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2 International Journal of Shape ModelingTo our knowledge no author in the literature has considered this problem, whilein several papers numerical techniques to compute arc length were developed (see,for example, [4] and [5]).This paper is essentially in two parts. In the �rst, we consider the reparamet-rization problem on a single interval, and in the second part we extend this resultto deal with adaptive piecewise reparametrization.In the next section we consider some essential motivations that led us to considerthis topic.In section 3 a formulation of arc length reparametrization is given; while insection 4 we introduce the concept of approximate reparametrization. Repara-metrization on a single interval is considered in section 5, studying the particularreparametrization function used in this paper and the numerical method appliedto compute it. In order to establish the quality of the proposed reparametrizationmethod, we present two evaluation parameters in section 6, and in section 7 wereport the results obtained on several test curves. The second part of the paper isintroduced by a description of a C0 adaptive piecewise reparametrization techniquein section 8, followed by the respective experimental results in section 9. Finally,an extension to C1 reparametrization is considered and some concluding remarksare given.2. MotivationTo date, NURBS are the most general parametric representation in geometric mod-elling. The most frequently used NURBS design techniques are the speci�cation ofa control polygon, and the interpolation or approximation of data points to gener-ate the initial shape. This is then re�ned into the desired �nal shape through theinteractive adjustment of control points and weights.A possible shortcoming of this process is that small changes in the shape of thecurve can also lead to a bad parametrization with respect to the arc length.Figure 1 shows a curve modi�ed in shape by increasing weights w3 and w4. Thecurves, before and after modi�cation, are evaluated and drawn at parameter valuesuniformly spaced in the parametric domain (see, the drawing in dots in Fig. 1). Wecan observe the e�ects of signi�cant changes in the parametrization; note that thearc length parametrization would yield points spaced uniformly on the curve.Moreover, when a badly parametrized curve is used in the construction of sur-faces (cross-sectional techniques) badly parametrized surfaces are obtained.Any numerical method, or simply the rendering procedure, applied to curves orsurfaces, are a�ected by their particular parametrization in terms of computationalcomplexity and numerical stability, as shown in the following example.We consider the Bottle/Plane intersection computed by a Surface/Surface In-tersection algorithm (SSI) based on a geometric-numerical approach (see [6]). Thegeometric phase is concerned with the evaluation of some Starting Points (SP),while the numerical phase consists in a marching algorithm that, starting from theSPs determines the intersection curves through a certain Number of Points (NP).



Reparametrization of NURBS curves 3
Fig. 1. The initial shape (top); the �nal shape after the adjustmentof weights w3 and w4 (bottom).We will compare case A of the intersection between the two well-parametrizedsurfaces (see Figure 2) with case B relating to the intersection between the samesurfaces, in which the Bottle surface is badly parametrized; in fact it is built as arevolving surface with a badly parametrized circular trajectory curve (see Figure3). If the SSI algorithm uses the smallest number of SPs, corresponding to the piecesof the intersection curve on the parametric domain (3 in the example above), in caseA 397 NPs are computed, compared with 794 NPs of case B.This increased computational cost is due to the fact that the solution for theparametric domain in case A is given by a smoother curve than in case B. In caseB the marching phase encounters problems in the spans of higher curvature makingit impossible to �nd a solution in less than 794 NPs.Allowing algorithm SSI to use a larger number of SPs, a solution is reached incase A with 253 NPs as against 590 NPs in case B.Other examples where working with badly parametrized curves or surfaces canbe disadvantageous are both uniform and adaptive rendering, motion control incomputer animation, curve/curve intersection, ray/surface intersection in ray trac-ing, implicitization.3. Arc length reparametrization of NURBS curvesLet c(t) be a NURBS curve of order m (degree m � 1), expressed asc(t) = KXi=�m+1PiRi;m(t=wi�m+1; � � � ; wi) t 2 [0; 1]



4 International Journal of Shape Modeling
Fig. 2. Well-parametrized surfaces; Bottle domain (top), Plane domain (bottom).
Fig. 3. Badly parametrized surfaces; Bottle domain (top), Plane domain (bottom).



Reparametrization of NURBS curves 5where Pi 2 IR2 are the control points, wi their corresponding positive real weights,andRi;m the rational B-spline basis functions de�ned on the knot sequence (ti)i=�m+1;���;m+K where t0 = 0 and tK+1 = 1.We denote by ri the multiplicity of knot ti, 1 � i � K (that is, the numberof times ti occurs in the knot sequence). We assume that ri is always less than orequal to m � 1.Note that at knot ti, 1 � i � K, the order of continuity of the homogeneouscurve is m � ri � 1, since this curve is a nonrational B-spline curve in 3D space.The arc length parametrization function �(t) for c(t) is de�ned as� : [0; 1] =) [0; L]� = �(t) = Z t0 jjc0(u)jj2duwith L = Z 10 jjc0(u)jj2duwhere L denotes the length of the curve c(t). Note that the �(t) function is strictlyincreasing. In �gure 6 two examples of �(t) are shown.Let a reparametrization function be a  (t) satisfying the following conditions: : [0; 1] =) [0;�] 0 (t) > 0 t 2 [0; 1]then a reparametrized curve can be de�ned asĉ(� ) = c( �1(� )) � 2 [0;�]A curve will be reparametrized by arc length when the  (t) is the �(t) function.We now assume that ĉ(� ) is a reparametrized curve by arc length.In general ĉ(� ) is not a NURBS curve, unless c(t) is a straight line.We remind the reader that the following relationship holds:jjĉ0(t)jj2 = 1 8 t 2 [0; 1]This means that the scalar speed of a point moving along the curve is constantand equal to 1. We will assume this to be the property that characterizes the arclength parametrization of a curve.4. Approximate reparametrizationSince, as mentioned above, �(t) is not a rational function unless c(t) is a straight line,and because of the need to consider a rational reparametrization function in order



6 International Journal of Shape Modelingto obtain a NURBS curve, we are led to determine a �(t) approximation by meansof a rational function  (t). In this way we hope to obtain a good approximation ofarc length parametrization.We are searching for a  (t) that satis�es the following conditions:1:  (t) rational linear function2:  (0) = �(0);  (1) = �(1)3:  (t) shape preserving of �(t)4: jj (t)� �(t)jj1 smallCondition 1. is necessary to guarantee that the reparametrized curve remains aNURBS curve in a space with the same dimension as c(t); condition 2., necessary forthe reason we will describe in the following, together with condition 4., involve thesolution of a problem similar to the best uniform approximation problem (b.u.a.)with interpolatory constraints, by means of a rational linear function. Finally, con-dition 3. is used to guarantee a small minmax value as a solution to the constrainedb.u.a. problem.Since in the literature no result relating to the constrained rational b.u.a. prob-lem is known, but results concerned with constrained polynomial b.u.a. problem(see [7]) and with rational b.u.a. problem (see [8]) are known, we have proceededas if the results were also valid in the constrained rational case. Hence, we searchedfor a  (t) function from the set of all functions characterized by the property ofhaving an error function,  (t) � �(t), that equioscillates at least on two points(m + n + 2 equioscillation points, with m and n respectively the degrees of thenumerator and denominator of the  (t) function, minus two points correspondingto the interpolation constraints at the endpoints).This way of proceeding guarantees a solution to our problem even with no the-oretical support for the b.u.a. problem.5. Reparametrization on a single intervalThe objective of this section is to make a suitable choice for  (t). To do this wewill give a characterization of  (t) and provide the numerical method used in orderto achieve it.5.1. Approximate reparametrization functionWe consider the following reparametrization function: (t) = �(a)(b� t) +w�(b)(t� a)(b� t) +w(t� a) w > 0 t 2 [a; b]which is a linear rational function that interpolates �(t) at the endpoints of a genericinterval [a; b].From a study of its behaviour, for any w we have  0 (t) > 0 8t, that is, the  (t)is strictly increasing throughout [a; b]; this implies that it is an invertible functionand therefore can be used as a reparametrization function.



Reparametrization of NURBS curves 7Moreover,  00 (t) 6= 0 8t, hence the  (t) function is either concave or convex onthe interval [a; b]. This property, together with monotonicity, lead us to apply the (t) approximation function only to intervals [a; b] in which �(t) is either concaveor convex and this makes us satisfy condition 3 of section 4.5.2. The second Remez algorithmThe object is to �nd a  (t) as an approximation of the �(t) which is the limit of asequence of  (t) that have an error function that alternates on at least two points.To do this we use the second Remez algorithm (see [8]) in which at each iterationwe check that the maximumerror function is still decreasing. If this does not occur,the procedure is stopped and the penultimate  (t) found in the sequence is takenas the solution.The following non-linear system, with unknowns d and w, satis�es the equioscil-lation constraints:  (ti) � �(ti) = (�1)id i = 0; 1that is:� �(a)(b� t0) +w�(b)(t0 � a) + (�d � �(t0))[b� t0 +w(t0 � a)] = 0�(a)(b� t1) +w�(b)(t1 � a) + (+d � �(t1))[b� t1 +w(t1 � a)] = 0 (1)Procedure1. ymax old =12. Let t0 = a+ (b�a)4 and t1 = b� (b�a)43. Compute d and w explicitly from (1)4. Let e(t) =  (t) � �(t) be the error function and (�t0; y0), (�t1; y1) such thaty0 = maxtsgn(e(t)) = sgn(e(t0)) je(t)j and y1 = maxtsgn(e(t)) = sgn(e(t1)) je(t)jymax = max(y0; y1)5. If ymax old < ymax then w = w old; go to step 9.6. Update (t0; t1) with (�t0; �t1) so that the error function has two variations in sign7. w old = w; ymax old = ymax8. If ymax � jdj > � go to step 3.9. endProposition System (1) always provides a unique function  (t) satisfying theequioscillation property on two points.Proof. The second equation of (1) can be solved for d so that after substitution inthe �rst equation we can reduce the problem to the solution of the following seconddegree equation: �w2 + �w +  = 0



8 International Journal of Shape Modelingwith � = [2�(b)� �(t1)� �(t0)](t1 � a)(t0 � a)� = [�(a) + �(b)� �(t1)� �(t0)][(b� t0)(t1 � a) + (b� t1)(t0 � a)] = [2�(a)� �(t1)� �(t0)](b� t1)(b � t0)Note that the discriminant � is always positive and furthermore � > jbj; thisimplies that we obtain two real solutions that are di�erent in sign. Hence, theunique alternating function derives from considering the positive w solution 2.6. Evaluation parametersIn order to test the good or bad quality of approximate reparametrization, we chosethe two parameters p and q and de�ned them as follows.Let p :=kk c0 (t) k2 �1 k1be the displacement from the unit speed; in the case of arc length reparametrization,p is equal to 0.We consider a uniform subdivision of the parametric domain (�i)i=1;���;N and wede�ne by q := maxi=2;���;N R �i�i�1 k c0(t) k2 dtmini=2;���;N R �i�i�1 k c0(t) k2 dtthe displacement from the uniform distribution of the points on the curve; in factq is the ratio between the segment of maximum and minimum length of the curve,where a segment is de�ned as a span of curve in between two consecutive points �i.In the case of an arc length parametrization q is equal to 1, as points on the curveare uniformly spaced.Parameter q provides more information than parameter p; in fact, if the approx-imation strip of the unit speed is de�ned as that given by [min k c0(t) k2;max kc0(t) k2], parameter p provides only partial information about the strip while q givesmore complete information of its size; in factq � max k c0(t) k2min k c0(t) k2holds.7. Numerical results: part 1In this initial phase seven test curves have been considered, all having convex �(t)over the whole parametric domain in order to apply a single approximation  (t) asindicated in section 5.The curves considered here are chosen of di�erent degrees 1, 2, 3 and 4, aspointed out from their names, and are badly parametrized with respect to arc



Reparametrization of NURBS curves 9length; the conv1 curves all have uniformly spaced control points and increasingweights, while the conv2 curves have control points placed at increasing distancesand equal weights.Table 1 reports the initial value of the evaluation parameters p and q, denoted byp0 and q0, and the values after applying a single rational reparametrization to thetest curves. The last column gives the maximum error function e(t) indicated withMinMax since, in all the cases in our experimentation, Remez algorithm found theb.u.a.; in fact the divergence test of the maximum error function was never positiveand convergence was always reached in three or four iterations.Further proof that the approximation found was the constrained b.u.a. is givenby the fact that reparametrizing the curve a second time the same parametrizationwas obtained.In fact, it must be remembered that the double reparametrization obtainedthrough the two functions  1 and  2 is equivalent to a single reparametrizationwith the composite  2( 1(t)), which is still a linear rational function; therefore, thefact that the reparametrization does not vary means that the  2( 1(t)) �  1(t),and then  1 is already the constrained b.u.a. of the �(t) with MinMax given byk �(t)�  1(t) k1.Finally, we can observe that the conv1� d1 curve is a straight line and that ourmethod manages to reparametrize it exactly at arc length.Table 1. Reparametrization on a single interval.TEST CURVES p0 p q0 q MinMaxconv1 � d1 3:00 0 15:88 1 0conv1 � d2 0:80 0:10 3:99 1:17 0:0064conv2 � d2 0:69 0:074 3:49 1:20 0:012conv1 � d3 2:20 0:25 7:94 1:48 0:017conv2 � d3 1:33 0:14 4:93 1:24 0:0078conv1 � d4 2:24 0:21 12:38 1:39 0:025conv2 � d4 0:93 0:22 5:64 1:45 0:0368. Piecewise adaptive reparametrizationIn practice, a c(t) curve will have a strictly increasing �(t) which will not be simplyall concave or convex and is therefore di�cult to approximate it with a single linearrational function, that is to satisfy condition 4 of section 4.As already mentioned, the idea is to approximate the �(t) in spans which areonly concave or convex by means of a  (t) function.In other words once a tolerance has been assigned, we propose an adaptivemethod that consists in carrying out an adaptive approximation on concave/convexspans (pieces of �(t) function only concave or convex) until the requested toleranceof approximation has been reached on every span. The �rst step is to compute anapproximate  (t) over the whole parametric domain; if tolerance is not reached, theparametric interval is divided in two intervals to respect the concave/convex spansor divided in half if the correspondent span is already concave or convex.



10 International Journal of Shape ModelingThe approximation is then repeated on each span, dividing it again if necessaryin order to reach tolerance value.Once the piecewise linear rational function  (t) �  i(t), with t 2 [si; si+1] 8i,has been obtained, the reparametrization process consists in subdividing the curvein correspondence of each si by inserting knots (each with multiplicitym), and ap-plying the respective reparametrization  i(t) to each curve span c([si; si+1]) (see [1]and [2]). As  (t) function will be C0, see condition 2 of section 4, the reparametrizedcurve will be C0. Note that c(t) consists of many pieces of curve (interior knotswith multiplicity m).To make it as a NURBS curve once again a procedure of knot-removal is appliedto all knots (see [9]). If this phase is preceded by a suitable scaling of the weightsof each piece of curve (this do not modify the parametrization), the knot-removal isbound to be successful at least once on each knot si by reducing their multiplicityto at least m � 1.This procedure implies the representation of the reparametrized curve in a spaceof larger dimension than that of the original curve because of the above-mentionedknot insertion.To make the assigned tolerance curve length independent (� : [0; 1] =) [0; L]),we have established to assign a tolerance value as if the curve was of unit length andthen scale it according to the real length of the curve. This involves the invarianceof the reparametrization with respect to a scaling of the curve.Table 2. Piecewise adaptive reparametrization; tol = 0:005.TEST CURVES p0 p q0 q NoIconv1� d2 0:80 0:046 3:99 1:07 2conv2� d2 0:69 0:039 3:49 1:07 2conv1� d3 2:20 0:072 7:94 1:10 3conv2� d3 1:33 0:056 4:93 1:11 2conv1� d4 2:24 0:098 12:38 1:18 3conv2� d4 0:93 0:064 5:64 1:09 29. Numerical results: part 2In this second phase the accuracy of the piecewise adaptive approximation tech-nique is assessed in order to use it as a semi-automatic method to obtain a wellparametrized curve with respect to arc length.A threshold value of good parametrization has been chosen in the value q = 1:25,below which parametrization could be considered accurate with regard to arc length;this value considers the segment of maximumlength as 1=4 greater than the segmentof minimum length of the curve.Table 1 shows that it is not always possible to arrive at this threshold valueusing a single approximation.In Table 2 we �nd the results of the adaptive piecewise approximation methodapplied to the same test curves as Table 1, apart from the conv1 � d1, with atolerance of tol = 0:005.



Reparametrization of NURBS curves 11Table 3. Piecewise adaptive reparametrization by approximation function.TEST CURVES tol p0 p q0 q NoIcoil 0:01 4:71 0:59 14:17 1:73 60:005 0:59 1:68 70:0005 0:08 1:09 13sole 0:01 0:82 0:22 2:88 1:49 40:005 0:16 1:38 50:0005 0:06 1:08 14flower 0:01 1:17 0:38 15:71 2:08 60:005 0:26 1:48 110:0005 0:15 1:19 21star 0:01 0:72 0:83 5:06 4:98 80:005 0:21 1:46 110:0005 0:061 1:10 23heart 0:01 1:86 0:69 32:22 4:09 40:005 0:62 3:24 50:0005 0:10 1:19 17guitar 0:01 1:27 0:84 12:56 3:93 120:005 0:84 3:93 120:0005 0:14 1:25 32

Fig. 4. Flower.



12 International Journal of Shape ModelingThe results show that the threshold value has been reached for all the curves.The last column, marked NoI, reports the number of intervals in which the methodhas subdivided the initial parametric domain in order to reach the approximateprecision requested.Table 3 reports the results relative to six more complex test curves (the �(t) isnot always convex), varying in degree, shape and initial parameter values p0 andq0. Figures 4 and 5 show two of the test curves considered, with their relative controlpoints; the curve and its drawing in dots relating to the initial parametrization aregiven above, and below is the �nal result after reparametrization with tol = 0:0005.Figure 6 illustrates the graphs of the initial �(t) functions relative to the testcurves of Figures 4 and 5.An asymptotic reduction of the parameter values p and q, due to a decreasingtolerance, can be observed in the tests summarized in Table 3, even though this isobtained using numerous subdivisions.It is observed that all the curves undergoing a tol = 0:0005 go below the thresh-old value, although the initial values are extremely varied.However, with bigger tolerances the NoI is fewer, and parametrization is stillaccurate. Note that in a geometric design system we can accept a non-optimalparametrization in order to avoid to split the curve too much.10. C1 reparametrization functionIf the initial curve is at least C1 it could be useful to determine a reparametrizedcurve that is at least C1. This is made possible by approximating �(t) with a  (t)that is C1.In our piecewise adaptive scheme this was obtained by using the piecewise linearrational interpolation function  (t) �  i(t), with t 2 [si; si+1] 8i, de�ned as in [10]that is on every two consecutive intervals [si; si+1]; [si+1; si+2] such that i(si) = �(si); 0i(si) = �0(si); i+1(si+2) = �(si+2); 0i+1(si+2) = �0(si+2); i(si+1) =  i+1(si+1); 0i(si+1) =  0i+1(si+1):Table 4, that must be compared with Table 3, reports the results of the methodjust described on the six test curves already presented.We can observe that, in order to avoid excessive subdivisions into spans, a highertolerance values must be given. In fact, in order to satisfy the C1 condition, therequested tolerance value is reached only by making a lot of subdivisions.However, all these subdivisions lead to a good reparametrization.As in case C0, also in C1 reparametrization, an asymptotic reduction of theparameter values p and q can be experimentally observed.
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Fig. 5. Guitar.
Fig. 6. �(t) functions of ower (left) and guitar (right).



14 International Journal of Shape ModelingTable 4. Piecewise adaptive reparametrization by interpolation function; tol = 0:005.TEST CURVES p0 p q0 q NoIcoil 4:71 0:062 14:17 1:12 17sole 0:82 0:073 2:88 1:13 15flower 1:17 0:13 15:71 1:25 29star 0:72 0:076 5:06 1:12 23heart 1:86 0:11 32:22 1:19 21guitar 1:27 0:19 12:56 1:45 42When the number of subdivisions is the same, the C0 reparametrization is shownto be better than the C1 reparametrization.11. ConclusionsIn this paper we considered the problem of parametric NURBS curves reparamet-rization. We proposed a concave/convex piecewise adaptive technique in order toapproximate the arc length parametrization function. A linear rational approxima-tion function with constraints was applied to each span. This experimentally provedto be the best uniform approximation. The proposed method can be used both glob-ally and locally as a semi-automatic technique for improving the parametrizationof curves in a geometric design system in order to reduce the computational costand increase the stability of the numerical methods within the system.References1. E.T.Y. Lee and M.L. Lucien , M�obius reparametrization of rational B-splines, ComputerAided Geometric Design 8 (1991) 213-215.2. L. Alt , Rational linear reparametrization of NURBS and the blossoming principle,Computer Aided Geometric Design 10 (1993) 465-467.3. R.T. Farouki and T. Sakkalis , Real rational curves are not 'unit speed', ComputerAided Geometric Design 8 (1991) 151-157.4. B. Guenter and R. Parent , Computing the Arc Length of Parametric Curves, IEEEComputer Graphics & Applications (May 1990) 72-78.5. R.J. Sharpe and R.W. Thorne , Numerical method for extracting an arc length param-eterization from parametric curves, Computer-Aided Design 14 (1982) 79-81.6. G. Casciola and S. Morigi , Il problema SSI nella modellazione solida con super�ciNURBS, Accademia delle Scienze dell' istituto di Bologna serie V, n.6 (1995) 107-127.7. F. Deutsch , On uniform approximation with interpolatory constraints, Journal ofMathematical Analysis and Applications 24 (1968) 62-79.8. E.W. Cheney , Introduction to Approximation Theory (McGraw-Hill, 1966).9. W. Tiller , Knot-removal algorithms for NURBS curves and surfaces, Computer-AidedDesign 24 (1992) 445-453.10. R.D. Fuhr and M. Kallay , Monotone linear rational spline interpolation, ComputerAided Geometric Design 9 (1992) 313-319.


