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is a basi
 step in performing Boolean operations on boundary representationin a CAD system.Methods for 
omputing the interse
tion of rational parametri
 
urves havebeen extensively studied in the literature and are essentially based on alge-brai
 or geometri
 approa
hes (Ho�mann, 1989), (Hos
hek, 1993). A 
ompar-ative performan
e evaluation (Sederberg, Nishita, 1990) has shown that themethods based on impli
itization are faster than other interse
tion algorithmsfor 
urves of degree up to four, but their performan
e degrades for higher de-gree 
urves. This 
an be explained by re
alling that su
h methods are basedon the symboli
 expansion of the Bezout determinant, and on the evaluationof the roots of the resulting polynomials, and that the solution of both theseproblems is less eÆ
iently solved as the 
urve degree in
reases. In addition, forhigh degree 
urves, the impli
itization based approa
h is strongly in
uen
edby in
reased numeri
al problems, su
h that no useful results have yet beenobtained for 
urves of degree greater than �ve.In this paper we introdu
e new elements to improve the 
lassi
al impli
itiza-tion based approa
h, making it suitable for pra
ti
al use in a real Geometri
Modeling System. In fa
t, to avoid the need for symboli
 
omputation, weuse a numeri
al algorithm whi
h solves matrix problems over an integral do-main and, in order to redu
e the 
omputational 
omplexity, this algorithm ismodi�ed to exploit the parti
ular stru
ture impli
itely en
losed in the Bezoutmatrix.More pre
isely, we formulate the interse
tion problem using a Bezout ma-trix with polynomial entries and we evaluate its numeri
-symboli
 triangularfa
torization by means of a generalization to the polynomial ring of the fastfra
tion-free algorithm proposed in (Bini, Gemignani, 1998) to fa
torize a Be-zout matrix with integer entries. This algorithm, by exploiting the relationexisting between Bezout matri
es and the Eu
lidean s
heme, su

eeds in ob-taining a 
omputational 
omplexity of O(n2).Finally, to 
ontain the failures introdu
ed by the numeri
al algorithm, we pro-pose the use of a 
oating-point, variable-pre
ision arithmeti
 environment.This paper is organized as follows. Se
tion 2 introdu
es the notations neededto de�ne the Bezout resultant of a planar B�ezier 
urve and re
all its use inthe algebrai
 approa
h to the interse
tion problem. The numeri
al solution ofthis problem is 
onsidered in Se
tion 3, where an eÆ
ient numeri
-symboli
approa
h, based on a fast fa
torization algorithm over the polynomial ring, isproposed. Numeri
al examples and 
omparisons with other standard interse
-tion methods are given in Se
tion 4.
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2 Bezout resultant for planar B�ezier 
urve interse
tionIn the �eld of Computer Aided Geometri
 Design we are generally 
on
ernedwith ve
tor-valued fun
tions of one or two variables, i.e. 
urves and surfa
es.In this 
ontext, the B�ezier 
urve and surfa
e formulations, based on para-metri
 polynomial representations in the Bernstein basis, provide a powerfulframework for eÆ
iently handling the most 
ommon geometri
 problems ( see,e.g., (Farin, 1993)).In the following we will brie
y re
all the main de�nitions and properties ofthe Bernstein/B�ezier form that we use to formulate the algebrai
 approa
h tothe problem of the interse
tion of two planar rational B�ezier 
urves.2.1 Basi
s on Bernstein/B�ezier formLet IPn be the set of polynomials of degree n. We 
all p(t) 2 IPn Bernsteinpolynomial if it is given in Bernstein form, namely it is de�ned byp(t) = nXi=0 
iBni (t);where Bni (t) =  ni!(1�t)n�iti; i = 0; 1; : : : ; n are the Bernstein basis fun
tionsof degree n on the interval [0; 1℄.A s
aled Bernstein polynomial is de�ned as a Bernstein polynomial in whi
hthe binomial 
oeÆ
ients are absorbed into the polynomial 
oeÆ
ients, that is,p(t) = nXi=0 ~
i(1� t)n�iti where ~
i =  ni!
i:The 
oeÆ
ients ~
i are 
alled s
aled Bernstein 
oeÆ
ients.Using the parameter substitution u = t=(1� t), we 
an de�ne the s
aled powerform of the Bernstein polynomial p(t) as~p(u) = nXi=0 ~
iui: (1)It follows immediatly that~p(u) = p(t)(1� t)n : 3



Two Bernstein polynomials of the same degree nx(t) = nXi=0 xiBni (t); y(t) = nXi=0 yiBni (t)de�ne a planar B�ezier 
urve P (t) with 
ontrol points Ci = [xi; yi℄T ; i =0; : : : ; n, namely,P (t) = 264 x(t)y(t) 375 = nXi=0CiBni (t); (2)whi
h 
an be seen as an n-degree ve
tor-valued polynomial in Bernstein form.Its s
aled power form is given by~P (u) = 264 ~x(u)~y(u) 375 = nXi=0 ~Ciui;where the ve
tor 
oeÆ
ients ~Ci = [~xi; ~yi℄T ; i = 0; : : : ; n, are 
alled s
aled
ontrol points of the B�ezier 
urve and ~xi, ~yi; i = 0; : : : ; n, are the 
oeÆ
ientsof the s
aled power form 
omponents ~x(u); ~y(u).The use of the s
aled power form (1) enables many properties of polynomialsin power form to be reprodu
ed for Bernstein polynomials.For example, the arithmeti
 operations between two polynomials in Bernsteinform 
an be dedu
ed from those of the power formulation by making use of thes
aled Bernstein 
oeÆ
ients (Farouki, Rajan, 1988). Moreover, it is possible tode�ne the resultant of a planar B�ezier 
urve, namely, the resultant of a ve
tor-valued polynomial in Bernstein form, as the resultant of its s
aled power form
omponents (Goldman et al., 1984).More pre
isely, the Bezout resultant of the B�ezier 
urve P (t) is the determinantof the n� n symmetri
 Bezout matrix B(P ), whose entries ri;j are de�ned by~P (u)� ~P (�)u� � := ������� ~x(u) ~x(�)~y(u) ~y(�) �������u� � = nXi;j=1 ri;jui�1�j�1:From the properties of the Bezout matrix, it follows that the entries ri;j 
anbe re
ursively evaluated in terms of the s
aled 
ontrol points ~Ci asri;j = ri�1;j+1 + ~Cn�i+1 � ~Cn�j i = 1; : : : ; n j = i; : : : ; n; (3)4



where initially ri;n+1 = 0; i = 0; : : : ; n � 1, r0;j = 0; j = 2; : : : ; n + 1 and weassume ~Cn 6= 0.The value of the Bezout resultant of the B�ezier 
urve P (t) tells us whetherthe 
urve has zeros, or equivalently, whether the two polynomial 
omponentsx(t) and y(t) have 
ommon zeros. Furthermore it is possible to evaluate thesezeros using the following result (see (Goldman et al., 1984)):Theorem 1 Let P (t) be as in (2) and B(P ) be its Bezout matrix. If P (t) hasexa
tly k zeros t0; t1; : : : ; tk�1, then these 
an be found by performing Gaussianelimination on the rows of B(P ). After elimination, the last non-zero row ofB(P ) will be of the form(0; : : : ; 0; ~hk; : : : ; ~h0); ~hk 6= 0and the zeros of P (t) 
an simply be obtained by 
omputing the roots of theBernstein polynomial h(t) = Pki=0 hiBi;k(t), with the uns
aled 
oeÆ
ients hi =~hi= ki!.Remark: if P (t) has a zero with multipli
ity ` at t = 1, then it will triviallybe Cn�`�1 = : : : = Cn = 0; in this 
ase B(P ) is the matrix (n � `) � (n � `)evaluated as in (3) starting from ~Ci; i = 0; : : : ; n� ` and ~Cn�` 6= 0.2.2 Impli
itization, inversion and interse
tion of planar rational B�ezier 
urvesThe Bezout matrix of a B�ezier 
urve plays an important role in the solutionof some 
ommon problems of Computer Aided Geometri
 Design. Let P (t),t 2 [0; 1℄ be a planar rational B�ezier 
urve given byP (t) = 264 x(t)=w(t)y(t)=w(t) 375 = Pni=0CiwiBni (t)Pnj=0wjBnj (t) ; (4)where, for i = 0; : : : ; n, Ci = [xi; yi℄T are the 
ontrol points of the rational
urve and the wi are positive reals, 
alled weights, su
h that the n-degreepolynomial w(t) = Pnj=0wjBnj (t) never vanishes for t 2 [0; 1℄ (see (Farin,1993)). We 
onsider the following two problems:� Impli
itization: given a 
urve de�ned parametri
ally in terms of rationalpolynomials, as in (4), �nd an impli
it polynomial equation F (x; y) = 0,whi
h de�nes the same 
urve.� Inversion: given the Cartesian 
oordinates of a point on a parametri
allyde�ned 
urve, �nd the value(s) of the parameter 
orresponding to this point.5



Both these problems are readily solved using the Bezout matrix. In fa
t, tosolve the impli
itization problem for the rational 
urve (4), we note that forany point P = (x; y) on the 
urve, we havex = Pni=0 xiwiBni (t)Pnj=0wjBnj (t) and y = Pni=0 yiwiBni (t)Pnj=0wjBnj (t) : (5)We therefore de�ne two auxiliary polynomialsxx(t) = Pni=0 xiwiBni (t)� xPni=0wiBni (t) = Pni=0wi(xi � x)Bni (t)yy(t) = Pni=0 yiwiBni (t)� yPni=0wiBni (t) = Pni=0wi(yi � y)Bni (t);and 
onsider them as the 
omponents of the following B�ezier 
urvePxy(t) = nXi=0DiBni (t);whose 
ontrol points and their s
aled versions are, respe
tively,Di = wi(Ci � [x; y℄T ) and ~Di =  ni!Di; i = 0; : : : ; n: (6)Then we evaluate, by means of (3), the Bezout matrix of Pxy(t). Sin
e the pointP = (x; y), given in (5), lies on the 
urve if and only if the s
alar polynomialsxx(t) and yy(t) have a 
ommon root, we have that the impli
it equation ofthe rational B�ezier 
urve is simply the Bezout resultant of the B�ezier 
urvePxy(t), namely,Det[B(Pxy)℄ = 0:Using the Bezout matrix, we also immediately solve the inversion problem. Infa
t, given the 
oordinates (x0; y0) of a point along the 
urve, we 
an easilyevaluate the 
orresponding parameter value(s) t0 as the 
ommon zero(s) ofthe polynomials xx0(t), yy0(t) by applying Theorem 1 to the Bezout matrixB(Px0y0).Impli
itization and inversion also represent two basi
 steps of another moregeneral problem that 
an easily be solved by making use of the Bezout resul-tant. We refer to the following interse
tion problem:� Interse
tion of planar rational B�ezier 
urves: given two planar ra-tional B�ezier 
urves P1(t) and P2(s) of degree n and m, respe
tively, given6



by P1(t) = 264 x1(t)=w1(t)y1(t)=w1(t) 375 = Pni=0C1iw1iBni (t)Pnj=0w1jBnj (t) ; t 2 [0; 1℄ (7)and P2(s) = 264 x2(s)=w2(s)y2(s)=w2(s) 375 = Pmi=0C2iw2iBmi (s)Pmj=0w2jBmj (s) ; s 2 [0; 1℄; (8)�nd both the t and s parameter values and the Cartesian 
oordinates of allthe interse
tion points within the spe
i�ed parameter ranges.The usual algebrai
 approa
h to this problem symboli
ally evaluates the im-pli
it equation of the �rst 
urve P1(t) (impli
itization), and then substitutesinto this equation the parametri
 expression of the se
ond 
urve P2(s) usingx = x2(s)w2(s) ; y = y2(s)w2(s) : (9)It turns out that the roots, for s 2 [0; 1℄ of the resulting (n �m)-degree poly-nomial are the parameter values, along the 
urve P2(s) of all the interse
tionpoints, whose Cartesian 
oordinates are then obtained from (9). In order toevaluate the 
orresponding parameter values along the 
urve P1(t) it is ne
-essary to solve, for ea
h pair of Cartesian 
oordinates xk; yk, an inversionproblem for P1(t) and 
he
k if the 
orresponding value of t belongs to [0; 1℄.3 Numeri
al solution for the 
urve interse
tion problemThe algebrai
 approa
h to the interse
tion problem, that has been outlined inthe previous se
tion, 
onsists basi
ally of the following steps:1) Impli
itization of the 
urve P1(t) by symboli
ally evaluating Det[B(P1xy)℄;2) Substitution of the parametri
 expression of the 
urve P2(s) into the impli
itequation of the 
urve P1;3) Evaluation of the roots of the resulting polynomial equation, for s 2 [0; 1℄;4) Solution of as many inversion problems for the 
urve P1(t) as these are rootsfound in the previous step.This approa
h is diÆ
ult to realize in a real CAGD system, mainly due to itsneed for symboli
 
omputation. To avoid this ne
essity, that is, to provide anumeri
al solution to the algebrai
 approa
h to the 
urve interse
tion problem,7



it is ne
essary to inter
hange step 2 with step 1, and to 
onstru
t the Bezoutmatrix of the B�ezier 
urve whose 
omponents are polynomials in the variablet with polynomial 
oeÆ
ients in the variable s, namely of P1x2(s);y2(s);w2(s).More pre
isely, starting from the 
urve P1(t), a

ording to (6) we set~D` =  ǹ!w1` " x1` � xy1` � y # ` = 0; : : : ; nand, using (9), we substitute the 
oordinates (x; y) with the parametri
 
om-ponents of the 
urve P2(s), obtaining~D`(s) = 1w2(s) ǹ!w1` " x1`w2(s)� x2(s)y1`w2(s)� y2(s) # : (10)In this way the building blo
ks ~D`(s) � ~Dk(s), whi
h are used, a

ording to(3), to 
ompute the n� n Bezout matrix B(P1x2(s);y2(s);w2(s)) are given, ex
eptfor a non null s
aling fa
tor 1w2(s) , by~D`(s)� ~Dk(s) = w1`w1k ǹ! nk!Pmi=0[(y1` � y1k)x2i + (x1k � x1`)y2i+(x1`y1k � x1ky1`)℄w2iBmi (s); (11)and the entries rij(s); i; j = 1; : : : ; n of the Bezout matrix B(P1x2(s);y2(s);w2(s))turn out to be m-degree polynomials in Bernstein form.In order to obtain the s parameter values of the interse
tion points, it is ne
es-sary to evaluate the determinant of the polynomial matrix B(P1x2(s);y2(s);w2(s)),whi
h will be a (m � n)-degree polynomial, and to 
ompute all its real rootsfor s 2 [0; 1℄. Step 4 will then give the 
orresponding t parameter values.This new form of the 
urve interse
tion algorithm is more suited to a numeri
alapproa
h but requires the use of eÆ
ient pro
edures for the a

urate solutionof the following numeri
al problems:a) the evaluation of the determinant of a matrix with polynomial entries;b) the evaluation of the K real roots, in [0; 1℄, of the resulting (m � n)-degreepolynomial;
) the realization of Gaussian elimination on the rows of the Bezout matrixfor ea
h valid root sk, for k = 1; : : : ; K.This paper is mainly 
on
erned with a fast numeri
al algorithm, that solvesthe �rst and the third problem at the same time and, be
ause of its featureof working over an integral domain, mantains all the advantages of symboli

omputation. 8



3.1 Fast triangularization over an integral domainIt is well known that the triangular fa
torization of a Bezout matrix of order n
an be evaluated by means of fast algorithms, i.e. requiring O(n2) arithmeti
operations. This is due to the parti
ular stru
ture that the Bezout matrixpresents impli
itly en
losed in its entries (see (Heinig, Rost, 1984), (Levi-Ariet al., 1991), (Bini, Gemignani, 1998) for details).In parti
ular, we refer to the algorithm proposed by Bini-Gemignani for thetriangularization of a Bezout matrix with entries over the integral domain Z.It 
onsists of a fast pro
edure whi
h redu
es the matrix into triangular formby means of ring operations and exa
t divisions only. This algorithm repre-sents an improvement of the Bareiss fra
tion-free elimination s
heme (Bareiss,1968), based on the property that the stru
tural invarian
e of the Bezout ma-trix under S
hur 
omplementation still holds if the Bareiss variant of Gaussianelimination is applied. This stru
ture preserving property has allowed the au-thors to redu
e the 
omputational 
omplexity of the Bareiss algorithm fromO(n3) to O(n2) arithmeti
 operations, without losing the 
hara
teristi
 ofkeeping at a minimum level the growth of the length of the integers involvedin the 
omputations, namely O(n logn
) bits, where 
 is an upper bound ofthe moduli of the integer matrix entries.In order to realize an eÆ
ient pro
edure to solve problems a) and 
) of theprevious subse
tion, we have extended the Bini-Gemignani algorithm to themore general 
ase of a Bezout matrix with polynomial entries, a
hieving inthis way a kind of numeri
-symboli
 fa
torization.More pre
isely, let B be the n � n Bezout matrix, whose entries ri;j(s) arem-degree s
aled Bernstein polynomials, as mentioned in the previous se
tion.We have realized the following version of the Bini-Gemignani fa
torizationalgorithm, whi
h, by identifying Berstein polynomials with their 
oeÆ
ientve
tors, yields the polynomial entries of the upper triangular fa
tor and givesan expli
it expression for the (polynomial) determinant of the matrix. For thesake of simpli
ity, we des
ribe the algorithm in the 
ase of a strongly nonsingular matrix B.Fast Fa
torization algorithm:� input: 
ontrol points and weights of P1(t) and P2(s) as given by (7) and(8);� initialization: the s
aled Bernstein polynomial entries of the �rst two rowsof B are obtained by applying the re
ursive s
heme given in (3) and using(11): r1;j(s) = ~Dn(s)� ~Dn�j(s) j = 1; : : : ; nr1;n+1(s) = 0r2;j(s) = r1;j+1(s) + ~Dn�1(s)� ~Dn�j(s) j = 2; : : : ; n9



� 
omputation:r0;0(s) = 1for i = 1; : : : ; n� 1(1)8>><>>: for j = i+ 1; : : : ; nri+1;j(s) = ri;i(s)ri+1;j(s)� ri;i+1(s)ri;j(s)ri�1;i�1(s)if i + 1 < n(2)8>>>>><>>>>>: ri+1;n+1(s) = 0for j = i+ 2; : : : nri+2;j(s) = ri+1;j+1(s) + ri+1;j(s)ri;i+1(s)� ri+1;i+1(s)ri;j(s)ri;i(s)� output: the polynomial entries of the upper triangular fa
tor. In parti
ularrn;n(s) is an (m � n)-degree s
aled Bernstein polynomial, 
orresponding tothe determinant of B.In the above s
heme, loop (1) represents the Bareiss elimination step, whileloop (2) evaluates the se
ond row of the new S
hur 
omplement. Of 
ourse,in the general 
ase, the algorithm uses a pivoting strategy whi
h is appliedwhenever an ri;i(s) = 0 is en
ountered, and the fa
torization steps are modi�eda

ordingly (see (Bini, Gemignani, 1998)).It is immediately 
lear that the overall 
omputational 
ost for evaluating andfa
torizing the Bezout matrix B 
onsists of O(n2) arithmeti
 operations, butthese operations are to be performed between polynomials in Bernstein form.In order to realize these operations with improved numeri
al stability, withrespe
t to the power form, but at the same 
omputational 
ost, we have usedtheir s
aled 
oeÆ
ients, a

ording to the following rules:If a(s) and b(s) are two s
aled Bernstein polynomials of exa
t degree k and h,respe
tively, k � h, then, in the algorithm:� sums and di�eren
es are performed only between polynomials of the samedegree, (i.e. k = h), and their 
oeÆ
ients are simply 
omputed by:~
i = ~ai � ~bi i = 0; : : : ; k;� multipli
ations are realized a

ording to the usual 
onvolution rule, that is,the 
oeÆ
ients of the produ
t are given by:~
i = min(k;i)Xj=max(0;i�h) ~aj � ~bi�j i = 0; : : : ; k + h;with a 
omputational 
ost of (k + 1)(h+ 1) arithmeti
 multipli
ations;10



� divisions are only exa
t and the results are polynomials of degree k � h.Their 
oeÆ
ients are therefore evaluated by solving an upper triangularlinear system; using ba
kward-substitution, it yields:~
k�h = ~ak~bh~
i�h = 1~bh 0�~ai � min(k�h;i)Xj=i�h+1 ~bi�j~
j1A i = k � 1; : : : ; h;the 
orresponding 
omputational 
ost is (k � 32h + 1)(h + 1) arithmeti
multipli
ations/divisions.It follows that the 
ost of the whole algorithm depends on the growth of thedegrees of the polynomials involved in the 
omputation. In the integer 
ase,this growth has been shown to be of order O(n logn
). This order is mantainedin our realization, with the additional feature that we are able to give an exa
tevaluation of the 
onstant 
. In fa
t, if the degree of the polynomial entriesof B is m, the maximum degree rea
hed during the 
omputation is exa
tly2(n�1)m. Hen
e, the overall arithmeti
 
ost is O(n2�(2(n�1)m), where �(k)denotes the arithmeti
 
ost of multiplying k-degree polynomials.Another advantage of our numeri
-symboli
 approa
h is that the solutions ofthe ne
essary inversion problems of step 
) are simply obtained. In fa
t, forea
h root sk of the polynomial rn;n(s), it is only ne
essary to evaluate in skthe two polynomial entries of the (n�1)-th row of the upper triangular fa
tor.A

ording to Theorem 1, if both polynomials do not vanish in sk, the unique
orresponding value tk is immediately obtained. Otherwise, it is ne
essary torepeat the pro
edure on the (n� 2)-th row, and so on.More pre
isely, we have:� Inversion:1. for ea
h root sk; k = 1; : : : ; K of rn;n(s) = 0 do1.1. set uk := sk1� sk ;1.2. set ` := n� 1;1.3. for j = `; : : : ; n evaluate in uk the s
aled power form (1) of the m`-degree polynomias r`;j(s), and set ~hn�j := ~r`;j(uk);1.4. for j = `; : : : ; n, if ~hn�j do not vanish, 
ompute the tk value(s), a
-
ording to Theorem 1, otherwise update ` := `�1 and 
ontinue from1.3;1.5. if tk =2 [0; 1℄ dis
ard this point;2. 
ompute the (xk; yk) Cartesian 
oordinates of the interse
tion points byevaluating P1(tk) or P2(sk) for k = 1; : : :K.In the most frequent 
ase, namely when the K interse
tion points are simple,it follows that the 
omputational 
ost of the �rst step of the inversion problem
onsists of 2K(n� 1)m arithmeti
 multipli
ations.11



4 Examples and numeri
al resultsThe proposed algorithm has been extensively tested by 
onsidering the in-terse
tion of many rational B�ezier 
urves. In order to realize the whole in-terse
tion algorithm we have added to our fa
torization and inversion pro
e-dures a root evaluation algorithm, taken from the literature, that guaranteesan optimal behaviour with respe
t to the numeri
al stability for high degreepolynomials. More pre
isely, we have implemented the B�ezier Clipping root�nder method proposed in (Nishita et al., 1990). This method is based on the
hara
teristi
s of the Bernstein/B�ezier form and its use has been possible asour interse
tion algorithm only deals with polynomials in Bernstein form.A

ording to the numeri
al 
onsiderations deriving from this experimenta-tion, some representative examples have been 
hosen, 
onsisting of 
urves ofdi�erent degrees and numbers of interse
tions, showing the performan
e ofthe algorithm. Timing 
omparisons, given in Table 1, have been run againstour implementation of the B�ezier Clipping 
urve interse
tion algorithm. Thismethod, proposed in (Sederberg, Nishita, 1990), exploits the B�ezier Clippingte
hnique, already used in the literature for root �nder and ray-pat
h algo-rithms, to realize an intelligent interval Newton method, in whi
h geometri
insight is used to identify regions of the parameter domain whi
h ex
lude thesolution set. The 
hoi
e of the B�ezier Clipping 
urve interse
tion algorithm ismotivated by the analysis given in (Sederberg, Nishita, 1990) that shows thatthis method seems to be faster than 
onventional 
urve interse
tion methods.Both methods have been implemented in ANSI-C language on a PC-Linux.Timing tests were run using double pre
ision arithmeti
, and 
omputing theanswers to eight de
imal digits of a

ura
y.Example Degrees No. of B�ezier Clip. Our Proposalno. n;m inters. Total Total Fa
t. Root Ev. Inv.1 3,3 9 0.388 0.214 0.018 0.172 0.0242 3,4 3 0.151 0.117 0.026 0.081 0.0103 3,6 6 0.419 0.406 0.045 0.333 0.0284 3,5 3 0.184 0.173 0.035 0.127 0.0115 5,5 3 0.312 0.709 0.209 0.483 0.017Table 1Time 
omparisons (millise
onds); for the proposed algorithm, the Fa
torization,Root Evaluation and Inversion times are expli
itly given in the last three 
olumns.12



The �rst example is taken from (Sederberg et al., 1985); it is a test example forseveral interse
tion pro
edures given in the literature. It 
onsists of two ratio-nal B�ezier 
urves of degree 3 whi
h, as shown in Fig.1, present 9 interse
tionpoints. Their 
ontrol points and weights are:C1 4.0 5.0 5.0 6.01.0 6.0 0.0 4.0w1 1.0 2.0 2.0 1.0 C2 7.0 1.0 9.0 3.04.0 2.0 2.0 4.0w2 1.0 2.0 2.0 1.0
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Fig. 1. Curves of example no.1, with 9 interse
tion pointsIn this 
ase, the proposed algorithm 
omputes the 9 interse
tion points withthe desired a

ura
y and a time redu
tion, 
ompared to the B�ezier Clipping,of almost 40%.The se
ond and third examples have been 
hosen to show the behaviour ofthe proposed algorithm for the interse
tion of two B�ezier 
urves whose 
ontrolpoints are real numbers that are not exa
tly representable using the 
onsidered
oating-point pre
ision. Example no.2 
onsists of the non-rational 
urves ofdegrees 3 and 4, respe
tively, shown in Fig.2, whi
h present 3 interse
tionpoints. Their 
ontrol points and weights are:C1 -0.2 -0.1 0.0 0.10.0 0.9 -0.9 0.0w1 1.0 1.0 1.0 1.0 C2 -0.2 -0.4 0.0 0.4 0.20.5 0.1 0.1 -0.1 -0.5w2 1.0 1.0 1.0 1.0 1.013
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Fig. 2. Curves of examples no.2, with 3 interse
tion points.Example no.3 
onsists of two non-rational 
urves of degree 3 and 6 respe
tively.The 
urve of degree 3 is the same as example no.2, while the 
ontrol pointsand weights of the 6-degree 
urve are:C2 -0.5 0.6 -0.7 0.8 0.1 0.1 -0.50.5 -0.1 -0.1 -0.8 0.7 -0.6 0.5w2 1.0 1.0 1.0 1.0 1.0 1.0 1.0The two 
urves are shown in Fig.3 and present 6 interse
tion points. In both
ases, the right interse
tion points are evaluated, but in some interse
tionswe lose some digits of a

ura
y, espe
ially in the third example. Regardingthe timing 
omparison, the proposed algorithm in the third example is onlyslightly faster than the B�ezier Clipping, but, as shown in Table 1, this mainlydepends on the time needed to 
ompute the six roots of the 18-degree resultantpolynomial.We have therefore 
onsidered examples where the 
ontrol points are integernumbers or real numbers whi
h 
an be exa
tly represented in the 
oating-pointpre
ision taken into 
onsideration. This 
hoi
e has allowed us to 
ompletelyexploit the 
hara
teristi
 that the fa
torization algorithm works over integraldomains. In fa
t, this guarantees that the fa
torization algorithm is performedin exa
t 
oating-point arithmeti
, and that the growth of the numbers involvedin the 
omputation is 
ontrolled. In fa
t, as we have experimentally veri�ed,14
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Fig. 3. Curves of example no.3, with 6 interse
tion points.also for the polynomial 
oeÆ
ients a length bound of the kind O(n logn
) bitsstill holds.Example no.4 
onsists of two rational B�ezier 
urves, given in Fig.4, whose
ontrol points and weights are real numbers exa
tly rapresentable in the given
oating-point pre
ision.C1 -0.25 -0.25 0.0 0.250.0 1.0 -1.0 0.0w1 1.0 1.0 1.0 1.0 C2 -0.25 -0.5 -0.25 -0.25 0.5 -0.250.5 0.25 0.25 -0.25 -0.25 -0.5w2 1.0 1.0 1.0 1.0 2.0 1.0The algorithm evaluates the interse
tion points with the required a

ura
y anda 
omputational time whi
h is slightly less than that of the B�ezier Clippingmethod.In example no.5 we 
onsider two rational 
urves of degree 5 with integer 
ontrolpoints and suitable real weights. These are:C1 -1.0 0.0 -1.0 0.0 1.0 1.01.0 -1.0 -1.0 1.0 1.0 -1.0w1 1.0 0.2 0.2 0.2 0.4 1.0 C2 -1.0 -1.0 0.0 0.0 1.0 1.00.0 1.0 1.0 -1.0 -1.0 0.0w2 1.0 0.4 0.2 0.2 0.2 1.015
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Fig. 4. Curves of example no.4, with 3 interse
tion points.This 
hoi
e leads to a Bezout matrix with integer 
oeÆ
ient polynomial en-tries. The two 
urves are shown in Fig.5 and present 3 interse
tion points. Alsoin this 
ase, the interse
tion points are evaluated with the required pre
ision,but the 
omputational time is signi�
antly higher than that of the B�ezier Clip-ping method. Nevertheless, as is 
learly shown in Table 1, most of the time ofthis run has been spent on obtaining the solution of the polynomial equationp(s) = 0.This example gives us the opportunity to make a general 
onsideration: byin
reasing the 
urve degrees, the part of the interse
tion algorithm that ismost time-
onsuming is the solution of the polynomial equation p(s) = 0.Therefore, a suitable 
hoi
e of a qui
k root �nder 
ould result in a signi�
antde
rease of the total exe
ution time. We have not optimized the proposedinterse
tion algorithm from this point of view. Instead, our main goal has beenthe optimization of the fa
torization and inversion phases, both as regards
omputing time and as regards a

ura
y.Nevertheless, even using our numeri
-symboli
 approa
h, there is a naturallimit to the a

ura
y of the 
oeÆ
ients of the �nal polynomial; in fa
t, 
om-puting the roots of high degree polynomials may be an ill-
onditioned problemand this yields an upper limit to the degrees of the 
urves to be interse
ted.In our experimentation this limit is rea
hed in example no.5, but it 
an easilybe extended using suitable multiple-pre
ision 
oating-point arithmeti
.16
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Fig. 5. Curves of example no.5, with 3 interse
tion points.This is shown in the following example where we 
onsider the two rational
urves of degrees 5 and 8 shown in Fig.6, whose 
ontrol points and weightsare exa
tly representable in double 
oating-point pre
ision, namely:C1 -0.5 0.0 -0.5 0.0 0.5 0.50.5 -0.5 -0.5 0.5 0.5 -0.5w1 1.0 0.5 0.25 0.25 0.5 1.0C2 0.0 -3.0 6.5 -7.0 0.0 7.0 -6.5 3.0 0.0-0.25 4.0 -17.0 35.0 -43.0 35.0 -17.0 4.0 -0.25w2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0From the impli
itization of the �rst 
urve, we obtain a Bezout matrix with 8-degree polynomial entries whose 
oeÆ
ients are exa
tly representable with 20bits. In order to obtain a �nal polynomial with exa
t 
oeÆ
ients, and bearingin mind, sin
e in this 
ase n = 5 and 
 = 220, the growth of O(n logn
) duringthe 
omputation, the required pre
ision turns out to be greater than 100 bits.We have therefore used the GNU Multiple Pre
ision arithmeti
 library to pro-vide the desired pre
ision and our algorithm has 
omputed all the interse
tionpoints within the a

ura
y imposed as the stop test.17
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Fig. 6. Curves of example no.6, with 6 interse
tion points
5 Con
lusionsWe have presented an eÆ
ient algorithm for the numeri
al solution of the alge-brai
 approa
h to rational B�ezier 
urve interse
tion. It is based on the use of afast fa
torization algorithm over the polynomial ring, and on the 
hara
teris-ti
 of operating with polynomials in Bernstein form. By identifying Bernsteinpolynomials with their 
oeÆ
ient ve
tors and performing ring operations andexa
t divisions only, the algorithm is 
apable of a

urately evaluating the in-terse
tion of planar rational B�ezier 
urves of any degree, avoiding the need forsymboli
 
omputation. However, it requires the use of a suitable multipre
ision
oating-point environment and a fast and robust pro
edure for the evaluationof real roots, within a given interval, of high degree polynomials. Con
erningthe �rst point, the GNU Multiple Pre
ision arithmeti
 library 
ould representthe best 
hoi
e, as it provides optimized tools for performing 
oating-pointarithmeti
 with arbitrarily high pre
ision, while the se
ond point still needsmore future work.A
knowledgementsWe are grateful to the reviewers for their 
omments.18
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