Let (x4,y4) — (25, yB) be a segment in screen coordinates defined by its end-points.

Let 04 and 0p be the 0 transforms of (z4,y4) and (xp,yp) respectively according
to I'. We can define a discrete function relative to the segment as:

G[@AGB]—}[0,00)
G:0—=Q|2 for 0=04,...,08



A= PA-

\ ~ Pg - iy

0, Og
Figure 3: segment AB and its discrete function ¢

with [04...0g] being an integer interval, () being the intersection between segment
(x4,ya) — (xp,yp) and the straight line passing through the origin of slope tan(f)
(see Fig.3).

3.3 Proposed method

In algorithmic form the proposed method is summarized in the following steps:

Transform the grid surface into screen coordinates by means of perspective projection and
window-viewport transformation;
Initialize the discrete function TOP : [0...m — 1] — [0, 00) into pseudopolar coordinates
at 0 value;
For every grid element (F; ;) k=1,..., NM, in accordance with an OCFO, do
For every boundary segment of the ¢(E; ;) projection not yet processed do
For every pixel (z,y) (generated with the Bresenham algorithm) of the segment do
transform the pixel in (6, p) according to I';
if p < TOP(0) then draw the pixel;
calculate the discrete function GG of the segment;
update the function TOP as the maximum point by point between the TOP itself
and the G functions determined by the segments.

The exactness of this proposal is guaranteed by the fact that the pseudopolar co-
ordinate transformation is injective, hence two pixels in screen coordinates may be
differentiated for visibility by means of the TOP function. At each step the TOP
function perfectly preserves the star-convex image-region that we call pixel invisi-
bility region.



4 Improved method

Unfortunately, the hereby proposed method is not efficient. Every segment, partic-
ularly those close to the origin, produces a GG function of great domain, even if made
up of few pixels. The determination of this function is not competitive, in fact the
value || @ ||z for all 8; € [04...605] needs to be compute.

For such a proposal to become competitive it is necessary to simplify the determi-
nation of the ¢ function in pseudopolar coordinates while continuing to precisely
preserve the pixel invisibility region.

The basic idea of a less expensive (& is to consider ; of each segment pixel, that is
already known. For each of these 6; a value of (G is calculated, then the remaining
values for G are determined in a simple manner.

With reference to the pixel invisibility region; let By be the polygon defined by the
sides of its boundary (see Fig.4A). Let By be the polygon whose vertices are the
centers of the pixels that are generated by applying the Bresenham algorithm to the
sides of Bj(see Fig.4B).

Note that, for exactness of the algorithm, it is necessary to preserve only the pixels
inside the invisibility region. Preserving the boundary pixels as well (pixels already
processed and drawn), does not affect the exactness of the algorithm and leads to a
reduction in complexity because there is no need to re-draw already drawn pixels.
Then we consider B, as the boundary of the pixel invisibility region.

Definition: a closed polygon is called star-convex with respect to one of its internal
points if the vertices, which are transformed into polar coordinates that originate in
the defined internal point, have monotonic angles in a strict order.

Definition: a closed polygon is called star-convex, but not strictly so, with
respect to one of its internal points if the vertices transformed into polar coordinates
have monotonic angles that are not in strict order.

Note: if a polygon with floating point vertices is star-convex, the polygon defined in
screen coordinates (that is, with vertices transformed in screen coordinates) will at
most be star-convex, but not strictly so.

The region enclosed by By might not be star-convex at all (see Fig.4B). However it
is always possible to transform this region into a star-convex, but not strictly so.
To do that one must consider, side by side, only the pixels whose centers are in
angular order (see Fig.4C). Let Bs be the polygon whose vertices are the centers of
the pixels here considered. The pixels inside B; are also inside Bs; the pixels inside
Bs but not inside B, are boundary pixels for the region enclosed by By (compare
Fig.4A with Fig.4C). This is true because the following considerations are valid:
Definition: let us consider a straight line, r, in the plane XY and two parallels
equidistant from r. The distance between the two parallels is 1 on the X axis if the
slope of r is > 1, otherwise is 1 on the Y axis. The plane area delimited by the two
parallel is then called strip associated with the straight line r (see Fig.5A).



\ [] inside pixel
// \
/ [[]boundary pixel
~~ r g [l end-point pixel
(A)
A A
4
7
(B) (€)

Figure 4: invisibility region with boundary By (A), invisibility region with boundary

By (B), invisibility region with boundary Bs; (C)




\
A\

jai

) . ®

Figure 5: strip (A) and path (B) defined by line r through two integer coordinate
points

Definition: given a straight line r in the plane XY passing through at least two
integer coordinate points, the set of pixels generated by the Bresenham algorithm
for r (see Fig.5B) is defined as the path associated with r.

Observation: given a straight line passing through at least two integer coordinate
points, the pixels of the path are the only ones whose center is inside the half-open
strip of the straight line.

Trivially, it turns out from the observation that any broken line, whose vertices are
the pixels in the path, will be entirely contained in the half-open strip of the straight
line r. Thus every pixel on one side with respect to the path (or the strip) will also
be on the same side with respect to the broken line.

Given a segment (z4,y4) — (xB,yp) in screen coordinates, let 64, 0 be the trans-
formed 6 of the ends according to I'. The new G : [04...05] — [0,00) is defined
as follows: without loss of generality it is assumed that 84 < 0. Using Bresen-
ham’s algorithm, the pixels (z;,y;) j = 1,...,n of the segment path are generated,
where (21,y1) = (24,y4) and (2,,y,) = (:L'B,yB) the transformed coordinates of
(xj,y;) 3 =1,...,n, are defined as (0;,p;) j = 1,...,n, according to I'. Therefore,
we have the following:

G@ :,0
,0
Zf (9]‘_1 <(9]‘
max(pj-1,p;) if 0j-1=10;
nothzng of 0,20 >0,
for j=2,. n—land@E[@l (9]

Let 0y, k = 1,...,01 (I < n) be the integers to which a value for G has been
attributed; (7 is defined in the remaining 6 € [0 ..., as the following:

( ) = miﬂ(ﬂ]«'apKH)
V@ € (0]{...0]{4_1) [X7 - 17...7l— 1



(5]
|
|
1

\
[ 11
W
1
|
1

Figure 6: segment AB of pixels and its discrete function G only the bold 8 values
are obtained by transforming pixels

In reference to Fig.4, let B4 be the boundary of the invisibility region defined by the
discrete function TOP obtained by starting from the new G functions. It is necessary
to prove that Bs and By have the same inside pixels (see Fig.7 and compare with
Fig.4C).

Main Result: boundary regions B3 and B4 have the same inside pixels where, by the
term ”inside pixel” we mean that its center is inside the region.

proof: proceed by proving the statement for every circular sector g — 011 —
min(px, pr+1) and triangle (0,0) — (O, pr) — (Ox 41, Pr+1)-

Note that, because of how they are constructed, the circular sector is always con-
tained in the triangle except where px = pry1, when the opposite occurs. Let
us proceed by distinguishing the two following cases: points between (6x, px) and
(Ok+1,pr+1) which G must completed, either are or are not the transforms of adja-
cent pixels of the segment.

proof of the adjacent pizels case: trivially, whatever pg and pgiq are, the inside
pixels at the circular sector 0 — 011 — min(pk, pr+1) are the same as those of the
vertices triangle (0,0) — (0x, px) — (Ox+1, pr+1) (see Fig.8A).

proof of the non-adjacent pixels case: this occurs for approximately radial pixel
segments from which px # pr41 and the triangle (0,0) — (0x, pr) — Ok 41, prc+1)
will contain the circular sector 0k — Ox+1 — min(pk, pr+1) (see Fig.8B). It will be
sufficient to prove that the difference region does not contain pixels.

This is the aim of the following theorem and corollary.

theorem: given a segment of integer coordinate end-points (x1,yy) and (z,,y,) let 6;
and 6,, be the corresponding angles. Without loss of generality let ((y, — v1)/ (2, —
x1)) > 1 and ((x,y1 — x1yn)/((x, — x1)) < 0 (that is, the origin is to the left of
the segment). Let (x;,y;) ¢ = 1,...,n be the integer coordinates generated by the
Bresenham algorithm for the pixels of the segment. Let (x;,y;) 7 ={+1,...,k—1be
such that 8; < 6, and 0, > ;. Then pixels (z,y;) with z < x; for j=1+1,...,k—1
have the angle § > 0.

10



):
L NS

\

Figure 7: invisibility region with boundary By

Ys :¥ Ys %

pK+1/ /
A

/ Pk
p|<+/
Pk

I

/< eK+1
/ QK

K Okt \

\

\j

4

(A) (B)

Figure 8: case of adjacent pixels (A) and non-adjacent (B)

11



A (Xk:Yk)

Xk:YK)| /

x|/

/

(x1.y1)
(A) / (B)

Figure 9: segment with endpoints (4,8) (7,16). (B) is a magnification of (A)

proof. consider the polygon ¥ of vertices (z;,y;) j =1{,...,k. Since these vertices
belong to the path of segment (x1,y1) — (2, y,) they are, due to observation pre-
viously made, inside the segment strip, therefore polygon ¥ has no inside pixels.
From the hypothesis the half-line (0,0) — (2, y;) will intersect polygon ¥ only at one
other point, A, beyond (x;,y;). It follows that triangle (2, ) — A — (2k, yx), being
in ¥, has no inside pixels. Now let M be the mid-point of segment (x;, y;) — (@k, yx)-
It follows that triangle (z;,y,) — A" — (2, yx), symmetrical with respect to M of
(g, yx) — A — (21, y1), has no inside pixels either. This proves the theorem. O
corollary: Based on the hypothesis of the previous theorem let (z;,y;) 7 = [+
l,...,k — 1 be such that 6; < 6, or §; > 6, and 0, > 0,. Pixels (x,y;) with
x<x; for 3=101+41,...,k—1 then have angle § > 0;.

proof: the proof is perfectly analogous to that of the previous theorem. Here the

12



polygon ¥ has vertices (x7,y1), (wk,yx) and only (x;,y;) j=1+1,...,k—1 so that
0; <6, 0O

5 Algorithm analysis and comparison

5.1 Space complexity

The memory allocation consists of two arrays of 32 bit unsigned integers for the
function TOP in pseudopolar coordinates and a copy of it respectively. Dimension
m of these arrays is given by:

circle

Af

m =

where Af and circle depend on a chosen pseudoangle function. Quantity A# is
such that, in the I' transformation into pseudopolar coordinates, there are distinct
integers 6; at every pixel on the maximum circumference. This allocation depends
only on the viewport-size. This is unlike the one proposed by Suffern [13] in which
the boundary of the invisibility region is stored on a list of coordinate floating point
items dynamically allocated. This allocation depends on: the represented surface,
the grid and on the viewpoint.

5.2 Time complexity
The complexity of the proposed algorithm may be structured in:

Cror = Co(facets) + Cy1(facets,viewportsize) + Cy facets, viewportsize)
where

Co(facets) summarizes: the relative complexity in calculating the function P =
F(0,®), the perspective projection and the transformation into screen coor-
dinates of the grid points, determination of an OCFO, and a simple visibility
test of the facets. All these steps lead to a complexity that is a linear function
of the single facets;

C1(facets,viewportsize) considers: the complexity of the transformation into pseu-
dopolar coordinates of the invisibility test, the possible drawing and determi-
nation of belonging to the star-convex, but not strictly so, boundary, of every
pixel of the sides of the facets. It is a linear function in the number of processed
pixels so that:

C1(facets,viewportsize) = const - Nprocessedpizels(facets, viewportsize)

13



ViewportSize Suffern
No.of 4002 5002 600? 800? 10002 To Tror
facets|Tror| Ti|Tror| TV|Tror| Ti|Tror| Ti\|Tror| Ti
2521 0.10[0.03| 0.12]0.04| 0.14]0.05| 0.19]0.06| 0.23]0.08/0.02 0.05
50| 0.250.06| 0.28]0.07| 0.32]0.09| 0.40[0.12| 0.47]0.14/0.08 0.20
100%| 0.66(0.12| 0.72(0.15| 0.80(0.18| 0.95/0.23| 1.10(0.29]0.33 0.86
1502] 1.26(0.19| 1.35|0.23| 1.47|0.27| 1.68/0.34| 1.90/0.43|0.73 2.16
200%| 2.05(0.29] 2.18]0.33] 2.32(0.39] 2.62(0.49] 2.88(0.61(1.29 4.28
2502%] 3.08(0.37| 3.27|0.45| 3.43|0.51] 3.75/0.61| 4.10]0.74(2.03 7.39
3002%| 4.31]0.50| 4.48]0.55| 4.71]0.66] 5.10[0.76] 5.50/0.90(2.93 11.64

Table 1: Execution times [sec] of Suffern and our algorithms for the sphere surface

where Nprocessedpizels is a function that is at most linear in the facets and
less than linear in the viewport-size. When the facets or the the viewport-size
quadruplicates for a smooth function, then the pixels double. For an irregular
function when quadruplicating the facets, the pixels quadruplicate, but when
quadruplicating the viewport-size, they double;

Cy(facets,viewportsize) considers the completion phase of the (G function and the
updating of the TOP function. This turns out to be linear in the worst case
both in the facets and in the viewport-size.

Therefore Cror is linear in the worst cases with respect to the facets and less than
linear with respect to the viewport-size.

5.3 Performances

The proposed method was implemented in a C language program on a Silicon Graph-
ics Indigo, with a XZ4000 processor running at 100MHz. We also developed versions
for PC computers, using both Pascal and C language. The program has been tested
on many surfaces. Performance results of our method and of Suffern’s algorithm are
shown in table 1 and 2 for the sphere and random functions respectively. These were
generated on uniform grids varying fineness on the interval [0, 7] x [0,27) and vary-
ing viewport-sizes (applied only to our method). Tror, Ty and Ty are the execution
times respectively for Cror, Co and Cy. T can be evaluated by Ty = Tror—To—1T}.
The execution times Tror, graphically represented as functions of the facets, are
shown in Fig.10 and Fig.11.

The grid surfaces, with values on 101 x 101 grid points (100 x 100 number of facets)
from the spherical view-point (100, 1,1) are shown in Fig.12.

Fig.13 and Fig.14 show the graph of function Nprocessedpizels(facets,viewportSize)
for the sphere and random surfaces, which respectively represent the most and the

14



ViewportSize Suffern
No.of 40072 5002 6002 80072 10002 To Tror
facets|Tror| Ti|Tror| Ti|Tror| Ti|Tror| Ti|Tror| Ti
252 0.16| 0.07| 0.19] 0.09] 0.22| 0.11| 0.28| 0.14| 0.35| 0.18(0.02 0.63
502 0.52| 0.30| 0.62| 0.37] 0.72| 0.44| 0.93| 0.58| 1.13| 0.72]0.09 0.33
1002] 1.78] 1.14| 2.12| 1.40| 2.45| 1.67| 3.14| 2.21| 3.81| 2.73/0.34 2.19
150%| 3.86| 2.59| 4.59| 3.21| 5.31| 3.81| 6.75| 5.02| 8.20| 6.23]0.76 6.71
200%| 6.65| 4.57| 7.88| 5.65| 9.10] 6.70({11.54| 8.83|13.89]10.92|1.34 15.45
250%110.33| 7.17|12.16| 8.79(14.04]10.44[17.65/13.63|21.32|16.88| 2.1 32.23
300%(14.72/10.36[17.30{12.68|19.98]15.10(25.45|19.70|30.55|24.41|3.04 56.17

Table 2: Execution times [sec| of Suffern and our algorithms for the random surface

T1oT [sec]

0 f ; ; ; !
0 20000 40000 60000 80000 100000

Number of facets

Figure 10: total execution times of Suffern and our algorithms as functions of the
number of facets for the sphere surface

15



T1o7 [sec]

0 20000 40000 60000 80000 100000

Number of facets

Figure 11: total execution times of Suffern and our algorithms as functions of the

number of facets for the random surface

T
i

LA

Figure 12: Plot of the functions F(©,®) = 50 and F(0,®) = 25+ 2 (16 random)

where random is a random variable uniformly distributed in [0, 1]

16



350000

—<&— 10002

300000 +|—&— 8002
["2]
u 2
S 250000 1| © 600
% —— 5002

2
4 00000 4002
Q
O
€ 150000
=

100000

50000

0 ¥ : : : : |

(@]

20000 40000 60000 80000 100000

Number of facets

Figure 13: Nprocessedpixels as functions of the number of facets for the sphere
surface

least regular function.

These results confirm that the algorithms, as implemented, are approximately linear
in time [13] and linear in time for the worst case (ours) as functions of a number
of facets. Actually, for most of the functions, as shown in the examples of Fig.15
and Fig.16, the graph of the execution time is more like that of the sphere than the
random surface.

All the tests carried out show that our proposal is highly competitive for fine grids,
proposing itself as a valid tool for high quality rendering at low cost. For example,
see Fig.17 where it is necessary to utilize a grid 360 x 720 in order to begin to
recognize the shape of lands above sea-level. The execution time for this example is
13.43sec for our algorithm and 43.13sec for the Suffern algorithm with a viewportsize

800 x 800.

6 Some computational details

6.1 Simple visibility test

The proposed method makes use of a preliminary simple visibility test for all the
facets that aim to improve performance. Consequently, the facets that are negative
on testing do not require further elaboration. The test adopted is quite similar
to that proposed by Anderson for Cartesian coordinates, and taken up by Suffern
for spherical coordinates. Our version differs from the latter by working in screen

17



9000000
8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

Nprocessedpixels

—<— 10002

0 20000

40000 60000

Number of facets

80000

100000

Figure 14: Nprocessedpizels as functions of the number of facets for the random

100000

surface
—— Suffern
16 T —o— 10002
14 T |—a— 8002
12 1 [—o— 6002
= 10 T [—o—5002
% 8 T [—0— 4002
E 6 A
4
>
0 | I
0 50000
Number of facets
Figure 15: Total execution times for

the surface F(O,®)

(cos(g(©)) — 1)))/(5.0sn(m[2(cos(g(©)) — 1)))) with g(O) =
(m —0.8) or ¢g(0) = 0.8 otherwise, shown on the right

18

1

7
</

%,

%

-

ARt

-‘-‘{ X

= abs((sin(2.57
Oif 0.8 < 0 <



—— Suffern
18 T [—o— 10002
18 T |—a—sg002
" T | —o— 6002
— 12 4
2 —O— 5002
£, 10 4
5 —<— 4002
[ 8
l—
6 -
4
2 -
0 I
0 50000
Number of facets
Figure 16: Total execution time for the surface F(O,®) = 0.6

if (int)(©/AO) and (int)(P/AP) are both odd and F(O,®) = 0.2 otherwise
with A® = AO = 7/20, south pole = 0.2 or north pole = 0.6, shown on the right

coordinates (integer) and also by managing the cases of projected facets with vertices
in the origin or sides passing through the origin.

6.2 Pseudopolar transformation

The algorithm does not need to know the exact value of the angle or radius in
polar coordinates corresponding to a pixel, but only the angular and radial order of
the pixels. Thus a transformation I'; in which the pseudoangular and pseudoradial
functions are strictly increasing both in angle and radius respectively, is sufficient.
The simplest pseudoradius p for a pixel with screen coordinates (x,y) is given by:

p=a’+y’

A continuous pseudoangle function, less computationally expensive compared to
a = arctan(y/x), may be the following:

1—2% 4f >0, y>0

(.4) = I+ if 2<0, y>0
AEITY 3 if e <0, y<0

345 if ©20, y<0

19



Figure 17: plot of the earth with grid 360 x 720

20



a(cos@), sin@®))

Figure 18: graph of function «

For our purposes, a discrete pseudoangle function is necessary so that pixels with
the same p must have different pseudoangles. In the definition of I'" the function
arctan(y/x) : IR* — IR restricted to a circumference, or thought of as a function of
the angle 6, is the line of slope 1. The function a(x,y) given above, has the graph
shown in Fig.18 for 0 < 0 < 27.

In the definition given of T it is possible to define m simply as the number of pixels
on boundary (' in order to satisfy the injectivity. For the function just given, the
definition of m is more complex. Note that the function a(cos8, send) for 6 € [0, 7/2)
has its minimum slope in 7 /4. Here the function has a flex with the tangent line of
equation o = ((4+4m)/8 —0)/2 which has values in the interval [(4 —7)/8, (4+7)/8]
or range 7/4. The sought after m will then be given by:

(4 (8 round (Lr,) + 4))

m = round
T

6.3 Screen segment through the origin of the pseudopolar
coordinates system

This case is frequently found due to the working in screen coordinates. Segments,
which in the projection plane are only close to the origin, once transformed into
screen coordinates will, in fact, pass through the origin. In particular, this case
is also found in the conditions of P = 0 or V, aligned with latitudinal and/or
longitudinal edges.

The proposed method, which runs a pixel invisibility region that is star-convex, but
not strictly so, manages to control this case in a simple manner. If a segment has
an end-point in the origin, it will be radial with the pseudoangle determined by the

21



other end-point. In the updating phase it will, at most, modify a single value of
the TOP function. The case of a segment aligned with the origin is managed in the
same way, that is, the two end-points have the same pseudoangle.

Where the segment passes through the origin, it is broken into two segments, each
one with an end-point in the origin. The segments are managed as in the above-
mentioned case.

7 Conclusions

The proposed method is: general, pixel exact, and faster than the known algorithm
on fine grids. For most of the functions the complexity is less than linear both in
the facets and in the viewport-size.

The idea of the method has also been applied for functions in Cartesian coordinates.
This implementation is more involved with respect to the presented one. The main
complication is that two discrete functions are necessary, TOP and BOTTOM,
to store the boundary of the invisibility region. Furthermore, the origin of the
pseudopolar coordinate system, V., (the intersection of the projection plane and
the z-direction line passing through V), may be so far from the boundary of the
invisibility region to require floating point arithmetic. V., may also be out of floating
point range or undefined (two vanishing points). In these cases we need to apply
the two array mask algorithm that is correct and pixel exact [1, 3]. Moreover, our
proposal outperforms the Anderson’s proposal.

The idea is also successfully applicable for other types of representations, such as
contours lines.

References

[1] Alvisi, L., Casciola, G. On the two array mask hidden-line algorithm. Computer
& Graphics 13, 2 (1989), 193-206.

[2] Alvisi, L., Casciola, G. TAM rivisitato: un metodo rapido ed esatto per la
rappresentazione prospettica di superfici, Pizel, 10 (1988), 15-25.

[3] Alvisi, L., Casciola, G. Two and four array mask algorithms in practice. Techni-
cal report, Department of Mathematics, University of Bologna, (February 1988).

[4] Anderson, D. P. Hidden line elimination in projected grid surfaces. ACM Trans-
action on Graphics 1, 4 (Oct. 1982), 274-288.

[5] Butland, J. Surface drawing made simple. Computer Aided Design, 11 (1979),
19-22.

22



[6] Chen Wang, S., Staudhammer, J. Visibility determination on projected grid
surfaces. [EEE Computer Graphics & Applications, (July 1990), 36-43.

[7] Foley, J., van Dam, A., Feiner, S., Huges, J. Computer Graphics, Principles and
Practice (2 ed.). Addison Wesley, (1990).

[8] Lawson, D.L. C'' Surface Interpolation for Data on a Sphere. Rocky mountain J.
Math., 14 (1984), 177-202.

[9] Nielson, G.M., Ramaraj, R. Interpolation Over a Sphere Based Upon a Minimum
Norm Network. Computer Aided Geometric Design, 4, (1987), 41-57.

[10] Renka, R.J. Interpolation of Data on the Surface of a Sphere. ACM Trans.
Math. Softw., 10, (1984), 417-436.

[11] Sanchez-Reyes, J. Single-Valued Surface in Spherical Coordinates. Computer
Aided Geometric Design, 11, (1994), 491-517.

[12] Skala, V. An Interesting Modification to the Bresenham Algorithm for Hidden-
Line Solution. NATO ASI Series F17 in Earnshaw, R.E., (Ed.), Foundamental
Algorithm For Computer Graphics, Springer-Verlag, New York, (1985), 343-347.

[13] Suffern, K. Perspective views of polar coordinate functions. Computer & Graph-

ics 12, 3/4 (1988), 515-524.

[14] Watkins, S.L. Masked three-dimensional plot program with rotations. Commu-
nication of ACM 17,9 (1974), 520-523.

[15] Williamson, H. Algorithm 420 - Hidden-line plotting program [j6]. Communi-
cation of ACM 15, 2 (Feb. 1972), 100-103.

[16] Wright, T.J. A two space solution to the hidden line problem for plotting func-
tion of two variables. IEEE Transaction on Computer, (Jan.1973), 28-33.

23



