An Application
of Fast Factorization Algorithms
in Computer Aided Geometric Design

G.Casciola®!, F.Fabbri® and L.B.Montefusco ®!

aUniversity of Bologna, Department of Mathematics, P.zza di Porta S.Donato, 5,
40127 Bologna, Italy

b University of Padova, Department of Mathematics, Via Belzoni, 7, 35131
Padova, ITtaly

Abstract

Structured matrices play an important role in the numerical solution of practical
problems, because it is possible to develop fast algorithms for their triangular factor-
ization. In this paper we consider a classical problem of Computer Aided Geometric
Design, namely the computation of the intersection points of two planar rational
parametric curves, given in Bernstein form. For the numerical solution to this prob-
lem we propose an algebraic approach, based on a fast factorization algorithm of the
resulting Bezout matrix with polynomial entries, which avoids the need for symbolic
computation. This also allows us to efficiently handle high degree curves. Numerical
examples and comparisons with other standard intersection methods are given.

Key words: Structured Matrices; Bezout Resultant; Curve Intersection
AMS Classification: 15A23; 15A36; 65D18; 65Y20

1 Introduction

The problem of computing the intersection of parametric curves arises in many
applications of computer graphics and solid modeling. For example, intersec-
tion is the basis of hidden-curve removal algorithms for free-form surfaces and

Email addresses: casciola@dm.unibo.it (G.Casciola), ffabbri@csr.unibo.it
(F.Fabbri), montelau@dm.unibo.it (L.B.Montefusco).
L' This research was supported by MURST, Cofin2000 and 60% projects, by Uni-
versity of Bologna ”Funds for selected research topics, and Grant CNR 1n0.99.1707”.

Preprint submitted to Linear Algebra and its Applications 19 December 2001

is a basic step in performing Boolean operations on boundary representation
in a CAD system.

Methods for computing the intersection of rational parametric curves have
been extensively studied in the literature and are essentially based on alge-
braic or geometric approaches (Hoffmann, 1989), (Hoschek, 1993). A compar-
ative performance evaluation (Sederberg, Nishita, 1990) has shown that the
methods based on implicitization are faster than other intersection algorithms
for curves of degree up to four, but their performance degrades for higher de-
gree curves. This can be explained by recalling that such methods are based
on the symbolic expansion of the Bezout determinant, and on the evaluation
of the roots of the resulting polynomials, and that the solution of both these
problems is less efficiently solved as the curve degree increases. In addition, for
high degree curves, the implicitization based approach is strongly influenced
by increased numerical problems, such that no useful results have yet been
obtained for curves of degree greater than five.

In this paper we introduce new elements to improve the classical implicitiza-
tion based approach, making it suitable for practical use in a real Geometric
Modeling System. In fact, to avoid the need for symbolic computation, we
use a numerical algorithm which solves matrix problems over an integral do-
main and, in order to reduce the computational complexity, this algorithm is
modified to exploit the particular structure implicitely enclosed in the Bezout
matrix.

More precisely, we formulate the intersection problem using a Bezout ma-
trix with polynomial entries and we evaluate its numeric-symbolic triangular
factorization by means of a generalization to the polynomial ring of the fast
fraction-free algorithm proposed in (Bini, Gemignani, 1998) to factorize a Be-
zout matrix with integer entries. This algorithm, by exploiting the relation
existing between Bezout matrices and the Euclidean scheme, succeeds in ob-
taining a computational complexity of O(n?).

Finally, to contain the failures introduced by the numerical algorithm, we pro-
pose the use of a floating-point, variable-precision arithmetic environment.
This paper is organized as follows. Section 2 introduces the notations needed
to define the Bezout resultant of a planar Bézier curve and recall its use in
the algebraic approach to the intersection problem. The numerical solution of
this problem is considered in Section 3, where an efficient numeric-symbolic
approach, based on a fast factorization algorithm over the polynomial ring, is
proposed. Numerical examples and comparisons with other standard intersec-
tion methods are given in Section 4.

2 Bezout resultant for planar Bézier curve intersection

In the field of Computer Aided Geometric Design we are generally concerned
with vector-valued functions of one or two variables, i.e. curves and surfaces.
In this context, the Bézier curve and surface formulations, based on para-
metric polynomial representations in the Bernstein basis, provide a powerful
framework for efficiently handling the most common geometric problems (see,
e.g., (Farin, 1993)).

In the following we will briefly recall the main definitions and properties of
the Bernstein/Bézier form that we use to formulate the algebraic approach to
the problem of the intersection of two planar rational Bézier curves.

2.1 Basics on Bernstein/Bézier form

Let IP, be the set of polynomials of degree n. We call p(t) € IP, Bernstein
polynomial if it is given in Bernstein form, namely it is defined by

plt) = _fzociB?(w,

where B?(t) = <n> (1—t)" % i =0,1,...,n are the Bernstein basis functions

of degree n on the interval [0, 1].

A scaled Bernstein polynomial is defined as a Bernstein polynomial in which
the binomial coefficients are absorbed into the polynomial coefficients, that is,

p(t) =Y Gl —t)"'t" where &= <n> Ci.
=0

)
2

The coefficients ¢; are called scaled Bernstein coefficients.
Using the parameter substitution u = /(1 —1t), we can define the scaled power
form of the Bernstein polynomial p(t) as

p(u) = iélul (1)

1=0

It follows immediatly that

p(t)

p(u) = -0

Two Bernstein polynomials of the same degree n

£(t) = ﬁ;xiBw), y(t) = ﬁ;yiB?(t)

define a planar Bézier curve P(t) with control points C; = [z;,y:]", i =
0,...,n, namely,
@ & o
P(t) = =Y CiB!1), (2)
y(t) | =0

which can be seen as an n-degree vector-valued polynomial in Bernstein form.

Its scaled power form is given by

- T(u L
P(u) = () =Y G,
gy | =
where the vector coefficients C; = [z, 5], @ = 0,...,n, are called scaled
control points of the Bézier curve and z;, y;, i = 0,...,n, are the coefficients

of the scaled power form components Z(u), y(u).

The use of the scaled power form (1) enables many properties of polynomials
in power form to be reproduced for Bernstein polynomials.

For example, the arithmetic operations between two polynomials in Bernstein
form can be deduced from those of the power formulation by making use of the
scaled Bernstein coefficients (Farouki, Rajan, 1988). Moreover, it is possible to
define the resultant of a planar Bézier curve, namely, the resultant of a vector-
valued polynomial in Bernstein form, as the resultant of its scaled power form
components (Goldman et al., 1984).

More precisely, the Bezout resultant of the Bezier curve P(t) is the determinant
of the n x n symmetric Bezout matrix B(P), whose entries r; ; are defined by

P(u) x Pa j(u) (o) " : ,
Pl x Plo) _ [T 5] g

u—uo u—uo

1,j=1

From the properties of the Bezout matrix, it follows that the entries r; ; can
be recursively evaluated in terms of the scaled control points C; as

Ti’j:Ti,LjJrl—FCn,iJrlXCn,j izl,...,n j:i,...,n, (3)

where initially 7,41 =0, ¢ =0,...,n—1,79; =0, 7 =2,...,n+1 and we
assume C,, # 0.

The value of the Bezout resultant of the Bézier curve P(t) tells us whether
the curve has zeros, or equivalently, whether the two polynomial components
x(t) and y(¢) have common zeros. Furthermore it is possible to evaluate these
zeros using the following result (see (Goldman et al., 1984)):

Theorem 1 Let P(t) be as in (2) and B(P) be its Bezout matriz. If P(t) has
exactly k zeros ty,ty,...,tx_1, then these can be found by performing Gaussian

elimination on the rows of B(P). After elimination, the last non-zero row of
B(P) will be of the form

(0,...,0,hgy ... ho)y hp#0

and the zeros of P(t) can simply be obtained by computing the roots of the
Bernstein polynomial h(t) = Y8 h;Bi (1), with the unscaled coefficients h; =

;32./(’;).

Remark: if P(t) has a zero with multiplicity ¢ at ¢ = 1, then it will trivially
be Cpy1 = ... = C, = 0; in this case B(P) is the matrix (n —) x (n — {)
evaluated as in (3) starting from C;, i =0,...,n — ¢ and C,,_, # 0.

2.2 Implicitization, inversion and intersection of planar rational Bézier curves

The Bezout matrix of a Bézier curve plays an important role in the solution
of some common problems of Computer Aided Geometric Design. Let P(t),
t € [0,1] be a planar rational Bézier curve given by

| z@®)/w(®) | SR, CowBr(t)
PO |~ S B @ o

where, for i = 0,...,n, C; = [z;,y;]7 are the control points of the rational
curve and the w; are positive reals, called weights, such that the n-degree
polynomial w(t) = Y7 ,w;B}(t) never vanishes for ¢t € [0,1] (see (Farin,
1993)). We consider the following two problems:

e Implicitization: given a curve defined parametrically in terms of rational
polynomials, as in (4), find an implicit polynomial equation F(x,y) = 0,
which defines the same curve.

e Inversion: given the Cartesian coordinates of a point on a parametrically
defined curve, find the value(s) of the parameter corresponding to this point.

Both these problems are readily solved using the Bezout matrix. In fact, to
solve the implicitization problem for the rational curve (4), we note that for
any point P = (z,y) on the curve, we have

o xiw B (t
T = z;(]x w nz () and y =
§=0 ijj (t)

?:o yiwiB?(t)

T w;BI(D) ©)

We therefore define two auxiliary polynomials

2, (t) = Xiso viwi Bl (t) — x oo wi Bl (t) = Y1 wi(w; — x) B} (t)
Yy (t) = Yo yiw; B} (t) — Y i w; B} (t) =¥ wi(yi - y)an(t)a

and consider them as the components of the following Bézier curve

Po(t) = Y DLBY(),

whose control points and their scaled versions are, respectively,

Di = wi(Ci — [r,y7) and D = (7>z>h i=0,...n (6)

Then we evaluate, by means of (3), the Bezout matrix of P, (). Since the point
P = (z,y), given in (5), lies on the curve if and only if the scalar polynomials
z,(t) and y,(t) have a common root, we have that the implicit equation of
the rational Bézier curve is simply the Bezout resultant of the Bézier curve
P,,(t), namely,

Det[B(P,,)] = 0.

Using the Bezout matrix, we also immediately solve the inversion problem. In
fact, given the coordinates (xg, o) of a point along the curve, we can easily
evaluate the corresponding parameter value(s) to as the common zero(s) of
the polynomials z,,(t), y,,(t) by applying Theorem 1 to the Bezout matrix
B(Pyyy).

Implicitization and inversion also represent two basic steps of another more
general problem that can easily be solved by making use of the Bezout resul-
tant. We refer to the following intersection problem:

e Intersection of planar rational Bézier curves: given two planar ra-
tional Bézier curves Pi(t) and Py(s) of degree n and m, respectively, given

Py(t) = w1(t) /wi (t) Zl oCuwu (1) fe0.1] -
yi(t)/wi(t) j—owi; B} (t)
and
PZ(S) _ 1‘2(8)/102(8) _ Z:n:() CQleZBZn(S) e [0, 1], (8)

Y2(s) /wa(s) Yo wo B (s)

find both the t and s parameter values and the Cartesian coordinates of all
the intersection points within the specified parameter ranges.

The usual algebraic approach to this problem symbolically evaluates the im-
plicit equation of the first curve Pj(¢) (implicitization), and then substitutes
into this equation the parametric expression of the second curve Ps(s) using

xQ(S) y?(s)) (9)

It turns out that the roots, for s € [0,1] of the resulting (n - m)-degree poly-
nomial are the parameter values, along the curve P(s) of all the intersection
points, whose Cartesian coordinates are then obtained from (9). In order to
evaluate the corresponding parameter values along the curve P;(t) it is nec-
essary to solve, for each pair of Cartesian coordinates xy,y;, an inversion
problem for Py (¢) and check if the corresponding value of ¢ belongs to [0, 1].

3 Numerical solution for the curve intersection problem

The algebraic approach to the intersection problem, that has been outlined in
the previous section, consists basically of the following steps:

1) Implicitization of the curve P;(¢) by symbolically evaluating Det[B(P)4)];

2) Substitution of the parametric expression of the curve P,(s) into the implicit
equation of the curve Pi;

3) Evaluation of the roots of the resulting polynomial equation, for s € [0, 1];

4) Solution of as many inversion problems for the curve P;(t) as these are roots
found in the previous step.

This approach is difficult to realize in a real CAGD system, mainly due to its
need for symbolic computation. To avoid this necessity, that is, to provide a
numerical solution to the algebraic approach to the curve intersection problem,

it is necessary to interchange step 2 with step 1, and to construct the Bezout
matrix of the Bézier curve whose components are polynomials in the variable
t with polynomial coefficients in the variable s, namely of Pig,(s)ys(s),ws(s)-
More precisely, starting from the curve P;(t), according to (6) we set

bg:<n>wlg [IIZI] €:0,...,n
L Yo —y

and, using (9), we substitute the coordinates (z,y) with the parametric com-
ponents of the curve Ps(s), obtaining

~ 1 n ziowa(s) — xa(s
Dy(s) = (4>w1el tea(?) ()]- (10)

In this way the building blocks Dj(s) x Dj(s), which are used, according to
(3), to compute the n x n Bezout matrix B(P4, (s)ys(s)ws(s)) are given, except
for a non null scaling factor ﬁ(s), by

Dy(s) x Dy(s) = wiewy (7;) (:) S o [(Yre — Yie)Tai + (T1k — T10)Y2it)

(T1ey1k — T1kyre) |wo B (s),

and the entries r;;(s),4,7 = 1,...,n of the Bezout matrix B(Pz,(s)ys(s),ws(s))
turn out to be m-degree polynomials in Bernstein form.

In order to obtain the s parameter values of the intersection points, it is neces-
sary to evaluate the determinant of the polynomial matrix B(Pi,(s),ys(s).ws(s))s
which will be a (m - n)-degree polynomial, and to compute all its real roots
for s € [0,1]. Step 4 will then give the corresponding ¢ parameter values.
This new form of the curve intersection algorithm is more suited to a numerical
approach but requires the use of efficient procedures for the accurate solution
of the following numerical problems:

a) the evaluation of the determinant of a matrix with polynomial entries;

b) the evaluation of the K real roots, in [0, 1], of the resulting (m - n)-degree
polynomial,;

c¢) the realization of Gaussian elimination on the rows of the Bezout matrix
for each valid root s, for k=1,..., K.

This paper is mainly concerned with a fast numerical algorithm, that solves
the first and the third problem at the same time and, because of its feature
of working over an integral domain, mantains all the advantages of symbolic
computation.

3.1 Fast triangularization over an integral domain

It is well known that the triangular factorization of a Bezout matrix of order n
can be evaluated by means of fast algorithms, i.e. requiring O(n?) arithmetic
operations. This is due to the particular structure that the Bezout matrix
presents implicitly enclosed in its entries (see (Heinig, Rost, 1984), (Levi-Ari
et al., 1991), (Bini, Gemignani, 1998) for details).

In particular, we refer to the algorithm proposed by Bini-Gemignani for the
triangularization of a Bezout matrix with entries over the integral domain Z.
It consists of a fast procedure which reduces the matrix into triangular form
by means of ring operations and exact divisions only. This algorithm repre-
sents an improvement of the Bareiss fraction-free elimination scheme (Bareiss,
1968), based on the property that the structural invariance of the Bezout ma-
trix under Schur complementation still holds if the Bareiss variant of Gaussian
elimination is applied. This structure preserving property has allowed the au-
thors to reduce the computational complexity of the Bareiss algorithm from
O(n?®) to O(n?) arithmetic operations, without losing the characteristic of
keeping at a minimum level the growth of the length of the integers involved
in the computations, namely O(nlognc) bits, where ¢ is an upper bound of
the moduli of the integer matrix entries.

In order to realize an efficient procedure to solve problems a) and c) of the
previous subsection, we have extended the Bini-Gemignani algorithm to the
more general case of a Bezout matrix with polynomial entries, achieving in
this way a kind of numeric-symbolic factorization.

More precisely, let B be the n x n Bezout matrix, whose entries r; ;(s) are
m-degree scaled Bernstein polynomials, as mentioned in the previous section.
We have realized the following version of the Bini-Gemignani factorization
algorithm, which, by identifying Berstein polynomials with their coefficient
vectors, yields the polynomial entries of the upper triangular factor and gives
an explicit expression for the (polynomial) determinant of the matrix. For the
sake of simplicity, we describe the algorithm in the case of a strongly non
singular matrix B.

Fast Factorization algorithm:

e input: control points and weights of Py(t) and Py(s) as given by (7) and
(8);
e initialization: the scaled Bernstein polynomial entries of the first two rows

of B are obtained by applying the recursive scheme given in (3) and using
(11):

r1;(s) = Dy(s) x Dy (s) j=1,...,n

7”1,n+1(5) =0

7“2,j(3) = 7"1,3'+1(3) + Dn—l(s) X Dn—j(s) J=2,...,n

e computation:

T0,0(S):]_
fori=1,...,n—1

forj=14+1,...,n

Tii(8)Tig1,5(5) — riar1(s)riz(s)
Ti—1,i—1(3)

7“z'+1,j(8) =
ifi+1<n
Tigini1(s) =0

(2)¢ forj=1i+2,...n

) + 7“z'+1,j(3)7“i,i+1(3) - 7”i+1,z'+1(3)7”i,j(3)

Tit2,j (3) = Ti+1,j+1(8 Ti,i(s)

e output: the polynomial entries of the upper triangular factor. In particular
Tnn(s) is an (m - n)-degree scaled Bernstein polynomial, corresponding to
the determinant of B.

In the above scheme, loop (1) represents the Bareiss elimination step, while
loop (2) evaluates the second row of the new Schur complement. Of course,
in the general case, the algorithm uses a pivoting strategy which is applied
whenever an r; ;(s) = 0 is encountered, and the factorization steps are modified
accordingly (see (Bini, Gemignani, 1998)).

It is immediately clear that the overall computational cost for evaluating and
factorizing the Bezout matrix B consists of O(n?) arithmetic operations, but
these operations are to be performed between polynomials in Bernstein form.
In order to realize these operations with improved numerical stability, with
respect to the power form, but at the same computational cost, we have used
their scaled coefficients, according to the following rules:

If a(s) and b(s) are two scaled Bernstein polynomials of exact degree k and h,
respectively, k£ > h, then, in the algorithm:

e sums and differences are performed only between polynomials of the same
degree, (i.e. kK = h), and their coefficients are simply computed by:

Gi=a;£b i=0,... k

e multiplications are realized according to the usual convolution rule, that is,
the coefficients of the product are given by:

min(k,i)

I}
|
=
.
&
d
o~
I
=
e
+
=

with a computational cost of (k4 1)(h + 1) arithmetic multiplications;

10

e divisions are only exact and the results are polynomials of degree k£ — h.
Their coefficients are therefore evaluated by solving an upper triangular
linear system; using backward-substitution, it yields:

Qg
Cp_p = =2
k—h bh
min(k—h,i)
6i_h:l~)L dz_ Z bi—jéj Z:k—]_,,h,
h j=i—h+1

the corresponding computational cost is (k — 3h + 1)(h + 1) arithmetic

2
multiplications/divisions.

It follows that the cost of the whole algorithm depends on the growth of the
degrees of the polynomials involved in the computation. In the integer case,
this growth has been shown to be of order O(n lognc). This order is mantained
in our realization, with the additional feature that we are able to give an exact
evaluation of the constant c. In fact, if the degree of the polynomial entries
of B is m, the maximum degree reached during the computation is exactly
2(n —1)m. Hence, the overall arithmetic cost is O(n?v(2(n—1)m), where v(k)
denotes the arithmetic cost of multiplying k-degree polynomials.

Another advantage of our numeric-symbolic approach is that the solutions of
the necessary inversion problems of step c) are simply obtained. In fact, for
each root s; of the polynomial r, ,(s), it is only necessary to evaluate in sy
the two polynomial entries of the (n—1)-th row of the upper triangular factor.
According to Theorem 1, if both polynomials do not vanish in s, the unique
corresponding value ?; is immediately obtained. Otherwise, it is necessary to
repeat the procedure on the (n — 2)-th row, and so on.

More precisely, we have:

e Inversion:
1. for each root sg, k=1,..., K of r,,(s) =0 do

L1. set ug := _’“Sk;

1.2. set £ :=n —1;

1.3. for j = {,...,n evaluate in uy the scaled power form (1) of the m/-
degree polynomias 7,;(s), and set h,_; := 7y ; (u);

1.4. for j = ¢,...,n,if Bn_j do not vanish, compute the t; value(s), ac-
cording to Theorem 1, otherwise update ¢ := £ —1 and continue from
1.3;

L.5. if ¢ ¢ [0, 1] discard this point;
2. compute the (xy,y;) Cartesian coordinates of the intersection points by
evaluating Py (ty) or Pa(sy) for k=1,... K.

In the most frequent case, namely when the K intersection points are simple,

it follows that the computational cost of the first step of the inversion problem
consists of 2K (n — 1)m arithmetic multiplications.

11

4 Examples and numerical results

The proposed algorithm has been extensively tested by considering the in-
tersection of many rational Bézier curves. In order to realize the whole in-
tersection algorithm we have added to our factorization and inversion proce-
dures a root evaluation algorithm, taken from the literature, that guarantees
an optimal behaviour with respect to the numerical stability for high degree
polynomials. More precisely, we have implemented the Bézier Clipping root
finder method proposed in (Nishita et al., 1990). This method is based on the
characteristics of the Bernstein/Bézier form and its use has been possible as
our intersection algorithm only deals with polynomials in Bernstein form.

According to the numerical considerations deriving from this experimenta-
tion, some representative examples have been chosen, consisting of curves of
different degrees and numbers of intersections, showing the performance of
the algorithm. Timing comparisons, given in Table 1, have been run against
our implementation of the Bézier Clipping curve intersection algorithm. This
method, proposed in (Sederberg, Nishita, 1990), exploits the Bézier Clipping
technique, already used in the literature for root finder and ray-patch algo-
rithms, to realize an intelligent interval Newton method, in which geometric
insight is used to identify regions of the parameter domain which exclude the
solution set. The choice of the Bézier Clipping curve intersection algorithm is
motivated by the analysis given in (Sederberg, Nishita, 1990) that shows that
this method seems to be faster than conventional curve intersection methods.

Both methods have been implemented in ANSI-C language on a PC-Linux.
Timing tests were run using double precision arithmetic, and computing the
answers to eight decimal digits of accuracy.

Example | Degrees | No. of | Bézier Clip. Our Proposal
no. n,m inters. Total Total | Fact. | Root Ev. | Inv.
1 3.3 9 0.388 0.214 | 0.018 0.172 0.024
2 3,4 3 0.151 0.117 | 0.026 0.081 0.010
3 3.6 6 0.419 0.406 | 0.045 0.333 0.028
4 3.5 3 0.184 0.173 | 0.035 0.127 0.011
5 5,5 3 0.312 0.709 | 0.209 0.483 0.017

Table 1
Time comparisons (milliseconds); for the proposed algorithm, the Factorization,
Root Evaluation and Inversion times are explicitly given in the last three columns.

12

The first example is taken from (Sederberg et al., 1985); it is a test example for
several intersection procedures given in the literature. It consists of two ratio-
nal Bézier curves of degree 3 which, as shown in Fig.1, present 9 intersection
points. Their control points and weights are:

Cy140]5015.0]6.0 Cy | 7.0]1.01]9.0]3.0
1.0 6.0] 0.0 4.0 4.01201]20]40

w1 ‘ 1.0 ‘ 2.0 ‘ 2.0 ‘ 1.0 Wa ‘ 1.0 ‘ 2.0 ‘ 2.0 ‘ 1.0

1 I I I I I I)
3 35 4 4.5 5 55 6 6.5 7

Fig. 1. Curves of example no.1, with 9 intersection points

In this case, the proposed algorithm computes the 9 intersection points with
the desired accuracy and a time reduction, compared to the Bézier Clipping,
of almost 40%.

The second and third examples have been chosen to show the behaviour of
the proposed algorithm for the intersection of two Bézier curves whose control
points are real numbers that are not exactly representable using the considered
floating-point precision. Example no.2 consists of the non-rational curves of
degrees 3 and 4, respectively, shown in Fig.2, which present 3 intersection
points. Their control points and weights are:

Cy|-02(-0.1|0.0 0.1 Cy |-021]-041]00]| 04 | 0.2
0.0 | 09 |-09 0.0 05|01]01]|-01]-05

w1 ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0) ‘ 1.0 ‘ 1.0 ‘ 1.0‘ 1.0 ‘ 1.0

13

-0.5 1 1 1 1
-02 -0.1 0 0.1 0.2

Fig. 2. Curves of examples no.2, with 3 intersection points.

Example no.3 consists of two non-rational curves of degree 3 and 6 respectively.
The curve of degree 3 is the same as example no.2, while the control points
and weights of the 6-degree curve are:

Cy|-051]06 |-0.7|08 |01 0.1]-0.5
0.51]-01]-01]-0810.7|-0.6| 0.5
Wy ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0‘ 1.0 ‘ 1.0

The two curves are shown in Fig.3 and present 6 intersection points. In both
cases, the right intersection points are evaluated, but in some intersections
we lose some digits of accuracy, especially in the third example. Regarding
the timing comparison, the proposed algorithm in the third example is only
slightly faster than the Bézier Clipping, but, as shown in Table 1, this mainly
depends on the time needed to compute the six roots of the 18-degree resultant
polynomial.

We have therefore considered examples where the control points are integer
numbers or real numbers which can be exactly represented in the floating-point
precision taken into consideration. This choice has allowed us to completely
exploit the characteristic that the factorization algorithm works over integral
domains. In fact, this guarantees that the factorization algorithm is performed
in exact floating-point arithmetic, and that the growth of the numbers involved
in the computation is controlled. In fact, as we have experimentally verified,

14

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Fig. 3. Curves of example no.3, with 6 intersection points.

also for the polynomial coefficients a length bound of the kind O(nlognc) bits
still holds.

Example no.4 consists of two rational Bézier curves, given in Fig.4, whose
control points and weights are real numbers exactly rapresentable in the given
floating-point precision.

Cy|-0.251-0.25 | 0.0 | 0.25 Cy|-0.25 | -0.5 |-0.25 | -0.25 | 0.5 |-0.25
0.0 1.0 | -1.0 | 0.0 0.5 1025 0.25 | -0.25 | -0.25 | -0.5

wl‘ 1.0 ‘ 1.0 ‘1.0 ‘ 1.0 UJQ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 2.0 ‘ 1.0

The algorithm evaluates the intersection points with the required accuracy and
a computational time which is slightly less than that of the Bézier Clipping
method.

In example no.5 we consider two rational curves of degree 5 with integer control
points and suitable real weights. These are:

Cp|-10| 00 |-1.0|0.0] 10| 1.0 Cy |-1.0]-1.0]00] 00 | 1.0 | 1.0
1.0 |-1.0 |-1.0 | 1.0 | 1.0 | -1.0 00| 10|10 |-1.0|-1.01 0.0

w1 ‘ 1.0 ‘ 0.2 ‘ 0.2 ‘0.2 ‘ 0.4‘ 1.0 wy ‘ 1.0 ‘ 0.4 ‘0.2‘ 0.2 ‘ 0.2 ‘ 1.0

15

0.5

P2(s)

0.4,

Fig. 4. Curves of example no.4, with 3 intersection points.

This choice leads to a Bezout matrix with integer coefficient polynomial en-
tries. The two curves are shown in Fig.5 and present 3 intersection points. Also
in this case, the intersection points are evaluated with the required precision,
but the computational time is significantly higher than that of the Bézier Clip-
ping method. Nevertheless, as is clearly shown in Table 1, most of the time of
this run has been spent on obtaining the solution of the polynomial equation

p(s) = 0.

This example gives us the opportunity to make a general consideration: by
increasing the curve degrees, the part of the intersection algorithm that is
most time-consuming is the solution of the polynomial equation p(s) = 0.
Therefore, a suitable choice of a quick root finder could result in a significant
decrease of the total execution time. We have not optimized the proposed
intersection algorithm from this point of view. Instead, our main goal has been
the optimization of the factorization and inversion phases, both as regards
computing time and as regards accuracy.

Nevertheless, even using our numeric-symbolic approach, there is a natural
limit to the accuracy of the coefficients of the final polynomial; in fact, com-
puting the roots of high degree polynomials may be an ill-conditioned problem
and this yields an upper limit to the degrees of the curves to be intersected.
In our experimentation this limit is reached in example no.5, but it can easily
be extended using suitable multiple-precision floating-point arithmetic.

16

Fig. 5. Curves of example no.5, with 3 intersection points.

This is shown in the following example where we consider the two rational
curves of degrees 5 and 8 shown in Fig.6, whose control points and weights
are exactly representable in double floating-point precision, namely:

Cy|-051 00 |-05] 00 |05/ 0.5
05 (-05]-05 | 0.5 |05 |-0.5

wy | 1.0 ‘ 0.5 ‘ 0.25 ‘ 0.25 ‘ 0.5 ‘ 1.0

Cy| 00 |-30| 65 |-70| 0.0 | 7.0 | -6.5 | 3.0 | 0.0
-0.25 | 4.0 | -17.0 | 35.0 | -43.0 | 35.0 | -17.0 | 4.0 | -0.25

wy | 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘ 1.0 ‘1.0‘ 1.0

From the implicitization of the first curve, we obtain a Bezout matrix with 8-
degree polynomial entries whose coefficients are exactly representable with 20
bits. In order to obtain a final polynomial with exact coefficients, and bearing
in mind, since in this case n = 5 and ¢ = 2%°, the growth of O(nlognc) during
the computation, the required precision turns out to be greater than 100 bits.
We have therefore used the GNU Multiple Precision arithmetic library to pro-
vide the desired precision and our algorithm has computed all the intersection
points within the accuracy imposed as the stop test.

17

Fig. 6. Curves of example no.6, with 6 intersection points

5 Conclusions

We have presented an efficient algorithm for the numerical solution of the alge-
braic approach to rational Bézier curve intersection. It is based on the use of a
fast factorization algorithm over the polynomial ring, and on the characteris-
tic of operating with polynomials in Bernstein form. By identifying Bernstein
polynomials with their coefficient vectors and performing ring operations and
exact divisions only, the algorithm is capable of accurately evaluating the in-
tersection of planar rational Bézier curves of any degree, avoiding the need for
symbolic computation. However, it requires the use of a suitable multiprecision
floating-point environment and a fast and robust procedure for the evaluation
of real roots, within a given interval, of high degree polynomials. Concerning
the first point, the GNU Multiple Precision arithmetic library could represent
the best choice, as it provides optimized tools for performing floating-point
arithmetic with arbitrarily high precision, while the second point still needs
more future work.

Acknowledgements

We are grateful to the reviewers for their comments.

18

References

Bareiss, E., (1968), Sylvester’s identity and multistep integer preserving Gaus-
sian elimination, Math. Comp. 22, 565-578.

Bini, D.A., Gemignani, L., (1998), Fast fraction-free triangularization of Bezo-
tians with applications to sub-resultant chain computation, Linear Algebra
and its Applications, 284, 19-39.

Farin, G., (1993), Curves and Surfaces for CAGD, A practical guide, third
edition, Academic Press.

Farouki, R.T., and Rajan, V.T., (1987), On the numerical condition of poly-
nomials in Bernstein form, Computer Aided Geometric Design, 4, 191-216.

Farouki, R.T., and Rajan, V.T., (1988), Algorithms for polynomials in Bern-
stein form, Computer Aided Geometric Design, 5, 1-26.

Goldman, R.N., Sederberg, T.W., and Anderson, D.C., (1984), Vector elim-
ination: A technique for the implicitization, inversion, and intersection of
planar parametric rational polynomial curves, Computer Aided Geometric
Design, 1, 327-356.

Heinig, G., Rost, K., (1984), Algebraic methods for Toeplitz-like matrices and
operators, Birkaeuser.

Hoffmann, Ch.M., (1989), Geometric and Solid Modeling. An Introduction.
Morgan Kaufmann Publishers.

Hoschek, J., Lasser, D., (1993), Fundamentals of Computer Aided Geometric
Design. A.K.Peters.

Levi-Ari, H., Bistriz, Y., Kailath, T., (1991), Generalized Bezoutians and
familes of efficient zero location procedures, IEEE Trans. Circuits and Sys-
tems, 38, 170-186.

Nishita, T., Sederberg, T.W., Kakimoto, M., (1990), Ray Tracing trimmed
rational surface patches, Computer Graphics, 24, 4, 337-345.

Sederberg, T.W., Anderson, D.C., Goldman, R.N., (1985), Implicitization, In-
version, and intersection of planar rational curves, Computer Vision, Graph-
ics and Image Processing, 31, 89-102.

Sederberg, T.W., Nishita, T., (1990), Curve intersection using Bézier Clipping,
Computer-Aided Design, 22, 9, 538-546.

19

