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Let � = fxigi=�m+1;:::;m+K be a sequene of nondereasing reals, alled knots. TheB-splines of order m, subordinate to �, are the funtions fQi;m(x)gi=�m+1;:::;K de-�ned by the reurrene relationQi;m(x) = ( (x�xi)Qi;m�1(x)+(xi+m�x)Qi+1;m�1(x)xi+m�xi if xi < xi+m0 otherwisewith Qi;1(x) = ( 1xi+1�xi if xi � x < xi+10 otherwise:TheoremLet xi < xi+m and suppose D+ is the right derivative operator, then for m > 1D+Qi;m(x) = (m� 1)Qi;m�1(x)�Qi+1;m�1(x)xi+m � xi :We use the right derivative operator beause the spline funtions Qi;m(x) ould notbe derivable in ertain knots.de Boor's original proof of this result used the divided di�erene de�nition of B-spline [2℄. Later a proof using dual funtionals was given [3℄. In this note a thirdproof will be given. Although this is slightly more umbersome, it is also moreelementary beause it uses neither divided di�erenes nor dual funtionals but onlyindution and the reursion formula for B-splines.ProofWe proeed by indution on m using the above reurrene relation.For m=2D+Qi;2(x) = 1xi+2 � xiD+[(x� xi)Qi;1(x) + (xi+2 � x)Qi+1;1(x)℄ =if we derive and observe that the Qi;1(x) are pieewise onstant funtions, we obtain= 1xi+2 � xi (Qi;1(x)�Qi+1;1(x)):Assume now that it holds for m-1D+Qi;m(x) = 1xi+m � xiD+[(x� xi)Qi;m�1(x) + (xi+m � x)Qi+1;m�1(x)℄ =2



if we derive and then apply the indution hypothesis= 1xi+m � xi [Qi;m�1(x) + (x� xi)(m� 2)Qi;m�2(x)�Qi+1;m�2(x)xi+m�1 � xi +�Qi+1;m�1(x) + (xi+m � x)(m� 2)Qi+1;m�2(x)�Qi+2;m�2(x)xi+m � xi+1 ℄ =to apply the reursion formula, these terms are rearranged and(m� 2) xi+m�1 � xxi+m�1 � xiQi+1;m�2(x) + (m� 2) x� xi+1xi+m � xi+1Qi+1;m�2(x)is added and subtrated to obtain= 1xi+m � xi fQi;m�1(x) + (m� 2)[(x� xi)Qi;m�2(x) + (xi+m�1 � x)Qi+1;m�2(x)xi+m�1 � xi ℄+�(m� 2) xi+m�1 � xxi+m�1 � xiQi+1;m�2(x)� (m� 2) x� xixi+m�1 � xiQi+1;m�2(x)+�Qi+1;m�1(x)� (m� 2)[(x� xi+1)Qi+1;m�2(x) + (xi+m � x)Qi+2;m�2(x)xi+m � xi+1 ℄++(m� 2) x� xi+1xi+m � xi+1Qi+1;m�2(x) + (m� 2) xi+m � xxi+m � xi+1Qi+1;m�2(x)g == 1xi+m � xi fQi;m�1(x) + (m� 2)Qi;m�1(x)� (m� 2)Qi+1;m�2(x)+�Qi+1;m�1(x)� (m� 2)Qi+1;m�1(x) + (m� 2)Qi+1;m�2(x)g == 1xi+m � xi (m� 1)[Qi;m�1(x)�Qi+1;m�1(x)℄2:We have hosen to use non-normalized B-splines simply to ut down notation in theproof.AknowledgementThis researh was supported by CNR-Italy, ontrat n.8800324 (Mathematis Group).3
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