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is a basi step in performing Boolean operations on boundary representationin a CAD system.Methods for omputing the intersetion of rational parametri urves havebeen extensively studied in the literature and are essentially based on alge-brai or geometri approahes (Ho�mann, 1989), (Hoshek, 1993). A ompar-ative performane evaluation (Sederberg, Nishita, 1990) has shown that themethods based on impliitization are faster than other intersetion algorithmsfor urves of degree up to four, but their performane degrades for higher de-gree urves. This an be explained by realling that suh methods are basedon the symboli expansion of the Bezout determinant, and on the evaluationof the roots of the resulting polynomials, and that the solution of both theseproblems is less eÆiently solved as the urve degree inreases. In addition, forhigh degree urves, the impliitization based approah is strongly inuenedby inreased numerial problems, suh that no useful results have yet beenobtained for urves of degree greater than �ve.In this paper we introdue new elements to improve the lassial impliitiza-tion based approah, making it suitable for pratial use in a real GeometriModeling System. In fat, to avoid the need for symboli omputation, weuse a numerial algorithm whih solves matrix problems over an integral do-main and, in order to redue the omputational omplexity, this algorithm ismodi�ed to exploit the partiular struture impliitely enlosed in the Bezoutmatrix.More preisely, we formulate the intersetion problem using a Bezout ma-trix with polynomial entries and we evaluate its numeri-symboli triangularfatorization by means of a generalization to the polynomial ring of the fastfration-free algorithm proposed in (Bini, Gemignani, 1998) to fatorize a Be-zout matrix with integer entries. This algorithm, by exploiting the relationexisting between Bezout matries and the Eulidean sheme, sueeds in ob-taining a omputational omplexity of O(n2).Finally, to ontain the failures introdued by the numerial algorithm, we pro-pose the use of a oating-point, variable-preision arithmeti environment.This paper is organized as follows. Setion 2 introdues the notations neededto de�ne the Bezout resultant of a planar B�ezier urve and reall its use inthe algebrai approah to the intersetion problem. The numerial solution ofthis problem is onsidered in Setion 3, where an eÆient numeri-symboliapproah, based on a fast fatorization algorithm over the polynomial ring, isproposed. Numerial examples and omparisons with other standard interse-tion methods are given in Setion 4.
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2 Bezout resultant for planar B�ezier urve intersetionIn the �eld of Computer Aided Geometri Design we are generally onernedwith vetor-valued funtions of one or two variables, i.e. urves and surfaes.In this ontext, the B�ezier urve and surfae formulations, based on para-metri polynomial representations in the Bernstein basis, provide a powerfulframework for eÆiently handling the most ommon geometri problems ( see,e.g., (Farin, 1993)).In the following we will briey reall the main de�nitions and properties ofthe Bernstein/B�ezier form that we use to formulate the algebrai approah tothe problem of the intersetion of two planar rational B�ezier urves.2.1 Basis on Bernstein/B�ezier formLet IPn be the set of polynomials of degree n. We all p(t) 2 IPn Bernsteinpolynomial if it is given in Bernstein form, namely it is de�ned byp(t) = nXi=0 iBni (t);where Bni (t) =  ni!(1�t)n�iti; i = 0; 1; : : : ; n are the Bernstein basis funtionsof degree n on the interval [0; 1℄.A saled Bernstein polynomial is de�ned as a Bernstein polynomial in whihthe binomial oeÆients are absorbed into the polynomial oeÆients, that is,p(t) = nXi=0 ~i(1� t)n�iti where ~i =  ni!i:The oeÆients ~i are alled saled Bernstein oeÆients.Using the parameter substitution u = t=(1� t), we an de�ne the saled powerform of the Bernstein polynomial p(t) as~p(u) = nXi=0 ~iui: (1)It follows immediatly that~p(u) = p(t)(1� t)n : 3



Two Bernstein polynomials of the same degree nx(t) = nXi=0 xiBni (t); y(t) = nXi=0 yiBni (t)de�ne a planar B�ezier urve P (t) with ontrol points Ci = [xi; yi℄T ; i =0; : : : ; n, namely,P (t) = 264 x(t)y(t) 375 = nXi=0CiBni (t); (2)whih an be seen as an n-degree vetor-valued polynomial in Bernstein form.Its saled power form is given by~P (u) = 264 ~x(u)~y(u) 375 = nXi=0 ~Ciui;where the vetor oeÆients ~Ci = [~xi; ~yi℄T ; i = 0; : : : ; n, are alled saledontrol points of the B�ezier urve and ~xi, ~yi; i = 0; : : : ; n, are the oeÆientsof the saled power form omponents ~x(u); ~y(u).The use of the saled power form (1) enables many properties of polynomialsin power form to be reprodued for Bernstein polynomials.For example, the arithmeti operations between two polynomials in Bernsteinform an be dedued from those of the power formulation by making use of thesaled Bernstein oeÆients (Farouki, Rajan, 1988). Moreover, it is possible tode�ne the resultant of a planar B�ezier urve, namely, the resultant of a vetor-valued polynomial in Bernstein form, as the resultant of its saled power formomponents (Goldman et al., 1984).More preisely, the Bezout resultant of the B�ezier urve P (t) is the determinantof the n� n symmetri Bezout matrix B(P ), whose entries ri;j are de�ned by~P (u)� ~P (�)u� � := ������� ~x(u) ~x(�)~y(u) ~y(�) �������u� � = nXi;j=1 ri;jui�1�j�1:From the properties of the Bezout matrix, it follows that the entries ri;j anbe reursively evaluated in terms of the saled ontrol points ~Ci asri;j = ri�1;j+1 + ~Cn�i+1 � ~Cn�j i = 1; : : : ; n j = i; : : : ; n; (3)4



where initially ri;n+1 = 0; i = 0; : : : ; n � 1, r0;j = 0; j = 2; : : : ; n + 1 and weassume ~Cn 6= 0.The value of the Bezout resultant of the B�ezier urve P (t) tells us whetherthe urve has zeros, or equivalently, whether the two polynomial omponentsx(t) and y(t) have ommon zeros. Furthermore it is possible to evaluate thesezeros using the following result (see (Goldman et al., 1984)):Theorem 1 Let P (t) be as in (2) and B(P ) be its Bezout matrix. If P (t) hasexatly k zeros t0; t1; : : : ; tk�1, then these an be found by performing Gaussianelimination on the rows of B(P ). After elimination, the last non-zero row ofB(P ) will be of the form(0; : : : ; 0; ~hk; : : : ; ~h0); ~hk 6= 0and the zeros of P (t) an simply be obtained by omputing the roots of theBernstein polynomial h(t) = Pki=0 hiBi;k(t), with the unsaled oeÆients hi =~hi= ki!.Remark: if P (t) has a zero with multipliity ` at t = 1, then it will triviallybe Cn�`�1 = : : : = Cn = 0; in this ase B(P ) is the matrix (n � `) � (n � `)evaluated as in (3) starting from ~Ci; i = 0; : : : ; n� ` and ~Cn�` 6= 0.2.2 Impliitization, inversion and intersetion of planar rational B�ezier urvesThe Bezout matrix of a B�ezier urve plays an important role in the solutionof some ommon problems of Computer Aided Geometri Design. Let P (t),t 2 [0; 1℄ be a planar rational B�ezier urve given byP (t) = 264 x(t)=w(t)y(t)=w(t) 375 = Pni=0CiwiBni (t)Pnj=0wjBnj (t) ; (4)where, for i = 0; : : : ; n, Ci = [xi; yi℄T are the ontrol points of the rationalurve and the wi are positive reals, alled weights, suh that the n-degreepolynomial w(t) = Pnj=0wjBnj (t) never vanishes for t 2 [0; 1℄ (see (Farin,1993)). We onsider the following two problems:� Impliitization: given a urve de�ned parametrially in terms of rationalpolynomials, as in (4), �nd an impliit polynomial equation F (x; y) = 0,whih de�nes the same urve.� Inversion: given the Cartesian oordinates of a point on a parametriallyde�ned urve, �nd the value(s) of the parameter orresponding to this point.5



Both these problems are readily solved using the Bezout matrix. In fat, tosolve the impliitization problem for the rational urve (4), we note that forany point P = (x; y) on the urve, we havex = Pni=0 xiwiBni (t)Pnj=0wjBnj (t) and y = Pni=0 yiwiBni (t)Pnj=0wjBnj (t) : (5)We therefore de�ne two auxiliary polynomialsxx(t) = Pni=0 xiwiBni (t)� xPni=0wiBni (t) = Pni=0wi(xi � x)Bni (t)yy(t) = Pni=0 yiwiBni (t)� yPni=0wiBni (t) = Pni=0wi(yi � y)Bni (t);and onsider them as the omponents of the following B�ezier urvePxy(t) = nXi=0DiBni (t);whose ontrol points and their saled versions are, respetively,Di = wi(Ci � [x; y℄T ) and ~Di =  ni!Di; i = 0; : : : ; n: (6)Then we evaluate, by means of (3), the Bezout matrix of Pxy(t). Sine the pointP = (x; y), given in (5), lies on the urve if and only if the salar polynomialsxx(t) and yy(t) have a ommon root, we have that the impliit equation ofthe rational B�ezier urve is simply the Bezout resultant of the B�ezier urvePxy(t), namely,Det[B(Pxy)℄ = 0:Using the Bezout matrix, we also immediately solve the inversion problem. Infat, given the oordinates (x0; y0) of a point along the urve, we an easilyevaluate the orresponding parameter value(s) t0 as the ommon zero(s) ofthe polynomials xx0(t), yy0(t) by applying Theorem 1 to the Bezout matrixB(Px0y0).Impliitization and inversion also represent two basi steps of another moregeneral problem that an easily be solved by making use of the Bezout resul-tant. We refer to the following intersetion problem:� Intersetion of planar rational B�ezier urves: given two planar ra-tional B�ezier urves P1(t) and P2(s) of degree n and m, respetively, given6



by P1(t) = 264 x1(t)=w1(t)y1(t)=w1(t) 375 = Pni=0C1iw1iBni (t)Pnj=0w1jBnj (t) ; t 2 [0; 1℄ (7)and P2(s) = 264 x2(s)=w2(s)y2(s)=w2(s) 375 = Pmi=0C2iw2iBmi (s)Pmj=0w2jBmj (s) ; s 2 [0; 1℄; (8)�nd both the t and s parameter values and the Cartesian oordinates of allthe intersetion points within the spei�ed parameter ranges.The usual algebrai approah to this problem symbolially evaluates the im-pliit equation of the �rst urve P1(t) (impliitization), and then substitutesinto this equation the parametri expression of the seond urve P2(s) usingx = x2(s)w2(s) ; y = y2(s)w2(s) : (9)It turns out that the roots, for s 2 [0; 1℄ of the resulting (n �m)-degree poly-nomial are the parameter values, along the urve P2(s) of all the intersetionpoints, whose Cartesian oordinates are then obtained from (9). In order toevaluate the orresponding parameter values along the urve P1(t) it is ne-essary to solve, for eah pair of Cartesian oordinates xk; yk, an inversionproblem for P1(t) and hek if the orresponding value of t belongs to [0; 1℄.3 Numerial solution for the urve intersetion problemThe algebrai approah to the intersetion problem, that has been outlined inthe previous setion, onsists basially of the following steps:1) Impliitization of the urve P1(t) by symbolially evaluating Det[B(P1xy)℄;2) Substitution of the parametri expression of the urve P2(s) into the impliitequation of the urve P1;3) Evaluation of the roots of the resulting polynomial equation, for s 2 [0; 1℄;4) Solution of as many inversion problems for the urve P1(t) as these are rootsfound in the previous step.This approah is diÆult to realize in a real CAGD system, mainly due to itsneed for symboli omputation. To avoid this neessity, that is, to provide anumerial solution to the algebrai approah to the urve intersetion problem,7



it is neessary to interhange step 2 with step 1, and to onstrut the Bezoutmatrix of the B�ezier urve whose omponents are polynomials in the variablet with polynomial oeÆients in the variable s, namely of P1x2(s);y2(s);w2(s).More preisely, starting from the urve P1(t), aording to (6) we set~D` =  ǹ!w1` " x1` � xy1` � y # ` = 0; : : : ; nand, using (9), we substitute the oordinates (x; y) with the parametri om-ponents of the urve P2(s), obtaining~D`(s) = 1w2(s) ǹ!w1` " x1`w2(s)� x2(s)y1`w2(s)� y2(s) # : (10)In this way the building bloks ~D`(s) � ~Dk(s), whih are used, aording to(3), to ompute the n� n Bezout matrix B(P1x2(s);y2(s);w2(s)) are given, exeptfor a non null saling fator 1w2(s) , by~D`(s)� ~Dk(s) = w1`w1k ǹ! nk!Pmi=0[(y1` � y1k)x2i + (x1k � x1`)y2i+(x1`y1k � x1ky1`)℄w2iBmi (s); (11)and the entries rij(s); i; j = 1; : : : ; n of the Bezout matrix B(P1x2(s);y2(s);w2(s))turn out to be m-degree polynomials in Bernstein form.In order to obtain the s parameter values of the intersetion points, it is nees-sary to evaluate the determinant of the polynomial matrix B(P1x2(s);y2(s);w2(s)),whih will be a (m � n)-degree polynomial, and to ompute all its real rootsfor s 2 [0; 1℄. Step 4 will then give the orresponding t parameter values.This new form of the urve intersetion algorithm is more suited to a numerialapproah but requires the use of eÆient proedures for the aurate solutionof the following numerial problems:a) the evaluation of the determinant of a matrix with polynomial entries;b) the evaluation of the K real roots, in [0; 1℄, of the resulting (m � n)-degreepolynomial;) the realization of Gaussian elimination on the rows of the Bezout matrixfor eah valid root sk, for k = 1; : : : ; K.This paper is mainly onerned with a fast numerial algorithm, that solvesthe �rst and the third problem at the same time and, beause of its featureof working over an integral domain, mantains all the advantages of symboliomputation. 8



3.1 Fast triangularization over an integral domainIt is well known that the triangular fatorization of a Bezout matrix of order nan be evaluated by means of fast algorithms, i.e. requiring O(n2) arithmetioperations. This is due to the partiular struture that the Bezout matrixpresents impliitly enlosed in its entries (see (Heinig, Rost, 1984), (Levi-Ariet al., 1991), (Bini, Gemignani, 1998) for details).In partiular, we refer to the algorithm proposed by Bini-Gemignani for thetriangularization of a Bezout matrix with entries over the integral domain Z.It onsists of a fast proedure whih redues the matrix into triangular formby means of ring operations and exat divisions only. This algorithm repre-sents an improvement of the Bareiss fration-free elimination sheme (Bareiss,1968), based on the property that the strutural invariane of the Bezout ma-trix under Shur omplementation still holds if the Bareiss variant of Gaussianelimination is applied. This struture preserving property has allowed the au-thors to redue the omputational omplexity of the Bareiss algorithm fromO(n3) to O(n2) arithmeti operations, without losing the harateristi ofkeeping at a minimum level the growth of the length of the integers involvedin the omputations, namely O(n logn) bits, where  is an upper bound ofthe moduli of the integer matrix entries.In order to realize an eÆient proedure to solve problems a) and ) of theprevious subsetion, we have extended the Bini-Gemignani algorithm to themore general ase of a Bezout matrix with polynomial entries, ahieving inthis way a kind of numeri-symboli fatorization.More preisely, let B be the n � n Bezout matrix, whose entries ri;j(s) arem-degree saled Bernstein polynomials, as mentioned in the previous setion.We have realized the following version of the Bini-Gemignani fatorizationalgorithm, whih, by identifying Berstein polynomials with their oeÆientvetors, yields the polynomial entries of the upper triangular fator and givesan expliit expression for the (polynomial) determinant of the matrix. For thesake of simpliity, we desribe the algorithm in the ase of a strongly nonsingular matrix B.Fast Fatorization algorithm:� input: ontrol points and weights of P1(t) and P2(s) as given by (7) and(8);� initialization: the saled Bernstein polynomial entries of the �rst two rowsof B are obtained by applying the reursive sheme given in (3) and using(11): r1;j(s) = ~Dn(s)� ~Dn�j(s) j = 1; : : : ; nr1;n+1(s) = 0r2;j(s) = r1;j+1(s) + ~Dn�1(s)� ~Dn�j(s) j = 2; : : : ; n9



� omputation:r0;0(s) = 1for i = 1; : : : ; n� 1(1)8>><>>: for j = i+ 1; : : : ; nri+1;j(s) = ri;i(s)ri+1;j(s)� ri;i+1(s)ri;j(s)ri�1;i�1(s)if i + 1 < n(2)8>>>>><>>>>>: ri+1;n+1(s) = 0for j = i+ 2; : : : nri+2;j(s) = ri+1;j+1(s) + ri+1;j(s)ri;i+1(s)� ri+1;i+1(s)ri;j(s)ri;i(s)� output: the polynomial entries of the upper triangular fator. In partiularrn;n(s) is an (m � n)-degree saled Bernstein polynomial, orresponding tothe determinant of B.In the above sheme, loop (1) represents the Bareiss elimination step, whileloop (2) evaluates the seond row of the new Shur omplement. Of ourse,in the general ase, the algorithm uses a pivoting strategy whih is appliedwhenever an ri;i(s) = 0 is enountered, and the fatorization steps are modi�edaordingly (see (Bini, Gemignani, 1998)).It is immediately lear that the overall omputational ost for evaluating andfatorizing the Bezout matrix B onsists of O(n2) arithmeti operations, butthese operations are to be performed between polynomials in Bernstein form.In order to realize these operations with improved numerial stability, withrespet to the power form, but at the same omputational ost, we have usedtheir saled oeÆients, aording to the following rules:If a(s) and b(s) are two saled Bernstein polynomials of exat degree k and h,respetively, k � h, then, in the algorithm:� sums and di�erenes are performed only between polynomials of the samedegree, (i.e. k = h), and their oeÆients are simply omputed by:~i = ~ai � ~bi i = 0; : : : ; k;� multipliations are realized aording to the usual onvolution rule, that is,the oeÆients of the produt are given by:~i = min(k;i)Xj=max(0;i�h) ~aj � ~bi�j i = 0; : : : ; k + h;with a omputational ost of (k + 1)(h+ 1) arithmeti multipliations;10



� divisions are only exat and the results are polynomials of degree k � h.Their oeÆients are therefore evaluated by solving an upper triangularlinear system; using bakward-substitution, it yields:~k�h = ~ak~bh~i�h = 1~bh 0�~ai � min(k�h;i)Xj=i�h+1 ~bi�j~j1A i = k � 1; : : : ; h;the orresponding omputational ost is (k � 32h + 1)(h + 1) arithmetimultipliations/divisions.It follows that the ost of the whole algorithm depends on the growth of thedegrees of the polynomials involved in the omputation. In the integer ase,this growth has been shown to be of order O(n logn). This order is mantainedin our realization, with the additional feature that we are able to give an exatevaluation of the onstant . In fat, if the degree of the polynomial entriesof B is m, the maximum degree reahed during the omputation is exatly2(n�1)m. Hene, the overall arithmeti ost is O(n2�(2(n�1)m), where �(k)denotes the arithmeti ost of multiplying k-degree polynomials.Another advantage of our numeri-symboli approah is that the solutions ofthe neessary inversion problems of step ) are simply obtained. In fat, foreah root sk of the polynomial rn;n(s), it is only neessary to evaluate in skthe two polynomial entries of the (n�1)-th row of the upper triangular fator.Aording to Theorem 1, if both polynomials do not vanish in sk, the uniqueorresponding value tk is immediately obtained. Otherwise, it is neessary torepeat the proedure on the (n� 2)-th row, and so on.More preisely, we have:� Inversion:1. for eah root sk; k = 1; : : : ; K of rn;n(s) = 0 do1.1. set uk := sk1� sk ;1.2. set ` := n� 1;1.3. for j = `; : : : ; n evaluate in uk the saled power form (1) of the m`-degree polynomias r`;j(s), and set ~hn�j := ~r`;j(uk);1.4. for j = `; : : : ; n, if ~hn�j do not vanish, ompute the tk value(s), a-ording to Theorem 1, otherwise update ` := `�1 and ontinue from1.3;1.5. if tk =2 [0; 1℄ disard this point;2. ompute the (xk; yk) Cartesian oordinates of the intersetion points byevaluating P1(tk) or P2(sk) for k = 1; : : :K.In the most frequent ase, namely when the K intersetion points are simple,it follows that the omputational ost of the �rst step of the inversion problemonsists of 2K(n� 1)m arithmeti multipliations.11



4 Examples and numerial resultsThe proposed algorithm has been extensively tested by onsidering the in-tersetion of many rational B�ezier urves. In order to realize the whole in-tersetion algorithm we have added to our fatorization and inversion proe-dures a root evaluation algorithm, taken from the literature, that guaranteesan optimal behaviour with respet to the numerial stability for high degreepolynomials. More preisely, we have implemented the B�ezier Clipping root�nder method proposed in (Nishita et al., 1990). This method is based on theharateristis of the Bernstein/B�ezier form and its use has been possible asour intersetion algorithm only deals with polynomials in Bernstein form.Aording to the numerial onsiderations deriving from this experimenta-tion, some representative examples have been hosen, onsisting of urves ofdi�erent degrees and numbers of intersetions, showing the performane ofthe algorithm. Timing omparisons, given in Table 1, have been run againstour implementation of the B�ezier Clipping urve intersetion algorithm. Thismethod, proposed in (Sederberg, Nishita, 1990), exploits the B�ezier Clippingtehnique, already used in the literature for root �nder and ray-path algo-rithms, to realize an intelligent interval Newton method, in whih geometriinsight is used to identify regions of the parameter domain whih exlude thesolution set. The hoie of the B�ezier Clipping urve intersetion algorithm ismotivated by the analysis given in (Sederberg, Nishita, 1990) that shows thatthis method seems to be faster than onventional urve intersetion methods.Both methods have been implemented in ANSI-C language on a PC-Linux.Timing tests were run using double preision arithmeti, and omputing theanswers to eight deimal digits of auray.Example Degrees No. of B�ezier Clip. Our Proposalno. n;m inters. Total Total Fat. Root Ev. Inv.1 3,3 9 0.388 0.214 0.018 0.172 0.0242 3,4 3 0.151 0.117 0.026 0.081 0.0103 3,6 6 0.419 0.406 0.045 0.333 0.0284 3,5 3 0.184 0.173 0.035 0.127 0.0115 5,5 3 0.312 0.709 0.209 0.483 0.017Table 1Time omparisons (milliseonds); for the proposed algorithm, the Fatorization,Root Evaluation and Inversion times are expliitly given in the last three olumns.12



The �rst example is taken from (Sederberg et al., 1985); it is a test example forseveral intersetion proedures given in the literature. It onsists of two ratio-nal B�ezier urves of degree 3 whih, as shown in Fig.1, present 9 intersetionpoints. Their ontrol points and weights are:C1 4.0 5.0 5.0 6.01.0 6.0 0.0 4.0w1 1.0 2.0 2.0 1.0 C2 7.0 1.0 9.0 3.04.0 2.0 2.0 4.0w2 1.0 2.0 2.0 1.0
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Fig. 1. Curves of example no.1, with 9 intersetion pointsIn this ase, the proposed algorithm omputes the 9 intersetion points withthe desired auray and a time redution, ompared to the B�ezier Clipping,of almost 40%.The seond and third examples have been hosen to show the behaviour ofthe proposed algorithm for the intersetion of two B�ezier urves whose ontrolpoints are real numbers that are not exatly representable using the onsideredoating-point preision. Example no.2 onsists of the non-rational urves ofdegrees 3 and 4, respetively, shown in Fig.2, whih present 3 intersetionpoints. Their ontrol points and weights are:C1 -0.2 -0.1 0.0 0.10.0 0.9 -0.9 0.0w1 1.0 1.0 1.0 1.0 C2 -0.2 -0.4 0.0 0.4 0.20.5 0.1 0.1 -0.1 -0.5w2 1.0 1.0 1.0 1.0 1.013
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Fig. 2. Curves of examples no.2, with 3 intersetion points.Example no.3 onsists of two non-rational urves of degree 3 and 6 respetively.The urve of degree 3 is the same as example no.2, while the ontrol pointsand weights of the 6-degree urve are:C2 -0.5 0.6 -0.7 0.8 0.1 0.1 -0.50.5 -0.1 -0.1 -0.8 0.7 -0.6 0.5w2 1.0 1.0 1.0 1.0 1.0 1.0 1.0The two urves are shown in Fig.3 and present 6 intersetion points. In bothases, the right intersetion points are evaluated, but in some intersetionswe lose some digits of auray, espeially in the third example. Regardingthe timing omparison, the proposed algorithm in the third example is onlyslightly faster than the B�ezier Clipping, but, as shown in Table 1, this mainlydepends on the time needed to ompute the six roots of the 18-degree resultantpolynomial.We have therefore onsidered examples where the ontrol points are integernumbers or real numbers whih an be exatly represented in the oating-pointpreision taken into onsideration. This hoie has allowed us to ompletelyexploit the harateristi that the fatorization algorithm works over integraldomains. In fat, this guarantees that the fatorization algorithm is performedin exat oating-point arithmeti, and that the growth of the numbers involvedin the omputation is ontrolled. In fat, as we have experimentally veri�ed,14
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Fig. 3. Curves of example no.3, with 6 intersetion points.also for the polynomial oeÆients a length bound of the kind O(n logn) bitsstill holds.Example no.4 onsists of two rational B�ezier urves, given in Fig.4, whoseontrol points and weights are real numbers exatly rapresentable in the givenoating-point preision.C1 -0.25 -0.25 0.0 0.250.0 1.0 -1.0 0.0w1 1.0 1.0 1.0 1.0 C2 -0.25 -0.5 -0.25 -0.25 0.5 -0.250.5 0.25 0.25 -0.25 -0.25 -0.5w2 1.0 1.0 1.0 1.0 2.0 1.0The algorithm evaluates the intersetion points with the required auray anda omputational time whih is slightly less than that of the B�ezier Clippingmethod.In example no.5 we onsider two rational urves of degree 5 with integer ontrolpoints and suitable real weights. These are:C1 -1.0 0.0 -1.0 0.0 1.0 1.01.0 -1.0 -1.0 1.0 1.0 -1.0w1 1.0 0.2 0.2 0.2 0.4 1.0 C2 -1.0 -1.0 0.0 0.0 1.0 1.00.0 1.0 1.0 -1.0 -1.0 0.0w2 1.0 0.4 0.2 0.2 0.2 1.015
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Fig. 4. Curves of example no.4, with 3 intersetion points.This hoie leads to a Bezout matrix with integer oeÆient polynomial en-tries. The two urves are shown in Fig.5 and present 3 intersetion points. Alsoin this ase, the intersetion points are evaluated with the required preision,but the omputational time is signi�antly higher than that of the B�ezier Clip-ping method. Nevertheless, as is learly shown in Table 1, most of the time ofthis run has been spent on obtaining the solution of the polynomial equationp(s) = 0.This example gives us the opportunity to make a general onsideration: byinreasing the urve degrees, the part of the intersetion algorithm that ismost time-onsuming is the solution of the polynomial equation p(s) = 0.Therefore, a suitable hoie of a quik root �nder ould result in a signi�antderease of the total exeution time. We have not optimized the proposedintersetion algorithm from this point of view. Instead, our main goal has beenthe optimization of the fatorization and inversion phases, both as regardsomputing time and as regards auray.Nevertheless, even using our numeri-symboli approah, there is a naturallimit to the auray of the oeÆients of the �nal polynomial; in fat, om-puting the roots of high degree polynomials may be an ill-onditioned problemand this yields an upper limit to the degrees of the urves to be interseted.In our experimentation this limit is reahed in example no.5, but it an easilybe extended using suitable multiple-preision oating-point arithmeti.16
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Fig. 5. Curves of example no.5, with 3 intersetion points.This is shown in the following example where we onsider the two rationalurves of degrees 5 and 8 shown in Fig.6, whose ontrol points and weightsare exatly representable in double oating-point preision, namely:C1 -0.5 0.0 -0.5 0.0 0.5 0.50.5 -0.5 -0.5 0.5 0.5 -0.5w1 1.0 0.5 0.25 0.25 0.5 1.0C2 0.0 -3.0 6.5 -7.0 0.0 7.0 -6.5 3.0 0.0-0.25 4.0 -17.0 35.0 -43.0 35.0 -17.0 4.0 -0.25w2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0From the impliitization of the �rst urve, we obtain a Bezout matrix with 8-degree polynomial entries whose oeÆients are exatly representable with 20bits. In order to obtain a �nal polynomial with exat oeÆients, and bearingin mind, sine in this ase n = 5 and  = 220, the growth of O(n logn) duringthe omputation, the required preision turns out to be greater than 100 bits.We have therefore used the GNU Multiple Preision arithmeti library to pro-vide the desired preision and our algorithm has omputed all the intersetionpoints within the auray imposed as the stop test.17
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Fig. 6. Curves of example no.6, with 6 intersetion points
5 ConlusionsWe have presented an eÆient algorithm for the numerial solution of the alge-brai approah to rational B�ezier urve intersetion. It is based on the use of afast fatorization algorithm over the polynomial ring, and on the harateris-ti of operating with polynomials in Bernstein form. By identifying Bernsteinpolynomials with their oeÆient vetors and performing ring operations andexat divisions only, the algorithm is apable of aurately evaluating the in-tersetion of planar rational B�ezier urves of any degree, avoiding the need forsymboli omputation. However, it requires the use of a suitable multipreisionoating-point environment and a fast and robust proedure for the evaluationof real roots, within a given interval, of high degree polynomials. Conerningthe �rst point, the GNU Multiple Preision arithmeti library ould representthe best hoie, as it provides optimized tools for performing oating-pointarithmeti with arbitrarily high preision, while the seond point still needsmore future work.AknowledgementsWe are grateful to the reviewers for their omments.18
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