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In geometric design, it is often useful to be able to give an arc length reparametrization
for NURBS curves, that keeps the curve a NURBS too. Since parametricrational curves,
except for straight lines, cannot be parametrized by arc length, we developed a numerical
method of approximating the arc length parametrization function. In this way it was
possible to obtain a good parametrization of a NURBS curve with respect to arc length.
Numerical results show a good behaviour of the proposed method on several test curves.
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1. Introduction

We are concerned with the problem of parametric NURBS curve reparametrization.
This consists in changing the current parameter of a curve with another parame-
ter using a reparametrization function. It should be noted that the shape of the
curve remains unchanged during this process; only the way the curve is described
is altered.

In our case, the fact that the curve is defined as a ratio of two polynomial
splines enables us to apply a rational polynomial function that will keep the curve
a NURBS.

In particular, if it is important that the degree of the curve should be kept
unchanged, we may choose a rational linear reparametrization function.

In this case [1] and [2] give an explicit expression for the reparametrized NURBS
curve.

The most common and useful parametrization, from a computational point of
view, 1s the arc length, where a unit change in the parametrizing variable results
in a unit change in curve length. Such a parametrization is unfortunately almost
never possible for NURBS, unless for straight lines (see [3]). These considerations
lead us to search for a parametrization that best fits the arc length.
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To our knowledge no author in the literature has considered this problem, while
in several papers numerical techniques to compute arc length were developed (see,
for example, [4] and [5]).

This paper is essentially in two parts. In the first, we consider the reparamet-
rization problem on a single interval, and in the second part we extend this result
to deal with adaptive piecewise reparametrization.

In the next section we consider some essential motivations that led us to consider
this topic.

In section 3 a formulation of arc length reparametrization is given; while in
section 4 we introduce the concept of approximate reparametrization. Repara-
metrization on a single interval is considered in section 5, studying the particular
reparametrization function used in this paper and the numerical method applied
to compute it. In order to establish the quality of the proposed reparametrization
method, we present two evaluation parameters in section 6, and in section 7 we
report the results obtained on several test curves. The second part of the paper 1s
introduced by a description of a CY adaptive piecewise reparametrization technique
in section 8, followed by the respective experimental results in section 9. Finally,
an extension to C' reparametrization is considered and some concluding remarks
are given.

2. Motivation

To date, NURBS are the most general parametric representation in geometric mod-
elling. The most frequently used NURBS design techniques are the specification of
a control polygon, and the interpolation or approximation of data points to gener-
ate the initial shape. This is then refined into the desired final shape through the
interactive adjustment of control points and weights.

A possible shortcoming of this process is that small changes in the shape of the
curve can also lead to a bad parametrization with respect to the arc length.

Figure 1 shows a curve modified in shape by increasing weights ws and ws. The
curves, before and after modification, are evaluated and drawn at parameter values
uniformly spaced in the parametric domain (see, the drawing in dots in Fig. 1). We
can observe the effects of significant changes in the parametrization; note that the
arc length parametrization would yield points spaced uniformly on the curve.

Moreover, when a badly parametrized curve is used in the construction of sur-
faces (cross-sectional techniques) badly parametrized surfaces are obtained.

Any numerical method, or simply the rendering procedure, applied to curves or
surfaces, are affected by their particular parametrization in terms of computational
complexity and numerical stability, as shown in the following example.

We consider the Bottle/Plane intersection computed by a Surface/Surface In-
tersection algorithm (SSI) based on a geometric-numerical approach (see [6]). The
geometric phase is concerned with the evaluation of some Starting Points (SP),
while the numerical phase consists in a marching algorithm that, starting from the
SPs determines the intersection curves through a certain Number of Points (NP).
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Fig. 1. The initial shape (top); the final shape after the adjustment of weights w3 and w4 (bottom).

We will compare case A of the intersection between the two well-parametrized
surfaces (see Figure 2) with case B relating to the intersection between the same
surfaces, in which the Bottle surface is badly parametrized; in fact it is built as a
revolving surface with a badly parametrized circular trajectory curve (see Figure

If the SSI algorithm uses the smallest number of SPs, corresponding to the pieces
of the intersection curve on the parametric domain (3 in the example above), in case
A 397 NPs are computed, compared with 794 NPs of case B.

This increased computational cost 1s due to the fact that the solution for the
parametric domain in case A is given by a smoother curve than in case B. In case
B the marching phase encounters problems in the spans of higher curvature making
it impossible to find a solution in less than 794 NPs.

Allowing algorithm SSI to use a larger number of SPs, a solution is reached in
case A with 253 NPs as against 590 NPs in case B.

Other examples where working with badly parametrized curves or surfaces can
be disadvantageous are both uniform and adaptive rendering, motion control in
computer animation, curve/curve intersection, ray/surface intersection in ray trac-
ing, implicitization.

3. Arc length reparametrization of NURBS curves
Let ¢(t) be a NURBS curve of order m (degree m — 1), expressed as

K
C(t) = Z PiRiym(t/wi_mH,---,wi) t e [0, 1]

i=—m+1
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Fig. 2. Well-parametrized surfaces; Bottle domain (top), Plane domain (bottom).

Fig. 3. Badly parametrized surfaces; Bottle domain (top), Plane domain (bottom).
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where P; € IR? are the control points, w; their corresponding positive real weights,
and R; ,,, the rational B-spline basis functions defined on the knot sequence (¢;)i=—_m+
1,,mt+K Where tg =0 and tg 41 = 1.

We denote by 7; the multiplicity of knot ¢;, 1 < ¢ < K (that is, the number
of times t; occurs in the knot sequence). We assume that r; is always less than or

equal to m — 1.
Note that at knot £;, 1 < 4 < K, the order of continuity of the homogeneous

curve 18 m — r; — 1, since this curve is a nonrational B-spline curve in 3D space.
The arc length parametrization function ¢(t) for ¢(t) is defined as

¢ :[0,1] = [0, L]
= g(t) = / € ()|

1
with L:/ lle’ (w)]]2dw
0

where L denotes the length of the curve ¢(¢). Note that the ¢(¢) function is strictly

increasing. In figure 6 two examples of ¢(¢) are shown.
Let a reparametrization function be a (t) satisfying the following conditions:

% [0,1] = [0, A]

B ()>0 tel0,1]
then a reparametrized curve can be defined as
é(r) = c(p™(1)) T€[0,A]

A curve will be reparametrized by arc length when the 4(t) is the ¢(¢) function.
We now assume that &(7) is a reparametrized curve by arc length.

In general &(7) is not a NURBS curve, unless c(t) is a straight line.

We remind the reader that the following relationship holds:

€@ =1 v teo,1]

This means that the scalar speed of a point moving along the curve is constant
and equal to 1. We will assume this to be the property that characterizes the arc

length parametrization of a curve.

4. Approximate reparametrization

Since, as mentioned above, ¢(t) is not a rational function unless ¢(¢) is a straight line,
and because of the need to consider a rational reparametrization function in order
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to obtain a NURBS curve, we are led to determine a ¢(t) approximation by means
of a rational function #(¢). In this way we hope to obtain a good approximation of
arc length parametrization.

We are searching for a 9(t) that satisfies the following conditions:

(t) rational linear function

P(t)
$(0) = 4(0), ¥(1) = ¢(1)
P(t) shape preserving of ¢(t)

l[Y() — ¢(¢)||cc small

Condition 1. is necessary to guarantee that the reparametrized curve remains a

1
2
3.
4

NURBS curve in a space with the same dimension as c(t); condition 2., necessary for
the reason we will describe in the following, together with condition 4., involve the
solution of a problem similar to the best uniform approximation problem (b.u.a.)
with interpolatory constraints, by means of a rational linear function. Finally, con-
dition 3. is used to guarantee a small minmax value as a solution to the constrained
b.u.a. problem.

Since in the literature no result relating to the constrained rational b.u.a. prob-
lem 1s known, but results concerned with constrained polynomial b.u.a. problem
(see [7]) and with rational b.u.a. problem (see [8]) are known, we have proceeded
as if the results were also valid in the constrained rational case. Hence, we searched
for a 9(t) function from the set of all functions characterized by the property of
having an error function, () — ¢(t), that equioscillates at least on two points
(m 4+ n + 2 equioscillation points, with m and n respectively the degrees of the
numerator and denominator of the 9(¢) function, minus two points corresponding
to the interpolation constraints at the endpoints).

This way of proceeding guarantees a solution to our problem even with no the-
oretical support for the b.u.a. problem.

5. Reparametrization on a single interval

The objective of this section is to make a suitable choice for #(¢). To do this we
will give a characterization of 9(¢) and provide the numerical method used in order
to achieve it.

5.1. Approxzimate reparametrization function
We consider the following reparametrization function:

¢(a)(b—t) +we(b)(t — a)

Y = T ) T ui-a)

w>0 tE€]la,b

which is a linear rational function that interpolates ¢(¢) at the endpoints of a generic
interval [a, b].

From a study of its behaviour, for any w we have 1,bl(t) > 0 Vt, that is, the ¥(¢)
is strictly increasing throughout [a, b]; this implies that it is an invertible function
and therefore can be used as a reparametrization function.
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Moreover, 9 (t) # 0 Vi, hence the 9(¢) function is either concave or convex on
the interval [a, b]. This property, together with monotonicity, lead us to apply the
$(t) approximation function only to intervals [a, b] in which ¢(%) is either concave
or convex and this makes us satisfy condition 3 of section 4.

5.2. The second Remez algorithm

The object is to find a (¢) as an approximation of the ¢(¢) which is the limit of a
sequence of ¥(t) that have an error function that alternates on at least two points.

To do this we use the second Remez algorithm (see [8]) in which at each iteration
we check that the maximum error function is still decreasing. If this does not occur,
the procedure is stopped and the penultimate 9(¢) found in the sequence is taken
as the solution.

The following non-linear system, with unknowns d and w, satisfies the equioscil-
lation constraints:

Y(t) — d(t:) = (=1)'d i=0,1
that 1s:

{ 8()(b — 10) + WG (B)(ty — a) + (~d = §(to)) bt +wity—a) =0,
Ba)(b— t2) + wp(b)(t1 — a) + (+d — $(t1))[b — 2 + w(ts —a)] = 0

Procedure
1. ymaz_old = oo
2. Lettg =a+ (bza) and t; = b — @
3. Compute d and w explicitly from (1)
4. Let e(t) = 9(t) — ¢(¢) be the error function and (o, yo), (£1,y1) such that
Yo = max le(t)] and y1 = max le(?)]
t t

sgn(e(t)) = sgn(e(to)) sgn(e(t)) = sgn(e(t1))

ymaz = maz (Yo, Y1)

If ymaz_old < ymaz then w = w_old; go to step 9.

Update (tg,%1) with (£g,%1) so that the error function has two variations in sign
w_old = w; ymaz_old = ymaz

If ymaz — |d| > € go to step 3.

O oo =1 O O

end
Proposition System (1) always provides a unique function %(t) satisfying the
equioscillation property on two points.

Proof. The second equation of (1) can be solved for d so that after substitution in
the first equation we can reduce the problem to the solution of the following second
degree equation:

aw? + fw+y=0
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= [2¢(b) — (1) — ¢(t0)](t1 — a)(to — @)
= [¢(a) + ¢(b) — d(t1) — ¢(t0)][(b— to)(t1 — a) + (b —t1)(t0 — a)]
= [2¢(a) — ¢(21) — ¢(20)](b — t1)(b —to)

<2 W™

Note that the discriminant A is always positive and furthermore A > |b|; this
implies that we obtain two real solutions that are different in sign. Hence, the
unique alternating function derives from considering the positive w solution O.

6. Evaluation parameters

In order to test the good or bad quality of approximate reparametrization, we chose
the two parameters p and ¢ and defined them as follows.
Let

p=lllf e @) [z =1 leo

be the displacement from the unit speed; in the case of arc length reparametrization,
p 1s equal to 0.
We consider a uniform subdivision of the parametric domain (7;);=1 ... v and we

define by

max;—s . Nf ||c (t) ||2 dt

min;—s .. Nf [| ¢'(2) ||2 dt

the displacement from the uniform distribution of the points on the curve; in fact
g is the ratio between the segment of maximum and minimum length of the curve,
where a segment is defined as a span of curve in between two consecutive points 7;.
In the case of an arc length parametrization ¢ is equal to 1, as points on the curve
are uniformly spaced.

Parameter ¢ provides more information than parameter p; in fact, if the approx-
imation strip of the unit speed is defined as that given by [min || cl(t) [|2, max ||
cl(t) ||2], parameter p provides only partial information about the strip while g gives
more complete information of its size; in fact

, max || ¢'(t) |l

~ min [ ¢ (2) [|2

holds.

7. Numerical results: part 1

In this initial phase seven test curves have been considered, all having convex ¢(t)
over the whole parametric domain in order to apply a single approximation (%) as
indicated in section 5.

The curves considered here are chosen of different degrees 1, 2, 3 and 4, as
pointed out from their names, and are badly parametrized with respect to arc
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length; the convl curves all have uniformly spaced control points and increasing
weights, while the conv2 curves have control points placed at increasing distances
and equal weights.

Table 1 reports the initial value of the evaluation parameters p and ¢, denoted by
po and g, and the values after applying a single rational reparametrization to the
test curves. The last column gives the maximum error function e(¢) indicated with
MinMaz since, in all the cases in our experimentation, Remez algorithm found the
b.u.a.; in fact the divergence test of the maximum error function was never positive
and convergence was always reached in three or four iterations.

Further proof that the approximation found was the constrained b.u.a. is given
by the fact that reparametrizing the curve a second time the same parametrization
was obtained.

In fact, it must be remembered that the double reparametrization obtained
through the two functions 47 and s 1s equivalent to a single reparametrization
with the composite $2(1(t)), which is still a linear rational function; therefore, the
fact that the reparametrization does not vary means that the ¥2(91(t)) = ¥1(¢),
and then 3, is already the constrained b.u.a. of the ¢(¢) with MinMaz given by
18(8) — $1(8) [lo-

Finally, we can observe that the convl — d1 curve is a straight line and that our
method manages to reparametrize it exactly at arc length.

Table 1. Reparametrization on a single interval.

TEST CURVES Po P q0 q | MinMax
convl — d1 3.00 0| 15.88 1 0
convl — d2 0.80 0.10 3.99 | 1.17 0.0064
conv2 — d2 0.69 | 0.074 3.49 | 1.20 0.012
convl — d3 2.20 0.25 7.94 | 1.48 0.017
conv2 — d3 1.33 0.14 4.93 | 1.24 0.0078
convl — d4 2.24 0.21 | 12.38 | 1.39 0.025
conv2 — d4 0.93 0.22 5.64 | 1.45 0.036

8. Piecewise adaptive reparametrization

In practice, a c(¢) curve will have a strictly increasing ¢(¢) which will not be simply
all concave or convex and is therefore difficult to approximate it with a single linear
rational function, that is to satisfy condition 4 of section 4.

As already mentioned, the idea is to approximate the ¢(¢) in spans which are
only concave or convex by means of a 1¥(t) function.

In other words once a tolerance has been assigned, we propose an adaptive
method that consists in carrying out an adaptive approximation on concave/convex
spans (pieces of ¢(¢) function only concave or convex) until the requested tolerance
of approximation has been reached on every span. The first step is to compute an
approximate ¥(t) over the whole parametric domain; if tolerance is not reached, the
parametric interval is divided in two intervals to respect the concave/convex spans
or divided in half if the correspondent span is already concave or convex.
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The approximation is then repeated on each span, dividing it again if necessary
in order to reach tolerance value.

Once the piecewise linear rational function ¥(t) = ¥;(t), with ¢t € [s;, s;41] V4,
has been obtained, the reparametrization process consists in subdividing the curve
in correspondence of each s; by inserting knots (each with multiplicity m), and ap-
plying the respective reparametrization 9;(t) to each curve span ¢([s;, 8;41]) (see [1]
and [2]). As (t) function will be C? see condition 2 of section 4, the reparametrized
curve will be CY. Note that ¢(t) consists of many pieces of curve (interior knots
with multiplicity m).

To make it as a NURBS curve once again a procedure of knot-removal is applied
to all knots (see [9]). If this phase is preceded by a suitable scaling of the weights
of each piece of curve (this do not modify the parametrization), the knot-removal is
bound to be successful at least once on each knot s; by reducing their multiplicity
to at least m — 1.

This procedure implies the representation of the reparametrized curve in a space
of larger dimension than that of the original curve because of the above-mentioned
knot insertion.

To make the assigned tolerance curve length independent (¢ : [0,1] = [0, L]),
we have established to assign a tolerance value as if the curve was of unit length and
then scale it according to the real length of the curve. This involves the invariance
of the reparametrization with respect to a scaling of the curve.

Table 2. Piecewise adaptive reparametrization; tol = 0.005.

TEST CURVES Po P q0 q | Nol
convl — d2 0.80 | 0.046 3.99 | 1.07 2
conv2 — d2 0.69 | 0.039 3.49 | 1.07 2
convl — d3 2.20 | 0.072 7.94 | 1.10 3
conv2 — d3 1.33 | 0.056 4.93 | 1.11 2
convl — d4 2.24 | 0.098 | 12.38 | 1.18 3
conv2 — d4 0.93 | 0.064 5.64 | 1.09 2

9. Numerical results: part 2

In this second phase the accuracy of the piecewise adaptive approximation tech-
nique is assessed in order to use it as a semi-automatic method to obtain a well
parametrized curve with respect to arc length.

A threshold value of good parametrization has been chosen in the value ¢ = 1.25,
below which parametrization could be considered accurate with regard to arc length;
this value considers the segment of maximum length as 1/4 greater than the segment
of minimum length of the curve.

Table 1 shows that it is not always possible to arrive at this threshold value
using a single approximation.

In Table 2 we find the results of the adaptive piecewise approximation method
applied to the same test curves as Table 1, apart from the convl — d1, with a
tolerance of tol = 0.005.



Table 3. Piecewise adaptive reparametrization by approximation function.

Reparametrization of NURBS curves

TEST CURVES tol Po P q0 q | Nol
cotl 0.01 | 4.71 0.59 | 14.17 | 1.73 6
0.005 0.59 1.68 7

0.0005 0.08 1.09 13

sole 0.01 | 0.82 0.22 2.88 | 1.49 4
0.005 0.16 1.38 5

0.0005 0.06 1.08 14

flower 0.01 | 1.17 0.38 | 15.71 | 2.08 6
0.005 0.26 1.48 11

0.0005 0.15 1.19 21

star 0.01 | 0.72 0.83 5.06 | 4.98 8
0.005 0.21 1.46 11

0.0005 0.061 1.10 23

heart 0.01 | 1.86 0.69 | 32.22 | 4.09 4
0.005 0.62 3.24 5

0.0005 0.10 1.19 17

guttar 0.01 | 1.27 0.84 | 12.56 | 3.93 12
0.005 0.84 3.93 12

0.0005 0.14 1.25 32

Fig. 4. Flower.

11



12  International Journal of Shape Modeling

The results show that the threshold value has been reached for all the curves.
The last column, marked Nol, reports the number of intervals in which the method
has subdivided the initial parametric domain in order to reach the approximate
precision requested.

Table 3 reports the results relative to six more complex test curves (the ¢(2) is
not always convex), varying in degree, shape and initial parameter values py and
qo0-

Figures 4 and 5 show two of the test curves considered, with their relative control
points; the curve and its drawing in dots relating to the initial parametrization are
given above, and below is the final result after reparametrization with tol = 0.0005.

Figure 6 illustrates the graphs of the initial ¢(¢) functions relative to the test
curves of Figures 4 and 5.

An asymptotic reduction of the parameter values p and ¢, due to a decreasing
tolerance, can be observed in the tests summarized in Table 3, even though this is
obtained using numerous subdivisions.

It is observed that all the curves undergoing a tol = 0.0005 go below the thresh-
old value, although the initial values are extremely varied.

However, with bigger tolerances the Nol is fewer, and parametrization is still
accurate. Note that in a geometric design system we can accept a non-optimal
parametrization in order to avoid to split the curve too much.

10. C! reparametrization function

If the initial curve is at least C! it could be useful to determine a reparametrized
curve that is at least C'. This is made possible by approximating ¢(¢) with a ¥(t)
that is C*.

In our piecewise adaptive scheme this was obtained by using the piecewise linear
rational interpolation function ¥(t) = ¥;(¢), with ¢t € [s;, s;41] Vi, defined as in [10]
that is on every two consecutive intervals [s;, $;+1], [Si+1, Si+2] such that

¢§(3i) ¢I(3i);
Yi(si) = & (),
¢§'+1(3i+2) = ¢I(3i+2):
¢z’+1(3i+2) = ¢ (sit2),
bilsivr) = Yip1(sit1),
P (si41) Yip1(Sit1)-

Table 4, that must be compared with Table 3, reports the results of the method
just described on the six test curves already presented.

We can observe that, in order to avoid excessive subdivisions into spans, a higher
tolerance values must be given. In fact, in order to satisfy the C' condition, the
requested tolerance value is reached only by making a lot of subdivisions.

However, all these subdivisions lead to a good reparametrization.

As in case CP, also in C! reparametrization, an asymptotic reduction of the
parameter values p and ¢ can be experimentally observed.
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Fig. 6. ¢(t) functions of flower (left) and guitar (right).
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Table 4. Piecewise adaptive reparametrization by interpolation function; tol = 0.005.

TEST CURVES Po P q0 q | Nol
cotl 4.71 | 0.062 | 14.17 | 1.12 17

sole 0.82 | 0.073 2.88 | 1.13 15
flower 117 0.13 | 15.71 | 1.25 29

star 0.72 | 0.076 5.06 | 1.12 23

heart 1.86 0.11 | 32.22 | 1.19 21
guttar 1.27 0.19 | 12.56 | 1.45 42

When the number of subdivisions is the same, the C” reparametrization is shown
to be better than the C' reparametrization.

11. Conclusions

In this paper we considered the problem of parametric NURBS curves reparamet-
rization. We proposed a concave/convex piecewise adaptive technique in order to
approximate the arc length parametrization function. A linear rational approxima-
tion function with constraints was applied to each span. This experimentally proved
to be the best uniform approximation. The proposed method can be used both glob-
ally and locally as a semi-automatic technique for improving the parametrization
of curves in a geometric design system in order to reduce the computational cost
and increase the stability of the numerical methods within the system.
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