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Abstract

In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of

polynomials, indexed by pairs of elements of W , which have become known as the

Kazhdan-Lusztig polynomials of W , and which have proven to be of importance

in several areas of mathematics. In this paper we show that the combinatorial

concept of a special matching plays a fundamental role in the computation of

these polynomials. Our results also imply, and generalize, the recent one in [12]

on the combinatorial invariance of Kazhdan-Lusztig polynomials.
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1 Introduction

In their fundamental paper [22] Kazhdan and Lusztig defined, for every Coxeter group

W , a family of polynomials, indexed by pairs of elements of W , which have become

known as the Kazhdan-Lusztig polynomials of W (see, e.g., [21], Chap. 7). These

polynomials are intimately related to the Bruhat order of W and have proven to be

of fundamental importance in several areas of mathematics including representation

theory and the geometry and topology of Schubert varieties (see, e.g., [22], [23], [21],

[19], [1], [18], [2], [25], and the references cited there).

Our purpose in this paper is to show that the combinatorial concept of a special

matching (see §2 for definitions) plays a fundamental role in the computation of these

polynomials. Our results also imply the recent one in [12] about the combinatorial

invariance of Kazhdan-Lusztig polynomials. More precisely, while the result in [12] is

non-constructive and holds for Coxeter systems whose Dynkin diagram is either a tree

or affine of type A, our result is constructive and holds for all Coxeter systems.

The organization of the paper is as follows. In the next section we recall some

definitions and results that will be used in the rest of this work. In the following three

sections (§§3,4,5) we establish some preliminary results on Bruhat order, on the com-

binatorics of pairs of special matchings, and on general algebraic properties of special

matchings of Coxeter systems. In section 6 we study in detail the special matchings of

Coxeter systems of rank three. These results are then used in the following section (§7)

to obtain the main result of this work. More precisely, we obtain a classification of all

the special matchings of any Coxeter system (Theorem 7.6), from which the connection

between special matchings and Kazhdan-Lusztig polynomials (Theorem 7.8) follows.

In §8 we introduce and study a Hecke algebra naturally associated to the special match-

ings of any element of any Coxeter system and use it to show that our main result is

equivalent to the statement that a certain action of this Hecke algebra on a submodule

of the Hecke algebra of W “respects” the canonical involutions (Theorem 8.2). This,

in turn, implies that the usual recursion for the Kazhdan-Lusztig polynomials ([22,

formula (2.2c)]) holds also when descents are replaced by special matchings (Corollary

8.4). Finally, in the last three sections of this work, we derive some consequences of

our main result. These include various closed formulas for both the Kazhdan-Lusztig

and R-polynomials. Some of these generalize well-known formulas that have appeared

before in the literature.
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2 Notation, definitions and preliminaries

In this section we collect some definitions, notation and results that will be used in the

rest of this work.

We let P
def
= {1, 2, 3, . . .}, and N

def
=P ∪{0}. For a ∈ N we let [a]

def
= {1, 2, . . . , a}

(where [0]
def
= ∅) and [0, a]

def
= [a] ∪ {0}. We write S = {a1, . . . , ar}< to mean that

S = {a1, . . . , ar} and a1 < · · · < ar. The cardinality of a set A will be denoted by

|A| and its power set by P(A), for r ∈ N we let
(

A

r

) def
= {S ⊆ A : |S| = r}. Given a

polynomial P (q), and i ∈ Z, we denote by [qi](P (q)) the coefficient of qi in P (q).

By a graph we mean a pair G = (V,E) where V is a set and E ⊆
(

V

2

)
. We call

the elements of V vertices and those of E edges. A matching of G is an involution

M : V → V such that {v,M(v)} ∈ E for all v ∈ V .

By a directed graph we mean a pair D = (V,A) where V is a set and A ⊆ V 2. We

call the elements of V vertices and those of A directed edges. If (a, b) ∈ A then we

also write a → b. A directed path (respectively, undirected path) in D is a sequence

Γ = (a0, . . . , ar) of vertices such that ai−1 → ai (respectively, either ai−1 → ai or

ai → ai−1) for i = 1, . . . , r. We then say that Γ goes from a0 to ar. The length of such

a path is `(Γ)
def
= r. If Γ is a directed path then we also write Γ = (a0 → a1 → · · · → ar).

If U ⊆ V then the directed graph induced on U by D is (U,A ∩ U2).

Given a set T we let S(T ) be the set of all bijections π : T → T , and Sn
def
= S([n]).

If σ ∈ Sn then we write σ = σ1 . . . σn to mean that σ(i) = σi, for i = 1, . . . , n. We also

write σ in disjoint cycle form, omitting to write the 1-cycles. Given σ, τ ∈ Sn we let

στ
def
= σ ◦ τ (composition of functions) so that, for example, (1, 2)(2, 3) = (1, 2, 3).

We follow [24, Chapter 3] for undefined notation and terminology concerning par-

tially ordered sets. In particular, if (P,≤) is a partially ordered set (or, poset, for

short) then two elements x, y ∈ P are said to be comparable if either x ≤ y or y ≤ x,

and incomparable otherwise. Given x, y ∈ P we let [x, y]
def
= {z ∈ P : x ≤ z ≤ y} and

call this an interval of P . If |[x, y]| = 2 then we say that y covers x and we write x¢ y.

An element z ∈ [x, y] is said to be an atom (respectively, a coatom) of [x, y] if x ¢ z

(respectively, z ¢ y). A poset P has a minimum (respectively, maximum) if there is

an element, denoted 0̂ (respectively, 1̂), such that 0̂ ≤ x (respectively, x ≤ 1̂) for all

x ∈ P . We say that a poset P is graded if P has a minimum and there is a function

ρ : P → N such that ρ(0̂) = 0 and ρ(y) = ρ(x) + 1 for all x, y ∈ P with x ¢ y. (This

definition is slightly different from the one given in [24], but is more convenient for

our purposes.) We then call ρ the rank function of P . A sequence (x0, x1, . . . , xr) of

elements of P is called a chain if x0 < x1 < . . . < xr. We then also say that the chain
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Figure 1: A special and a non-special matching

goes from x0 to xr. The integer r is called the length of the chain. The Hasse diagram

of P is the graph H(P )
def
= (P,E) where E

def
= {{x, y} ∈

(
P

2

)
: either x ¢ y or y ¢ x}.

Following [7] we say that a matching M of the Hasse diagram of P is special if

u ¢ v =⇒ M(u) ≤ M(v),

for all u, v ∈ P such that M(u) 6= v. A different, but equivalent in the case of Eulerian

posets, concept has also been introduced in [11].

So, for example, the dotted matching of the poset in Figure 1 is special while the

dashed one is not. The following result is easy to prove.

Lemma 2.1 Let P be a graded poset, M be a special matching of P , and u, v ∈ P be

such that M(v) ¢ v and M(u) ¤ u. Then M restricts to a special matching of [u, v].

Two posets P and Q are isomorphic if there exists an order-preserving bijection

f : P → Q such that f−1 is also order-preserving. A poset P is a Boolean algebra of

rank r if there is a set X of cardinality r such that P is isomorphic to P(X), partially

ordered by inclusion.

We assume from now on that all intervals in P are finite. Let Int(P )
def
= {(x, y) ∈

P 2 : x ≤ y}. Given a commutative ring R the incidence algebra of P with coefficients

in R, denoted I(P ; R), is the set of all functions f : Int(P ) → R with sum and product

defined by

(f + g)(x, y)
def
= f(x, y) + g(x, y)

and

(fg)(x, y)
def
=

∑

x≤z≤y

f(x, z) g(z, y),

for all f, g ∈ I(P ; R) and (x, y) ∈ Int(P ). It is well known (see, e.g., [24], §3.6, and

Proposition 3.6.2) that I(P ; R) is an associative algebra having δ as identity element

(where δ(x, y)
def
= 1 if x = y, and

def
= 0 otherwise) and that an element f ∈ I(P ; R) is
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invertible if and only if f(x, x) is invertible for all x ∈ P . If f is invertible then we

denote by f−1 its (two-sided) inverse.

By a composition of n ∈ P we mean a sequence α
def
= (α1, . . . , αs) (for some s ∈ P)

of positive integers such that α1 + . . . + αs = n. We let |α|
def
=

∑s

i=1 αi, `(α)
def
= s,

and T (α)
def
= {αs, αs + αs−1, . . . , αs + . . . + α2}. For n ∈ P we let Cn be the set of

all compositions of n and C
def
=

⋃
n≥1 Cn. Given (α1, . . . , αs), (β1, . . . , βt) ∈ Cn we

say that (α1, . . . , αs) refines (β1, . . . , βt) if there exist 1 ≤ i1 < i2 < · · · < it−1 < s

such that
∑ik

j=ik−1+1 αj = βk for k = 1, . . . , t (where i0
def
= 0, it

def
= s). We then write

(α1, . . . , αs) ≤c (β1, . . . , βt). It is easy to see that the map β 7→ T (β) is an isomorphism

from (Cn,≤c) to the Boolean algebra of subsets of [n− 1] ordered by reverse inclusion.

Let n ∈ N. By a lattice path of length n we mean a function Γ : [0, n] → Z such

that Γ(0) = 0 and |Γ(i) − Γ(i − 1)| = 1 for all i ∈ [n]. Given such a lattice path Γ we

let

N(Γ)
def
= {i ∈ [n − 1] : Γ(i) < 0},

d+(Γ)
def
= |{i ∈ [0, n − 1] : Γ(i + 1) − Γ(i) = 1}|,

`(Γ)
def
= n, and Γ≥0

def
= `(Γ)− 1− |N(Γ)|. Note that n /∈ N(Γ) and that d+(Γ) = Γ(n)+n

2
.

Let L(n) denote the set of all lattice paths of length n. Given S ⊆ [n − 1] we let

E(S, n)
def
= {Γ ∈ L(n) : N(Γ) = S}.

For α ∈ Cn we define, following [6], a polynomial Υα(q) ∈ Z[q] by letting

Υα(q)
def
= (−1)n−`(α)

∑

Γ∈E(T (α),n)

(−q)d+(Γ).

We follow [21] for undefined Coxeter groups notation and terminology. Given a

Coxeter system (W,S) and w ∈ W we denote by `(w) the length of w with respect to

S, and we let

DR(w)
def
= {s ∈ S : `(w s) < `(w)} ,

DL(w)
def
= {s ∈ S : `(sw) < `(w)} = DR(w−1) and εw

def
= (−1)`(w). We call the

elements of D(w) (respectively, DL(w)) the right (respectively, left) descents of w. We

denote by e the identity of W , and we let T
def
= {wsw−1 : w ∈ W, s ∈ S} be the set of

reflections of W . For u, v ∈ W we also write `(u, v)
def
= `(v) − `(u).

We denote by B(W ) the Bruhat graph of W . Recall (see, e.g., [21, §8.6], or [14])

that this is the directed graph having W as vertex set and having a directed edge

from u to v if and only if u−1v ∈ T and `(u) < `(v). The transitive closure of B(W )

is a partial order on W that is usually called the Bruhat order (see, e.g., [21, §5.9])
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and that we denote by ≤. Throughout this work, we always assume that W , and its

subsets, are partially ordered by ≤. There is a well known characterization of Bruhat

order on a Coxeter group (usually referred to as the subword property) that we will

use repeatedly in this work, often without explicit mention. We recall it here for the

reader’s convenience. By a subword of a word s1s2 · · · sq we mean a word of the form

si1si2 · · · sik , where 1 ≤ i1 < · · · < ik ≤ q.

Theorem 2.2 Let u,w ∈ W . Then u ≤ w if and only if every reduced expression for

w has a subword that is a reduced expression for u.

A proof of the preceding result can be found, e.g., in [21, §5.10]. It is well known that

W , partially ordered by Bruhat order, is a graded poset having ` as its rank function.

Given v ∈ W and s ∈ DR(v) (respectively s ∈ DL(v)) we define a matching ρs (

respectively, λs) of the Hasse diagram of [e, v] by ρs(u) = us (respectively, λs(u) = su)

for all u ≤ v. It then follows easily from the “Lifting Property” (see, e.g., [8, Theorem

1.1], [21, Proposition 5.9] or [4, Proposition 2.2.7]) that ρs (resp., λs) is a special

matching of [e, v]. We call a matching M of the Hasse diagram of an interval [e, v] a

multiplication matching if there exists s ∈ S such that either M = λs or M = ρs.

For A ⊆ W we denote by < A > the subgroup of W generated by A. If J ⊆ S we

let WJ
def
=< J > and W J def

= {w ∈ W : DR(w) ⊆ S \ J}. The following result is well

known and a proof of it can be found, e.g., in [21].

Proposition 2.3 Let J ⊆ S. Then:

(i) every w ∈ W has a unique factorization w = wJ ·wJ with wJ ∈ W J and wJ ∈ WJ ;

(ii) for this factorization: `(w) = `(wJ) + `(wJ).

There are, of course, left versions of the above definitions and results. Namely, if we

let
JW

def
= {w ∈ W : DL(w) ⊆ S \ J} = (W J)−1, (1)

then every w ∈ W can be uniquely factorized w =J w · Jw, where Jw ∈ WJ and Jw ∈
JW , and then `(w) = `(Jw)+ `(Jw). If J ⊆ S and w ∈ W we let WJ(w)

def
= WJ ∩ [e, w].

It is known (see, e.g., [20, Lemma 7]) that there exists a unique maximal element in

WJ(w) that we denote w[J ], so that WJ(w) = [e, w[J ]].

Let A ⊆ T and W ′ def
=< A >. Following [21], §8.2, we call W ′ a reflection subgroup

of W . It is then known (see, e.g., [21], Theorem 8.2) that (W ′, S ′) is again a Coxeter

system where S ′ def
= {t ∈ T : N(t) ∩ W ′ = {t}}, and N(w)

def
= {t ∈ T : `(wt) < `(w)}.

We call the elements of S ′ the canonical generators of W ′. We say that W ′ is a dihedral
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reflection subgroup if |S ′| = 2 (i.e., if (W ′, S ′) is a dihedral Coxeter system). Following

[16] we say that a total ordering ≺ of T is a reflection ordering if, for any dihedral

reflection subgroup W ′ of W , we have that either a ≺ aba ≺ ababa ≺ . . . ≺ babab ≺

bab ≺ b or b ≺ bab ≺ babab ≺ . . . ≺ ababa ≺ aba ≺ a where {a, b}
def
= S ′. The existence

of reflection orderings is proved in [16], §2. Let ≺ be a reflection ordering, and s ∈ S.

Define a total ordering ≺s on T as follows. For t1, t2 ∈ T set t1 ≺s t2 if and only if

one of the following conditions apply: 1) t1 ≺ t2 ≺ s; 2) t1, t2 Â s and st1s ≺ st2s; 3)

t1 ≺ s ≺ t2; 4) t2 = s. Similarly, we define ≺s by letting t1 ≺s t2 if and only if one of

the following conditions is satisfied: 1) t1, t2 ≺ s and st1s ≺ st2s; 2) s ≺ t1 ≺ t2; 3)

t1 ≺ s ≺ t2; 4) t1 = s. It can be proved (see Proposition 2.5 of [16]) that these orders

are still reflection orderings, and that (≺s)
s =≺s.

We denote by H(W ) the Hecke algebra associated to W . Recall that this is the free

Z[q
1
2 , q−

1
2 ]-module having the set {Tw : w ∈ W} as a basis and multiplication such

that

TwTs =

{
Tws, if `(ws) > `(w),

qTws + (q − 1)Tw, if `(ws) < `(w),
(2)

for all w ∈ W and s ∈ S. It is well known that this is an associative algebra having Te

as unity and that each basis element is invertible in H(W ). More precisely, we have

the following result (see [21, Proposition 7.4]).

Proposition 2.4 Let v ∈ W . Then

(Tv−1)−1 = q−`(v)
∑

u≤v

(−1)`(u,v) Ru,v(q) Tu ,

where Ru,v(q) ∈ Z[q].

The polynomials Ru,v defined by the previous proposition are called the R-polynomials

of W . It is known that deg(Ru,v) = `(u, v), and that Ru,u(q) = 1, for all u, v ∈ W ,

u ≤ v. It is customary to let Ru,v(q)
def
= 0 if u 6≤ v. We then have the following

fundamental result that follows from (2) and Proposition 2.4 (see [21, §7.5]).

Theorem 2.5 Let u, v ∈ W and s ∈ DR(v). Then

Ru,v(q) =

{
Rus,vs(q), if s ∈ DR(u),

qRus,vs(q) + (q − 1)Ru,vs, if s 6∈ DR(u).
(3)

Note that the preceding theorem can be used to inductively compute the R-polynomials

since `(vs) < `(v). There is also a left version of Theorem 2.5. Sometimes it is

convenient to use a related family of polynomials with nonnegative integer coefficients.

This is introduced in the following, which is a simple consequence of Theorem 2.5.
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Proposition 2.6 Let u, v ∈ W . Then there exists a (necessarily unique) polynomial

R̃u,v(q) ∈ N[q] such that

Ru,v(q) = q
1
2
`(u,v) R̃u,v

(
q

1
2 − q−

1
2

)
. (4)

We let ι be the canonical involution of H(W ). So for all P (q) ∈ Z[q
1
2 , q−

1
2 ] ι(P )(q)

def
=

P (q−1) and for all w ∈ W ι(Tw)
def
= (Tw−1)−1. A proof of the following fundamental

result can be found, e.g., in [21], Theorem 7.9.

Theorem 2.7 For each w ∈ W there exists a unique element C ′
w ∈ H(W ) such that

ι(C ′
w) = C ′

w and

C ′
w = q−

`(w)
2

∑

u≤w

Pu,w(q) Tu,

where Pw,w(q) = 1 and Pu,w(q) ∈ Z[q] has degree smaller than `(u,w)
2

if u < w.

We call the basis {C ′
w : w ∈ W} the Kazhdan-Lusztig basis of H(W ). The polynomials

Pu,w(q) defined by the preceding theorem are called the Kazhdan-Lusztig polynomials

of W . For u,w ∈ W we let µ(u,w)
def
= [q

1
2
(`(u,w)−1)](Pu,w(q)) if u < w and `(u,w) is

odd, and µ(u,w)
def
= 0, otherwise. Kazhdan-Lusztig polynomials have been first defined

in [22] and play a prominent role in several branches of mathematics including repre-

sentation theory (see, e.g., [1], and the references cited there), and algebraic geometry

and topology of Schubert varieties (see, e.g., [22], [23], and [2]).

3 A combinatorial property of Bruhat order

In this section we prove a combinatorial property of Bruhat order on a Coxeter group

which plays a fundamental role in all that follows. Its proof uses the following lemma

which is proved in the same way as Lemma 3.1 of [14], and whose proof we therefore

omit.

Lemma 3.1 Let (W,S) be a Coxeter system and t1, . . . , t2n ∈ T (n ∈ P) be such that

t1t2 = t3t4 = . . . = t2n−1t2n 6= e. Then W ′ def
=< {t1, . . . , t2n} > is a dihedral reflection

subgroup.

We can now prove the main result of this section. It immediately implies Proposition

7 of [26].

Theorem 3.2 Let (W,S) be a Coxeter system and a, b ∈ W be such that either |{w ∈

W : w ¢ a, w ¢ b}| ≥ 3 or |{w ∈ W : w ¤ a, w ¤ b}| ≥ 3. Then a = b.
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Proof. We prove the assertion in the first case, the proof for the other one being

entirely similar.

Suppose that a 6= b and let x, y, z ∈ {w ∈ W : w ¢ a, w ¢ b}. Let t1, . . . , t6 ∈ T

be such that at1 = x, at3 = y, at5 = z, bt2 = x, bt4 = y, bt6 = z. Then at1t2 =

at3t4 = at5t6 = b so t1t2 = t3t4 = t5t6 6= e. This, by Lemma 3.1, implies that

W ′ def
=< {t1, . . . , t6} > is a dihedral reflection subgroup. Clearly, a, b, x, y, z ∈ aW ′.

But, by Theorem 1.4 of [14], the subgraph of the Bruhat graph of W with vertex set

aW ′ is isomorphic, as a directed graph, to the Bruhat graph of W ′ (considered as

an abstract Coxeter system), which is a contradiction since W ′ is a dihedral Coxeter

system, and x, y, z are incomparable. Hence a = b, as desired. 2

The following result, though already known (see [12, Theorem 2.4]), is a direct

consequence of Theorem 3.2, and will be used in the sequel. We call an interval [u, v]

in a poset P dihedral if it is isomorphic to a finite Coxeter system of rank ≤ 2 ordered

by Bruhat order.

Corollary 3.3 Let (W,S) be a Coxeter system, and u, v ∈ W . Suppose that |{z ∈

[u, v] : z ¢ v}| = 2. Then [u, v] is a dihedral interval.

Proof. It is well known that, for all x, y ∈ W such that y ≤ x and `(y, x) = 2, [y, x]

is a Boolean algebra of rank 2. Using this and Theorem 3.2 it is easy to prove, by

induction on i, that |{w ∈ [u, v] : `(w, v) = i}| = 2 for all i ∈ [`(u, v) − 1], as desired.

2

4 Pairs of special matchings

In this section we prove some combinatorial properties of pairs of special matchings

which are needed in what follows. More precisely, since a matching is an application

from the set of vertices of a graph to itself, we can compose special matchings as

functions. Given two special matchings, M and N , we look at the structure of the

orbits of 〈M,N〉, the group generated by M and N . Most of the results in this section

hold for any graded poset.

For x ∈ P we denote by 〈M,N〉(x) the orbit of x under the action of 〈M,N〉. We

begin with the following simple but fundamental observation.

Lemma 4.1 Let P be a finite graded poset, and M and N be two special matchings of

P . Then the orbit 〈M,N〉(u) of any u ∈ P is a dihedral interval.
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x

M(x) N(x)

NM(x) MN(x)

MNM(x) NMN(x)

Figure 2: The orbits 〈M,N〉(u) are dihedral intervals

Proof. Since P is finite, the orbit 〈M,N〉(u) is also finite. Therefore there exists

x ∈ 〈M,N〉(u) such that M(x) ¢ x and N(x) ¢ x. If M(x) = N(x) then 〈M,N〉(u) =

{x,M(x)} and we are done. Else, by the definition of a special matching we have that

NM(x) ¢ M(x), NM(x) ¢ N(x), MN(x) ¢ N(x), and MN(x) ¢ M(x). If MN(x) =

NM(x) then 〈M,N〉(u) = {x,N(x),M(x), NM(x)} and we are done. Otherwise we

conclude, similarly, that MNM(x)¢NM(x), MNM(x)¢MN(x), NMN(x)¢MN(x),

and NMN(x) ¢ NM(x) (see Figure 2). If MNM(x) = NMN(x) then we are done,

else we continue in this way. Since 〈M,N〉(u) is finite there exists l ∈ P such that

MNM . . .︸ ︷︷ ︸
l

(x) = NMN . . .︸ ︷︷ ︸
l

(x) and the result follows. 2

We say that a graded poset P avoids K3,2 if there are no elements a1, a2, a3, b1, b2 ∈

P , all distinct, such that either ai¢bj for all i ∈ [3], j ∈ [2] or ai¤bj for all i ∈ [3], j ∈ [2].

So, for example, a Coxeter group under Bruhat order avoids K3,2 by Theorem 3.2.

Proposition 4.2 Let P be a finite graded poset that avoids K3,2, v ∈ P , and M and

N be two special matchings of P such that M(v) 6= N(v). Let v′ ∈ P \ {M(v), N(v)}

and suppose that either

i) M(v) ¢ v, N(v) ¢ v and v′
¢ v, or

ii) M(v) ¤ v, N(v) ¤ v and v′
¤ v.

Then

|〈M,N〉(v)| = |〈M,N〉(v′)|.

Proof. We prove the statement only in case i), case ii) being similar. Suppose that

|〈M,N〉(v)| = 2n, |〈M,N〉(v′)| = 2m. Note that, since v′ 6∈ {M(v), N(v)}, 〈M,N〉(v)∩

〈M,N〉(v′) = ∅. Therefore, no element of 〈M,N〉(v) is matched by either M or N to

an element of 〈M,N〉(v′). This, by the definition of a special matching, and a simple
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Figure 3: The case n = 3 and m > n

induction on k, implies that

MNM · · ·︸ ︷︷ ︸
k

(v′) ¢ MNM · · ·︸ ︷︷ ︸
k

(v) , MNM · · ·︸ ︷︷ ︸
k

(v′) ¢ NMN · · ·︸ ︷︷ ︸
k−1

(v′),

and

NMN · · ·︸ ︷︷ ︸
k

(v′) ¢ NMN · · ·︸ ︷︷ ︸
k

(v) , NMN · · ·︸ ︷︷ ︸
k

(v′) ¢ MNM · · ·︸ ︷︷ ︸
k−1

(v′),

for all k ∈ [n]. Therefore, m ≥ n. If m > n, then MNM · · ·︸ ︷︷ ︸
n

(v′) 6= NMN · · ·︸ ︷︷ ︸
n

(v′).

But MNM · · ·︸ ︷︷ ︸
n

(v) = NMN · · ·︸ ︷︷ ︸
n

(v), and this contradicts the fact that P avoids K3,2 (see

Figure 3). 2

We now restrict our attention to the case where P is an interval of the form [e, v],

with v ∈ W . In this case we often refer to a special matching of [e, v] simply as a

special matching of v.

The following is the main result of this section.

Lemma 4.3 Let u, v ∈ W , u ≤ v and M and N be two special matchings of v.

If |〈M,N〉(u)| = 2m > 2, then there exists u′ and a dihedral interval I such that

e,M(e), N(e) ∈ I, |〈M,N〉(u′)| = 2m and 〈M,N〉(u′) ⊆ I. In particular, if M(e) 6=

N(e), then W{M(e),N(e)} contains an orbit of cardinality 2m.

Proof. Without loss of generality we may assume that M(u), N(u) ¢ u. We claim

that we can find a sequence u = u1 ¤ u2 ¤ · · · ¤ uk such that M(ui), N(ui) ¢ ui,

|〈M,N〉(ui)| = 2m for all i ∈ [k], and [e, uk] is a dihedral interval. In fact if {z ∈

[e, u] : z ¢ u} = {M(u), N(u)} then we are done by Corollary 3.3. Otherwise let

u2 ∈ {z ∈ [e, u] : z ¢ u} \ {M(u), N(u)}. Then, by Proposition 4.2, |〈M,N〉(u2)| = 2m
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and M(u2) ¢ u2, N(u2) ¢ u2. If {z ∈ [e, u2] : z ¢ u2} = {M(u2), N(u2)} then our claim

is proved. Otherwise let u3 ∈ {z ∈ [e, u2] : z ¢ u2} \ {M(u2), N(u2)} and continue as

above. This proves our claim, and the result follows. 2

5 Algebraic properties of special matchings

In this section we establish some algebraic properties of special matchings of Coxeter

groups that are needed in the proof of our main result.

Lemma 5.1 Let u,w ∈ W , u ≤ w and M be a special matching of w. Suppose that

u 6∈
⋃

t∈S W{t,M(e)}, and that M(u) ¤ u. Then

|{x ∈ [e, u] : x ¢ u and M(x) ¤ x}| ≥ 2. (5)

Proof. By Lemma 2.1, given an element v with v ¤ M(v), M restricts to a special

matching of [e, v]. In particular M(e) ≤ v. Hence, if M(e) 6≤ u, then M(x) ¤ x for all

x ∈ [e, u], and the assertion is proved.

If M(e) ≤ u then, by our hypotheses, the interval [e, u] is not dihedral and, in

particular, [e,M(u)] has at least two coatoms distinct from u, say x1 and x2. Then,

by the definition of a special matching, M(xi) ¢ xi and M(xi) ¢ u for i = 1, 2, and (5)

follows. 2

The next result is a fundamental tool in our proof.

Lemma 5.2 Let u,w ∈ W , u ≤ w and M be a special matching of w. Suppose that

M(x) = x s

for all x ∈
⋃

t∈S W{s,t}(u), where s
def
= M(e). Then M(u) = u s.

Proof. We proceed by induction on `(u) the statement being trivial if `(u) = 0. We

may assume that M(u) ¤ u, else the statement follows by induction. Furthermore,

we may clearly assume that u 6∈
⋃

t∈S W{s,t}. Hence, by Lemma 5.1, there exist two

distinct elements u1 and u2 such that ui ¢ u and M(ui) ¤ ui, for i = 1, 2. By our

induction hypothesis M(ui) = uis, for i = 1, 2. Therefore u s covers u,M(u1) and

M(u2) and, by the definition of a special matching, M(u) also covers u,M(u1) and

M(u2). Hence M(u) = u s by Theorem 3.2.2

12



Note that the reasoning used to prove Lemma 5.2 also proves that if M and N

are two special matchings of w and M(x) = N(x) for all x ∈
⋃

t∈S W{s,t}(u), where

s = M(e), then M(u) = N(u).

The next “invariance” property relating special matchings and parabolic subgroups

will be used often in the sequel.

Proposition 5.3 Let w ∈ W and M be a special matching of w. Then, for all J ⊆ S

such that M(e) ∈ J , M stabilizes WJ(w).

Proof. We prove that u ∈ WJ(w) implies M(u) ∈ WJ(w) by induction on `(u), this

being trivial if `(u) = 0. We may clearly assume that M(u) ¤ u. Let x ¢ M(u), x 6= u.

Then M(x) ¢ u and by our induction hypothesis x ∈ WJ(w). Hence all the coatoms of

[e,M(u)] are in WJ(w), so M(u) ∈ WJ(w). 2

We conclude this section with a result which shows that if an element w ∈ W has

a special matching which is not a multiplication matching on the atoms of [e, w] then

w must satisfy certain constraints.

Lemma 5.4 Let w ∈ W , M be a special matching of w, s
def
= M(e), and r, t ∈ S.

Suppose that M(t) = ts 6= st and M(r) = sr 6= rs. Then rst £ w. Furthermore, if

rt 6= tr, then rt £ w.

Proof. Suppose rt ≤ w. Then, by the definition of special matching, M(rt) ¤ rt,

M(rt) ¤ ts and M(rt) ¤ sr. If rt 6= tr there are no such elements and this proves the

second part of the statement. If rt = tr then necessarily M(rt) = tsr. If rst ≤ w then

M(rst) would cover both tsr and rst and there are clearly no such elements.2

6 Coxeter systems of rank 3

In this section we study special matchings in Coxeter systems of rank 3. These results

are applied in the next section to rank three parabolic subgroups of general Coxeter

systems.

Throughout this section (W,S) is a Coxeter system of rank 3, and S
def
= {s, r, t}.

We fix w ∈ W , a special matching M of w and we assume that M(e) = s.

For x, y ∈ S we denote by · · ·xyx (respectively xyx · · ·) a word given by alternating

x and y that ends (respectively begins) with x. Inside any single proof, if the length of

such a word is not specified, it is assumed to be arbitrary but fixed. The expressions

considered for an element of a Coxeter system are always assumed to be reduced.

13



Figure 4: Proof of Lemma 6.1

Lemma 6.1 If sr, st ≤ w, rs 6= sr, st 6= ts, M(t) = ts and M(r) = rs, then M(st) =

sts and M(sr) = srs.

Proof. By symmetry it suffices to show that M(st) = sts. By definition of a special

matching M(st) ¤ st and M(st) ¤ ts, so M(st) ∈ {sts, tst}. Similarly, M(sr) ∈

{srs, rsr}. Suppose M(st) = tst. If str ≤ w then M(str) ¤ tst and M(str) ¤ M(sr).

But there are no elements covering both tst and M(sr), so str £ w. Similarly srt £ w.

Now consider a reduced expression for w. Then tst and either srs or rsr are both

subwords of it and it is easy to see that these conditions force that either str or srt is

also a subword, contradicting the fact that str £ w and srt £ w.2

The next technical result is used repeatedly in what follows.

Lemma 6.2 Suppose M(t) = ts and M(r) = rs, but M 6= ρs on W{s,t}(w). Let x0 be

a minimal element of W{s,t}(w) such that M(x0) 6= x0s. Then

{u ≤ w : u ¤ x0, u 6∈ W{s,t}} ⊆

{
{x0r, rx0}, if sr = rs,

{rx0}, if sr 6= rs.

Proof. Clearly, s 6∈ DR(x0) and M(x0) ¤ x0. Let x0 = αβα · · · tst︸ ︷︷ ︸
k

where α = s if k is

even, α = t if k is odd and {α, β} = {s, t}. Since M 6= ρs on W{s,t}(w) we conclude

that st ≤ w and st 6= ts. Let u be such that u ≤ w, u ¤ x0, and u 6∈ W{s,t} and assume

u /∈ {x0r, rx0} if sr = rs and u 6= rx0 if sr 6= rs. So u is obtained by inserting a letter

r in the unique reduced expression of x0.

Let y
def
= αu. Then y ¢ u, hence the elements in W{s,t}(y) are all strictly smaller

than x0. Furthermore, the elements in W{s,r}(y) are all ≤ srs if sr 6= rs or ≤ sr if

sr = rs. Hence, by Lemmas 5.2 and 6.1, M(y) = ys. Since x0 and y are both covered

by u, M(u) ¤ u, M(u) ¤ M(x0) = βαβ · · · tst︸ ︷︷ ︸
k+1

6= αβα · · · sts︸ ︷︷ ︸
k+1

and M(u) ¤ M(y). Then

it is not difficult to see that these two last conditions force M(u) = yst which is a

contradiction since, as one can verify, yst 6> u.2

In what follows we will often consider three distinct sets of hypotheses. For conve-

nience and brevity we list them here.
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Figure 5: Proof of Lemma 6.2

(1) M(t) = ts 6= st, M(r) = rs 6= sr and M 6= ρs on W{s,t}(w).

(2) M(t) = ts 6= st, M(r) = rs = sr and M 6= ρs on W{s,t}(w).

(3) M(t) = ts 6= st, M(r) = sr 6= rs.

Under hypotheses (1) and (2) we let x0 ∈ W{s,t}(w) be the unique minimal element

of W{s,t}(w) such that M(x0) 6= x0s and αβα . . . tst be its unique reduced expression

(note that s 6∈ DR(x0)).

Proposition 6.3 Under the hypotheses (1) any element u ≤ w has a reduced expres-

sion of the form (· · · rβr)η(αβα · · · ), where η ∈ {e, β}.

Under the hypotheses (2) any element u ≤ w has a reduced expression of the form

(· · · rβr)η(αβα · · · )δ, where η ∈ {e, β}and δ ∈ {e, r}.

Under the hypotheses (3) any element u ≤ w has a reduced expression of the form

(· · · tst)ε(rsr · · · ), where ε ∈ {e, s}.

Proof. It is clear that in all cases it is enough to prove the statement for u = w, the

general result following by the subword property.

(1) Let αβα · · · tst be a subword of a reduced expression of w such that αβα · · · tst =

x0, with the first α chosen as left as possible and the last t chosen as right as possible.

Consider the leftmost r that appears right of the first α of this subword. By Lemma

6.2, no s can appear to the left of this r, and tr = rt. Hence we obtain a reduced

expression for w where no r appears after the first letter α and the thesis follows.

(2) If tr = rt then the result is clear. If tr 6= rt then reasoning as in the previous

case we conclude that either no t appears to the left of this r or no t appears to its

right, and the result again follows.

(3) Consider a reduced expression for w and look at the rightmost letter t and at

the leftmost letter r of this reduced expression. If this t appears to the left of this r

we are done. Otherwise, by Lemma 5.4, there cannot be a letter s between them and

rt = tr. So these two letters are adjacent and the result follows.2

15



We can now prove one of the main results of this section. We say that an element

w ∈ W is dihedral if the interval [e, w] is a dihedral interval.

Theorem 6.4 Let (W,S) be a Coxeter system of rank 3, w ∈ W , M be a special

matching of w, and s
def
= M(e). Then there exists x ∈ S \ {s} such that either M = λs

or M = ρs on W{s,x}(w).

Proof. We may clearly assume that w is not dihedral, that M is not a multiplication

matching and, by Proposition 5.3, that

4 /∈ {|W{r,s}(w)|, |W{t,s}(w)|}. (6)

In particular, rs 6= sr and ts 6= st.

Note that the result is true for a special matching M of w if and only if it is true

for the special matching M̃ of w−1 defined by M̃(x)
def
= (M(x−1))−1, for all x ≤ w−1. If

M(r) = rs and M(t) = ts then, by Lemma 5.2, M 6= ρs on W{s,t}(w)∪W{s,r}(w) so M

satisfies the hypotheses (1) (possibly by exchanging the roles of r and t). If M(r) = sr

and M(t) = st then M̃ satisfies the hypotheses (1). If M(r) = sr and M(t) = ts

M satisfies the hypotheses (3). If M(r) = rs and M(t) = st then M̃ satisfies the

hypotheses (3). So we only need to consider two cases.

If M is in case (1) we have that β = s otherwise, by Proposition 6.3, W{r,s}(w) =

{e, s, r, rs} and this is not possible by (6). By contradiction, suppose that M 6= ρs on

W{r,s}(w), and let y0 ∈ W{r,s}(w) be a minimal element such that M(y0) 6= y0s. Then,

since w is not dihedral, y0t ≤ w by Proposition 6.3. This, by Lemma 6.2, implies that

y0t = ty0, which is a contradiction since ts 6= st.

If M is in case (3) we claim that either M = ρs on W{t,s}(w) or M = λs on W{r,s}(w).

We prove this by induction on `(w). By Proposition 6.3 w = (· · · tst︸ ︷︷ ︸
k

)ε(rsr · · ·︸ ︷︷ ︸
h

) (this

being a reduced expression) where ε ∈ {e, s}. By (6) we have that h, k ≥ 2. Let w1

and w2 be the two coatoms of [e, w] obtained by deleting, respectively, the first and

the last letter of this reduced expression of w. By definition of a special matching,

there exists i ∈ {1, 2} such that M restricts to a special matching of [e, wi]. We assume

i = 1 the case i = 2 being similar. By our induction hypothesis either M = ρs on

W{t,s}(w1) or M = λs on W{r,s}(w1). In this second case k is odd and we are done

since W{r,s}(w1) = W{r,s}(w). If M = ρs on W{t,s}(w1) then W{t,s}(w) \ W{t,s}(w1) =

{· · · tst︸ ︷︷ ︸
k

, · · · sts︸ ︷︷ ︸
k+1

} and since, by Proposition 5.3, M stabilizes W{t,s}(w) we necessarily

have M(· · · tst︸ ︷︷ ︸
k

) = · · · sts︸ ︷︷ ︸
k+1

and hence M = ρs on W{t,s}(w).2

The next result describes how M acts on [e, w], under hypotheses (1), (2) and (3).
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Proposition 6.5 Under the hypotheses (1) if u ≤ w, u = (· · · rβr)η(αβα · · · ) where

η ∈ {e, β} and β /∈ DR(· · · rβr), then M(u) = (· · · rβr)M(ηαβα · · · ).

Under the hypotheses (2) if u ≤ w, u = (· · · rβr)η(αβα · · · )δ where η ∈ {e, β},

δ ∈ {e, r} and β /∈ DR(· · · rβr), then M(u) = (· · · rβr)M(ηαβα · · · )δ.

Under the hypotheses (3) if u ≤ w, u = (· · · tst)ε(rsr · · · ) where ε ∈ {e, s} and

s /∈ DL(rsr · · · ), then M(u) = M(· · · tst)ε(rsr · · · ).

Proof. (1) We proceed by induction on `(u) the case · · · rβr = e being trivial and

the case ηαβα · · · = e following by Lemma 5.2 if β = t and by our hypotheses and

Theorem 6.4 if β = s.

So suppose that · · · rβr 6= e and ηαβα · · · 6= e. If M(ηαβα · · · ) ¢ ηαβα · · · then

(· · · rβr)M(ηαβα · · · ) ¢ (· · · rβr)ηαβα · · · (since β 6∈ DR(· · · rβr)) hence, by our in-

duction hypothesis, M(· · · rβrM(ηαβα · · · )) = (· · · rβr)ηαβα · · · = u and the result

follows. So we may assume that M(ηαβα · · · ) ¤ ηαβα · · ·. Now let x ∈ DL(· · · rβr).

Then xu ¢ u and by our induction hypothesis M(xu) = x(· · · rβr)M(ηαβα · · · ), so

xu ¢ M(xu), u ¢ M(u) and M(xu) ¢ M(u). Now let v be the unique element

such that v ¢ ηαβα · · · and M(v) ¤ v. Then (· · · rβr)v ¢ u and M(· · · rβrv) =

(· · · rβr)M(v) by our induction hypothesis. Since (· · · rβr)M(ηαβα · · · ) covers u,

M(xu) and M(· · · rβrv) = (· · · rβr)M(v) and these three elements are distinct, we

necessarily have M(u) = (· · · rβr)M(ηαβα · · · ).

(2) We proceed by induction on `(u). We may again assume that M(ηαβα · · · ) ¤

ηαβα · · · else the statement follows by induction.

Suppose first that · · · rβr = e. Then we may assume δ = r and ηαβα · · · 6= e

else the result is trivial. So, if we define v as in case (1), we have that v ¢ vr ¢ u

and ηαβα · · · ¢ u. Hence M(v) ¢ M(ηαβα · · · ) and M(vr) ¤ M(v). Therefore, by

the definition of a special matching, M(vr), u,M(ηαβα · · · ) ¢ M(u). On the other

hand, M(ηαβα · · · )r ¤ u, M(ηαβα · · · ), M(vr) (since M(vr) = M(v)r by induction),

so M(u) = M(ηαβα · · · )r by Theorem 3.2.

If · · · rβr 6= e and ηαβα · · · = e the result follows from Lemma 5.2 and if · · · rβr 6= e

and ηαβα · · · 6= e the proof is similar to case (1).

(3) This is very similar to case (1) and is therefore omitted. 2

We can now prove the second main result of this section.

Proposition 6.6 Under the hypotheses (1) write w = (· · · rβr︸ ︷︷ ︸
h

)η(αβα · · · ), with η ∈

{e, β} and β /∈ DR(· · · rβr). If h ≥ 2 and β ∈ DL(w), then Mλβ = λβM .
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Under the hypotheses (2) write w = (· · · rβr︸ ︷︷ ︸
h

)η(αβα · · · )δ, with η ∈ {e, β}, δ ∈ {e, r}

and β /∈ DR(· · · rβr). If h ≥ 2 and β ∈ DL(w), then Mλβ = λβM .

Under the hypotheses (3) write w = (· · · tst)ε(rsr · · ·︸ ︷︷ ︸
h

), with ε ∈ {e, s} and s /∈

DL(rsr · · · ). If h ≥ 2 and s ∈ DR(w), then Mρs = ρsM .

Proof. By Lemma 4.3, we know that two special matchings M and N of w commute

if and only if they do inside the dihedral intervals containing M(e) and N(e).

Since, by Theorem 6.4, M = ρs on W{r,s}(w) it is clear from Proposition 6.5 that

Mλβ = λβM on W{r,s}(w). So we only have to show that Mλβ = λβM on W{t,s}(w).

Let u
def
= βαβ · · ·︸ ︷︷ ︸

k

∈ W{t,s}(w). We claim that if M(u) ¤ u then M(u) = βαβ · · ·︸ ︷︷ ︸
k+1

.

In fact, consider v
def
= βr αβα · · ·︸ ︷︷ ︸

k−1

. It is clear that u ¢ v ≤ w. By Proposition 6.5

we have that M(v) = βrM(αβα · · ·︸ ︷︷ ︸
k−1

). Since, by the definition of a special match-

ing, M(v) ¤ M(u) we necessarily have M(αβα · · ·︸ ︷︷ ︸
k−1

) ¤ αβα · · ·︸ ︷︷ ︸
k−1

. By Proposition 5.3,

M(αβα · · ·︸ ︷︷ ︸
k−1

),M(u) ∈ W{s,t}(w), so M(u) = βαβ · · ·︸ ︷︷ ︸
k+1

.

Now consider an orbit of 〈M,λβ〉 inside W{s,t}(w) of cardinality greater than 2.

Let z be the smallest element of this orbit, say z = αβα · · ·︸ ︷︷ ︸
k−1

. Then λβ(z) = βαβ · · ·︸ ︷︷ ︸
k

,

forcing M(z) = αβα · · ·︸ ︷︷ ︸
k

. Then by our claim M(λβ(z)) = βαβ · · ·︸ ︷︷ ︸
k+1

= λβ(M(z)), so

|〈M,λβ〉(z)| = 4.

The proof of case (3) is very similar and is therefore omitted. 2

7 Main result

In this section we prove the main result of this work. More precisely, we describe

explicitly all the special matchings of any (element of any) Coxeter system and deduce

from this that Kazhdan-Lusztig and R-polynomials can be computed using special

matchings. Throughout this section (W,S) is a fixed, but arbitrary, Coxeter system.

We begin with the following immediate consequence of Proposition 5.3 and Theorem

6.4.

Lemma 7.1 Let w ∈ W , M be a special matching of w and s = M(e). Then there

exists at most one x ∈ S such that M 6= λs and M 6= ρs on W{s,x}(w).
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Proof. Suppose there are two such elements, say t and r. By Proposition 5.3, M

restricts to a special matching of [e, w[{s, r, t}]], and this contradicts Theorem 6.4.2

The next technical lemma is used in the proof of Proposition 7.3.

Lemma 7.2 Let w ∈ W , M be a special matching of w and s = M(e). Let t, r ∈ S

be such that M(t) = ts 6= st and M(r) = sr 6= rs and let k1, . . . , kp ∈ S \ {s}

(p ∈ N) be such that kjs = skj for j ∈ [p]. Suppose that rk1 · · · kpt ≤ w and

`(rk1 · · · kpt) = p + 2 . Then there exist h1, . . . , hp ∈ S and i ∈ [0, p] such that

rk1 · · · kpt = h1 · · ·hitrhi+1 · · ·hp.

Proof. By Proposition 5.3 and Lemma 5.4 (applied to the interval [e, w[{s, r, t}]] ),

we have that tr = rt, so the result holds if p = 0.

We proceed by induction on p. Let u
def
= rk1 · · · kpt. It suffices to show that either

DL(u) 6= {r} or DR(u) 6= {t}, the result then following by induction on p. It is clear

that k1 · · · kpt ¢ u. Furthermore, by Lemma 5.2, M(k1 · · · kpt) = k1 · · · kpts. Similarly

M(rk1 · · · kp) = srk1 · · · kp. Therefore, since M is a special matching, M(u) ¤ u,

k1 · · · kpts, srk1 · · · kp. If r is the unique left descent of u and t is its unique right

descent then necessarily either r ∈ DL(M(u)) or t ∈ DR(M(u)) (or both). Suppose

r ∈ DL(M(u)) the other case being similar. Since r £ k1 · · · kpts and M(u)¤k1 · · · kpts

we have M(u) = rk1 · · · kpts. Now, since rk1 · · · kpts ¤ srk1 · · · kp and t £ srk1 · · · kp

we have rk1 · · · kps = srk1 · · · kp, which implies sr = rs and this is a contradiction.2

Given w ∈ W , a special matching M of w, and s
def
= M(e) we let

J
def
= {r ∈ S ′ : M(r) = sr}

and

J ′ def
= {r ∈ J : rs 6= sr},

so that

S ′ \ J ′ = {r ∈ S ′ : M(r) = rs},

where S ′ def
= {r ∈ S : r ≤ w}.

Proposition 7.3 Let u ≤ w. Then uJ ∈ WS\J ′.

Proof. Fix a reduced expression of uJ . Suppose, by contradiction, that {r ∈ S : r ≤

uJ} ∩ J ′ 6= ∅. Consider the rightmost letter of J ′ appearing in this expression, say r.

Then consider the first letter t /∈ J after r. Between r and t there cannot be any s by

Lemma 5.4, and there can only be letters commuting with s. By Lemma 7.2 after a

finite number of steps we find a reduced expression of uJ that ends with a letter in J

which is a contradiction.2
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Proposition 7.4 Let t ∈ S be such that M is not a multiplication matching on

W{s,t}(w). Suppose that M(t) = ts and let x0 = αβα · · · be the minimal element

in W{s,t}(w) such that M(x0) 6= x0s. Then α £ (uJ){s,t} for all u ≤ w.

Proof. It is clearly enough to prove the statement for u = w since if u ≤ w then

(uJ){s,t} ≤ (wJ){s,t}. Note first that s 6∈ DR(x0), so x0 = αβα · · · tst, and x0 = xJ
0 ≤ wJ .

Consider a reduced expression for wJ and a subword of this expression of the form

αβα · · · tst, chosen with the leftmost α and the rightmost t. Consider the first letter

r which appears after the first α distinct from s and t. Then, by Lemma 6.2, either

this letter can be “pushed” to the left of the first α, or it appears after the last t. So

we may assume that the first such letter r appears after the last t. By Lemma 6.2, all

the letters that appear after the last t necessarily belong to J . So wJ has a reduced

expression in which after the first letter α there are only letters s and t and this clearly

implies the statement.2

In the next result we use the geometric representation of (W,S) (see, e.g., [21, §5.3]).

We denote by αr the positive root corresponding to an element r ∈ T .

Lemma 7.5 Let t ∈ S be such that M(t) = ts but M 6= ρs on W{t,s}(w), and u ≤ w.

Then

(uJ){s,t} (· · · tst)︸ ︷︷ ︸
k

∈ W J ,

for all 1 < k < m(s, t).

Proof. Let r ∈ J . We wish to show that

`((uJ){s,t} · · · tstr) > `((uJ){s,t} · · · tst). (7)

If r = s or r ∈ J ′ then, by Proposition 7.3, (7) is clear, so assume that r ∈ J \(J ′∪{s}).

We will prove that (uJ){s,t}(· · · tst)(αr) is a positive root, and (7) will follow from well

known facts. Since r ∈ J \ (J ′ ∪ {s}) we have that r 6∈ {s, t} and rs = sr. If rt = tr

then (uJ){s,t}(· · · tst)(αr) = (uJ){s,t}(αr) = (uJ)(αr) is a positive root since r ∈ J . If

rt 6= tr then a simple induction shows that, for all 1 < k < m(s, t),

· · · tst︸ ︷︷ ︸
k

(αr) = αr + bαs + cαt

for some b, c ∈ R, b, c > 0. By Proposition 7.4 we know that either s 6≤ (uJ){s,t} or

t 6≤ (uJ){s,t}. Say s 6≤ (uJ){s,t}. Then the coefficient of αs in (uJ){s,t}(αr + bαs + cαt) is

equal to b, so (uJ){s,t}(αr + bαs + cαt) is a positive root, as desired. 2
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We can now prove one of the main results of this work. It describes explicitly any

special matching of any element of any Coxeter group. Note that for any u ∈ W , J ⊆ S

and s, t ∈ S we may write u = uJuJ = (uJ){s,t} (uJ){s,t} {s}(uJ) {s}(uJ).

Theorem 7.6 Let (W,S) be a Coxeter system, w ∈ W , M be a special matching of w

and s = M(e).

(i) If there exists a (necessarily unique) t ∈ S such that M(t) = ts but M 6= ρs on

W{s,t}(w), then

M(u) = (uJ){s,t} M
(
(uJ){s,t} {s}(uJ)

)
{s}(uJ),

for all u ≤ w.

(ii) If M is a multiplication matching on W{x,s}(w) for all x ∈ S, then

M(u) = uJsuJ ,

for all u ≤ w.

Proof. (i) We proceed by induction on `(u) the result being clear if `(u) = 0. Note

that, by Proposition 5.3, M
(
(uJ){s,t} {s}(uJ)

)
∈ W{s,t}(w) and so, if we set

v
def
= (uJ){s,t} M

(
(uJ){s,t} {s}(uJ)

)
{s}(uJ),

then, by Lemma 7.5, (vJ){s,t} {s}(vJ) = M
(
(uJ){s,t} {s}(uJ)

)
.

If v
def
= M(u) ¢ u then by induction u = M(v) = (vJ){s,t} M

(
(vJ){s,t} {s}(vJ)

){s}
(vJ)

and so by what we just remarked (uJ){s,t} = (vJ){s,t}, (uJ){s,t} {s}(uJ) = M
(
(vJ){s,t} {s}(vJ)

)
,

and {s}(uJ) = {s}(vJ). Hence M(u) = (vJ){s,t}(vJ){s,t} {s}(vJ) {s}vJ = (uJ){s,t}M
(
(uJ){s,t}

{s}(uJ)
)

{s}(uJ), as desired. We may therefore assume that M(u) ¤ u. Similarly, we

may assume that M
(
(uJ){s,t} {s}(uJ)

)
¤ (uJ){s,t} {s}(uJ).

If u = (uJ){s,t} then, by Proposition 7.4, either s 6≤ u or t 6≤ u. Therefore, if

a ∈
⋃

x∈S W{x,s}(u), then either a ∈ {s, t} or, by Proposition 7.3, a ∈ W{r,s}(u) for

some r ∈ S \ J ′, r 6= t. Hence, by Lemma 7.1, M(a) = as so M(u) = us by Lemma

5.2 and the result holds in this case. Similarly, the result holds if u ={s} (uJ), while it

is trivial if u = (uJ){s,t} {s}(uJ).

Now consider the following three definitions:

1. If (uJ){s,t} 6= e let x1 ∈ DL((uJ){s,t}) and u1
def
= x1u.

2. If (uJ){s,t} {s}(uJ) 6= e let v ¢ (uJ){s,t} {s}(uJ) be such that M(v) ¤ v and let

u2
def
= (uJ){s,t}v {s}(uJ).
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3. If {s}(uJ) 6= e let x3 ∈ DR({s}(uJ)) and u3
def
= ux3.

By our last remark we may assume that there exist i, j ∈ [3], i 6= j, such that ui and

uj can be defined as above. Applying our induction hypothesis to ui and uj we have

that M(ui)¤ui, M(uj)¤uj, and (uJ){s,t} M
(
(uJ){s,t} {s}(uJ)

)
{s}(uJ) covers M(ui) and

M(uj). On the other hand, by the definition of a special matching, M(u) ¤ M(ui),

M(uj). Since (uJ){s,t}M
(
(uJ){s,t} {s}(uJ)

)
{s}(uJ) ¤ u and M(u) ¤ u we conclude from

Theorem 3.2 that M(u) = (uJ){s,t} M
(
(uJ){s,t} {s}(uJ)

)
{s}(uJ), as desired.

(ii) This is similar and simpler than case (i) and is left to the reader.2

The main link between special matchings and Kazhdan-Lusztig polynomials is given

by the following result.

Theorem 7.7 Let (W,S) be a Coxeter system, w ∈ W \ {e}, w not dihedral, and M

be a special matching of w. Then there exists a multiplication matching N of w such

that NM(u) = MN(u) for all u ≤ w, and N(w) 6= M(w).

Proof. Note first that the result is true for a special matching M if and only if it is

true for the special matching M̃ defined in the proof of Theorem 6.4. Hence we may

assume that M is in one of the cases of Theorem 7.6.

Suppose M is in case (i). Then, by Lemma 7.1, M = ρs on W{s,y}(w) for all

y ∈ S \ J ′, y 6= t, and M = λs on W{s,y}(w) for all s ∈ J ′.

If (wJ){s,t} 6= e let x ∈ DL((wJ){s,t}). If x /∈ {s, t} then M = ρs on W{s,x}(w)

so Mλx = λxM on W{s,x}(w) and we are done by Lemma 4.3. If x ∈ {s, t} then,

by Proposition 7.4, x = β and there exists r ∈ S, r < (wJ){s,t} such that βr 6= rβ.

Furthermore, by Proposition 7.3, r ∈ S \ J ′ so M(r) = rs. Let K
def
= {r, s, t}, then

by Proposition 5.3 M and λβ restrict to special matchings of [e, w[K]] = WK(w) and

M satisfies either the hypotheses (1) or (2) in §6. Therefore, by Proposition 6.6,

Mλβ = λβM on [e, w[k]] and hence on W{s,t}(w) and the thesis follows by Lemma 4.3.

Note that M(w) 6= λx(w) by Theorem 7.6.

If (wJ){s,t} = e then necessarily {s}(wJ) 6= e (otherwise w is dihedral) and we proceed

in a similar way considering a right descent x of {s}(uJ). In this case M will satisfy the

hypotheses (3) in §6 and one concludes that Mρx = ρxM .

If M is in case (ii) the proof is similar and simpler and is left to the reader.2

It is worth noting that the above result does not hold if w is dihedral.

We can now prove the main result of this work, which shows that Kazhdan-Lusztig

and R-polynomials can be computed using special matchings. It immediately implies

the main result of [12].
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Theorem 7.8 Let (W,S) be a Coxeter system, w ∈ W and M be a special matching

of w. Then

Ru,w(q) = qcRM(u),M(w)(q) + (qc − 1) Ru,M(w)(q)

for all u ≤ w, where c
def
= 1 if M(u) ¤ u and c

def
= 0 otherwise.

Proof. We proceed by induction on `(w), the result being clearly true if `(w) ≤ 2. So

let `(w) ≥ 3. If w is dihedral then the result is easy to check, so suppose that w is not

dihedral. Then, by Theorem 7.7, there exists a multiplication matching N of w such

that NM(u) = MN(u) for all u ≤ w, and N(w) 6= M(w).

Fix u ≤ w. There are four cases to distinguish. We consider only two of them, the

other two being exactly similar. Since M(w) 6= N(w), we have that M(w)¤NM(w) =

MN(w) ¢ N(w) so M restricts to a special matching of [e,N(w)].

a) N(u) ¤ u, M(u) ¢ u.

Then, since MN(u) = NM(u), M(u) ¢ MN(u) ¢ N(u). Therefore, by Theorem 2.5

and our induction hypothesis,

Ru,w = q RN(u),N(w) + (q − 1)Ru,N(w)

= q RMN(u),MN(w) + (q − 1)RM(u),MN(w)

= q RNM(u),NM(w) + (q − 1)RM(u),NM(w)

= RM(u),M(w),

as desired.

b) N(u) ¤ u, M(u) ¤ u.

If M(u) 6= N(u) then MN(u)¤N(u) and MN(u)¤M(u) so, by Theorem 2.5 and our

induction hypothesis

Ru,w = q RN(u),N(w) + (q − 1)Ru,N(w)

= q(q RMN(u),MN(w) + (q − 1)RN(u),MN(w))

+(q − 1)(q RM(u),MN(w) + (q − 1)Ru,MN(w))

= q2 RNM(u),NM(w) + q(q − 1)RN(u),NM(w)

+q(q − 1) RM(u),NM(w) + (q − 1)2Ru,NM(w)

= q RM(u),M(w) + (q − 1)Ru,M(w),
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as desired. If M(u) = N(u) then we have similarly that

Ru,w = q RN(u),N(w) + (q − 1)Ru,N(w)

= q RMN(u),MN(w) + (q − 1)(qRM(u),MN(w) + (q − 1)Ru,MN(w))

= q RM(u),M(w) + (q − 1)Ru,M(w)

and the result again follows. 2

8 A Hecke algebra action

In this section we introduce and study, for each v ∈ W , a Hecke algebra naturally

associated to the special matchings of v and an action of it on the submodule of the

Hecke algebra of W spanned by {Tu : u ≤ v}. This action enables us to reformulate

in a very compact way our main result, which turns out to be equivalent to the state-

ment that this action “respects” the canonical involutions ι of these Hecke algebras

(Theorem 8.2). This, in turn, implies that the usual recursion for the Kazhdan-Lusztig

polynomials (see, e.g., [21, §7.11] ) holds also when descents are replaced by special

matchings (Corollary 8.4) thus giving a poset theoretic recursion for the Kazhdan-

Lusztig polynomials which does not involve the R-polynomials.

Let v ∈ W and Sv be the collection of all the special matchings of v. We denote by

(Ŵv,Sv) the Coxeter system whose Coxeter generators are the elements of Sv and whose

Coxeter matrix is given by m(M,N)
def
= o(MN), the period of MN as a permutation

of [e, v]. We denote by Ĥv the Hecke algebra of Ŵv and by Hv the submodule of H(W )

defined by

Hv
def
=

⊕

u≤v

Z[q
1
2 , q−

1
2 ]Tu.

Our first result states what is the action of Ĥv on Hv that we wish to study. It is

a natural generalization, and unification, of the left and right multiplication actions of

H(WDL(v)) and H(WDR(v)) on Hv.

Proposition 8.1 Let v ∈ W . Then there exists a unique action of Ĥv on Hv such

that, for all u ≤ v and any M ∈ Sv,

TM(Tu) =

{
TM(u), if M(u) ¤ u,

qTM(u) + (q − 1)Tu, otherwise.
(8)

Proof. The uniqueness part is trivial. To prove the existence we only have to check

that TM(TM(Tu)) = ((q − 1)TM + q)(Tu) for all u ≤ v and M ∈ Sv, and that, if
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M,N ∈ Sv and m
def
= m(M,N), then

TM(TN(TM(· · ·︸ ︷︷ ︸
m

(Tu)))) = TN(TM(TN(· · ·︸ ︷︷ ︸
m

(Tu)))) (9)

for all u ≤ v. The proof of the first part is a simple verification and is left to the reader.

To prove the second one let M,N ∈ Sv be such that m(M,N) = m and u ≤ v. If

|〈M,N〉(u)| = 2d then necessarily d divides m. Let (W ′, {a, b}) be a dihedral Coxeter

system of order 2d. We define a poset isomorphism Φ : 〈M,N〉(u) −→ W ′ by

Φ(· · ·MNM︸ ︷︷ ︸
k

(u0))
def
= · · · aba︸ ︷︷ ︸

k

,

for all k ∈ [2d], where u0 is the smallest element in 〈M,N〉(u), and extend this to a

linear map Φ : H(〈M,N〉(u)) −→ H(W ′) (where H(〈M,N〉(u)) is the submodule of

Hv spanned by {Tx : x ∈ 〈M,N〉(u)}) by Φ(Tx)
def
= TΦ(x) for all x ∈ 〈M,N〉(u). Then

it is clear that Φ(TM(Tx)) = TaΦ(Tx) and Φ(TN(Tx)) = TbΦ(Tx) for all x ∈ 〈M,N〉(u).

There follows that

Φ(TM(TN(TM(· · ·︸ ︷︷ ︸
d

(Tx)))) = TaTbTa · · ·︸ ︷︷ ︸
d

Φ(Tx)

= TbTaTb · · ·︸ ︷︷ ︸
d

Φ(Tx)

= Φ(TN(TM(TN(· · ·︸ ︷︷ ︸
d

(Tx)))).

Hence TM(TN(TM(· · ·︸ ︷︷ ︸
d

(Tx)))) = TN(TM(TN(· · ·︸ ︷︷ ︸
d

(Tx)))) for all x ∈ 〈M,N〉(u) and (9)

follows. 2

As pointed out by one of the referees, it would be interesting to know if the many

(conjectural, in general) nonnegativity properties of structure constants of the Hecke

algebra as a left module over itself with respect to various combination of bases (see

[17]) extend to properties of the action just defined of Ĥv on Hv. Another natural

question is to determine when the permutation action of Ŵv on [e, v] is faithful, or

when Hv is a faithful Ĥv-module.

We can now state and prove the first main result of this section, which is a compact

reformulation of our main result (Theorem 7.8) in terms of the action of Ĥv on Hv.

Note that, by Proposition 2.4, Hv is invariant under the involution ι defined on H(W ).

For convenience, we use the same symbol ι also for the corresponding involution of the

Hecke algebra Ĥv.
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Theorem 8.2 Let v ∈ W . Then for all h ∈ Hv, ĥ ∈ Ĥv

ι(ĥ(h)) = ι(ĥ)(ι(h)).

Proof. We may clearly assume that h = Tu for some u ≤ v and ĥ = TM , where M is

a special matching of v.

Suppose first that u ¢ M(u). Then, by (8) and Proposition 2.4, we have that

ι(TM(Tu)) = ι(TM(u)) =
(
TM(u)−1

)−1
= −εuq

−`(u)−1
∑

x

εxRx,M(u) Tx.

On the other hand

ι(TM)(ι(Tu)) = T−1
M (T−1

u−1)

= (q−1TM − (1 − q−1))(εuq
−`(u)

∑

x

εxRx,u Tx)

= εuq
−`(u)

( ∑

x/M(x)

(q−1εxRx,u TM(x) − (1 − q−1)εxRx,u Tx)

+
∑

x.M(x)

(q−1εxRx,u(qTM(x) + (q − 1)Tx) − (1 − q−1)εxRx,u Tx)
)

= εuq
−`(u)

(
−

∑

M(x)¢x

q−1εxRM(x),u Tx −
∑

M(x)¤x

(1 − q−1)εxRx,uTx

−
∑

M(x)¤x

εxRM(x),uTx

)

= εuq
−`(u)

(
−

∑

M(x)/x

q−1εxRx,M(u) Tx −
∑

x/M(x)

q−1εxRx,M(u) Tx

)

by Theorem 7.8 and the assertion follows in this case.

Suppose now that u ¤ M(u). Then applying what we have just proved to M(u)

yields that

T−1
u−1 = ι(Tu) = ι(TM(TM(u))) = ι(TM)(ι(TM(u))) = T−1

M (T−1
M(u)−1)

Therefore, by Proposition 8.1, TM(T−1
u−1) = T−1

M(u)−1 . Hence

ι(TM(Tu)) = ι(qTM(u) + (q − 1)Tu)

= q−1T−1
M(u)−1 + (q−1 − 1)T−1

u−1

= q−1TM(T−1
u−1) + (q−1 − 1)T−1

u−1

= (q−1TM − (1 − q−1))(T−1
u−1)

= T−1
M (T−1

u−1)

= ι(TM)(ι(Tu)),
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and the result again follows. 2

Recall from §2 the definition of the Kazhdan-Lusztig basis {C ′
v : v ∈ W} of the

Hecke algebra of W .

Theorem 8.3 Let v ∈ W and M ∈ Sv. Then, for all x ≤ v,

C ′
M(C ′

x) =





C ′
M(x) +

∑

{z: M(z)¢z}

µ(z, x)C ′
z, if M(x) ¤ x,

(q
1
2 + q−

1
2 )C ′

x, if M(x) ¢ x,

in Hv.

Proof. Suppose that M(x)¤x. Let, for brevity, DM(x)
def
= C ′

M(C ′
x)−

∑
{z:M(z)/z} µ(z, x)C ′

z.

To prove that DM(x) = C ′
M(x) we use the characterization of the Kazhdan-Lusztig basis

given in Theorem 2.7. It is clear from Theorem 8.2 that ι(DM(x)) = DM(x) . So we

only need to show that if

DM(x) = q−
`(M(x))

2

∑

u≤M(x)

P̃u,M(x)(q) Tu,

then P̃M(x),M(x)(q) = 1 and P̃u,M(x)(q) ∈ Z[q] has degree < 1
2
`(u,M(x)) if u < M(x).

We distinguish two cases.

Suppose u ¢ M(u). Then TM(C ′
x) involves Tu with coefficient q−

`(x)
2 qPM(u),x. It

follows easily that the coefficient of Tu in C ′
M(C ′

x) is

q−
`(M(x))

2 qPM(u),x(q) + q−
`(M(x))

2 Pu,x(q).

On the other hand, if u¤M(u), TM(C ′
x) involves Tu with coefficient q−

`(x)
2 (PM(u),x(q)+

(q − 1)Pu,x(q)). Again it follows easily that the coefficient of Tu in C ′
M(C ′

x) is

q−
`(M(x))

2 PM(u),x(q) + q−
`(M(x))

2 qPu,x(q).

Finally, the coefficient of Tu in
∑

µ(z, x)C ′
z is in both cases

∑

{z:M(z)¢z}

µ(z, x)q−
`(z)
2 Pu,z(q).

So, if we set c = 1 if M(u) ¢ u and c = 0 otherwise, we only have to show that the

polynomials

q1−cPM(u),x(q) + qcPu,x(q) −
∑

{z : M(z)¢z}

µ(z, x)q
`(z,M(x))

2 Pu,z(q)
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have the prescribed degree conditions.This is done in exactly the same way as in the

proof of [21, Theorem 7.9] (see [21, § 7.11]) and is therefore omitted.

Assume now that M(x) ¢ x. We proceed by induction on `(x). If `(x) = 1 then

necessarily x = M(e) and the result is easy to verify. So assume `(x) ≥ 2. Then by

what we have just proved we have that

C ′
x = C ′

M(C ′
M(x)) −

∑

{z: M(z)¢z}

µ(z,M(x))C ′
z. (10)

Therefore, since C ′
MC ′

M = (q
1
2 + q−

1
2 )C ′

M ,

C ′
M(C ′

x) = (C ′
MC ′

M)(C ′
M(x)) −

∑

{z: M(z)¢z}

µ(z,M(x))C ′
M (C ′

z)

= (q
1
2 + q−

1
2 )C ′

x,

by (10) and our induction hypothesis, as desired. 2

Theorem 8.3, and its proof, imply the following poset theoretic recursion for Kazhdan-

Lusztig polynomials, which generalizes formula (2.2c) of [22].

Corollary 8.4 Let u, v ∈ W , u < v, and M be a special matching of v. Then

Pu,v(q) = q1−cPM(u),M(v)(q) + qcPu,M(v)(q) −
∑

{z : M(z)¢z}

µ(z,M(v))q
`(z,v)

2 Pu,z(q)

where c = 1 if M(u) ¢ u and c = 0 otherwise. 2

We illustrate Corollary 8.4 with an example. Let v = 3 4 2 1 ∈ S4. One may check

that v has 5 distinct special matchings, N, ρ2, ρ3, λ2, λ1 which are shown in Figure 4.

Using Corollary 8.4 for the special matching N we obtain

Pe,v = qPN(e),N(v) + Pe,N(v) −
∑

{z:N(z)¢z}

µ(z,N(v))q
`(z,v)

2 Pe,z

= qP1324,3412 + Pe,3412 − (1 · q · Pe,1432 + 1 · q · Pe,3214 + 1 · q2 · Pe,1324)

= q(q + 1) + (q + 1) − q − q − q2.

Note that using the other 4 special matchings we obtain genuinely different computa-

tions for Pe,3421. Namely,

Pe,3421 =





q + 1 − q using ρ2,

q + (1 + q) − q − q using ρ3,

q + 1 − q using λ2,

q + (1 + q) − q − q using λ1.
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1234

1243 1324 2134

1342 1423 2143 3124 2314

1432 2413 2341 3142 3214

2431 3412 3241

3421

ρ
ρ

2

2

3

2

1
Further covering relations

N

N

N

Figure 6: The special matchings of 3421
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The reason for this is that the special matching N is not isomorphic to any other special

matching of [e, 3421]. In fact, suppose that Φ is a poset automorphism of [e, 3421] and

M is a special matching of [e, 3421] such that Φ ◦ M = N ◦ Φ. Then Φ(1324) = 1324

and Φ(3412) = 3412. Therefore M(e) = 1324 and M(3421) = 3412, but N is the only

special matching of [e, v] satisfying these two conditions so M = N . Actually, more

is true. Namely, let u ∈ Sn be such that [e, u] ∼= [e, 3421] (poset isomorphism). Since

[e, v] has only three atoms we deduce that any reduced expression of u contains exactly

3 generators, say si, sj and sk with i < j < k. If these indices are not consecutive

we would have at most 4 permutations of length 2 smaller than u so we may assume

that u ∈ S4. But in S4 there are only 3 permutations of length 5, namely v, v−1 and

4231, and [e, 4231] has 4 coatoms. Hence the special matching N of [e, 3421] is not

isomorphic to any multiplication matching of any element in any symmetric group.

In fact, with more work one can show that the special matching N of [e, 3421] is not

isomorphic to any multiplication matching of any element in any Coxeter system (even

infinite). We leave this to the interested reader.

9 Regular sequences

Our purpose in this section is to generalize, using our main result, an algorithm and a

closed formula of Deodhar ([10, Algorithm 4.11] and [9, Theorem 1.3]) for the Kazhdan-

Lusztig and R-polynomials, respectively.

Definition 9.1 Let v ∈ W . We say that a sequence (M1, . . . ,M`) (where `
def
= `(v))

is a regular sequence (of special matchings) for v if, for all i ∈ [`], Mi is a special

matching of Mi+1 · · ·M`(v).

Note that, in particular, M1 · · ·M`(v) = e. The regular chain associated to a regular

sequence (M1, . . . ,M`) for v is (v0, . . . , v`) where vi
def
= Mi+1 · · ·M`(v) = Mi · · ·M1(e),

for i = 0, . . . , `. Clearly, e = v0 ¢ v1 ¢ · · · ¢ v` = v and Mi(vi−1) = vi, for i = 1, . . . , `.

For example, if W = S4 and v = 4231 then the sequence (M1, . . . ,M5) illustrated

in Figure 5 is a regular sequence for v. Note that, if s1 · · · s` is a reduced expression

for v, then (λs`
, . . . , λs1) and (ρs1 , . . . , ρs`

) are two regular sequences for v. Thus, the

concept of a regular sequence is a generalization of that of a reduced expression. We

say that a regular sequence M = (M1, . . . ,M`) for v comes from a reduced expression

if there is a reduced expression s1 · · · s` of v such that either M = (λs`
, . . . , λs1) or

M = (ρs1 , . . . , ρs`
).
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M5

Figure 7: A regular sequence of special matchings

Our first result is the analogue, for any regular sequence, of a well known result for

reduced expressions.

Lemma 9.2 Let v ∈ W , and (M1, . . . ,M`) be a regular sequence for v. Then for all

u ≤ v there exist 1 ≤ i1 < . . . < ik ≤ ` such that (Mi1 , . . . ,Mik) is a regular sequence

for u.

Proof. We proceed by induction on ` the statement being trivial for ` = 1. So as-

sume that ` > 1. Note that (M1, . . . ,M`−1) is a regular sequence for M`(v). Let

u ≤ v. If M`(u) ¢ u then, by Lemma 2.1, M`(u) ≤ M`(v) so by induction there exist

1 ≤ i1 < . . . < ik ≤ ` − 1 such that (Mi1 , . . . ,Mik) is a regular sequence for M`(u),

hence (Mi1 , . . . ,Mik ,M`) is a regular sequence for u. If M`(u)¤u then, by Lemma 2.1,

u ≤ M`(v) and we conclude again by induction. 2

The next result is a sort of converse of the previous one. It is used repeatedly

throughout the rest of this work, often without explicit mention.

Lemma 9.3 Let v ∈ W and (M1, . . . ,M`) be a regular sequence for v. Then the

composition Mik · · ·Mi1(e) is defined for any 1 ≤ i1 < i2 < · · · < ik ≤ `.
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Proof. Let (v0, . . . , v`) be the regular chain associated to (M1, . . . ,M`). We proceed

by induction on k, the claim being clear if k = 0. So let 1 ≤ i1 < i2 < · · · < ik ≤ `,

with k ≥ 1. By our induction hypothesis u
def
= Mik−1

· · ·Mi1(e) is defined. Hence

u ≤ vik−1
< vik . But, by the definition of a regular sequence, Mik is a special matching

of vik . Therefore Mik(u) is defined, as desired. 2

Let v ∈ W and M = (M1, . . . ,M`) be a regular sequence for v (so ` = `(v)). Given

S = {i1, . . . , ik}< ⊆ [`] we let

π(S)
def
= Mik · · ·Mi1(e)

and we define, for each j ∈ [`],

εj(S)
def
=

{
1, if Mj(y) ¢ y,

0, if Mj(y) ¤ y,

where y
def
= π(S ∩ [j − 1]). We also let

d1(S, `)
def
=

∑

j∈[`]\S

εj(S)

and

d2(S)
def
=

∑

j∈S

εj(S).

Note that (Mi1 , . . . ,Mik) is a regular sequence for Mik · · ·Mi1(e) if and only if d2(S) = 0.

Let, for brevity,

d(S, `)
def
= d1(S, `) + d2(S).

We say that S is distinguished, with respect to M, if d1(S, `) = 0. In the case that

M comes from a reduced expression this concept coincides with the one introduced by

Deodhar in [9, Def. 2.3]. We denote by D(M) the set of all subsets of [`] which are

distinguished with respect to M, and we let, for u ∈ W ,

D(M)u
def
= {S ∈ D(M) : π(S) = u}.

We can now prove the first main result of this section. It is a combinatorially

invariant closed formula for the R̃-polynomials (and so for the R-polynomials) which

generalizes Theorem 1.3 of [9].

Theorem 9.4 Let v ∈ W and M = (M1, . . . ,M`) be a regular sequence for v. Then

R̃u,v(q) =
∑

S∈D(M)u

q`(v)−|S|,

for all u ∈ W .
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Proof. Our proof is similar to the one given in [9, §5], but simpler, so we present it

here.

The result is clear if u £ v, so assume u ≤ v. We proceed by induction on `
def
= `(v),

the result being trivial if ` = 0. So assume ` ≥ 1 and let, for convenience, M
def
= M`.

We distinguish two cases.

a) M(u) ¢ u.

This implies that if S ∈ D(M)u then ` ∈ S by the definition of a distinguished subset.

Note that (M1, . . . ,M`−1) is a regular sequence for M(v). Define a map

ϕ : D(M)u −→ D(M1, . . . ,M`−1)M(u)

by letting ϕ(S) = S \ {`} for all S ∈ D(M)u. The map ϕ is well-defined and bijective

since ` ∈ S. Therefore, by Theorem 7.8, Proposition 2.6 and our induction hypothesis

∑

S∈D(M)u

q`(v)−|S| =
∑

S′∈D(M1,...,M`−1)M(u)

q`(v)−|S′|−1 = R̃M(u),M(v)(q) = R̃u,v(q).

b) M(u) ¤ u.

Let D(M)−u
def
= {S ∈ D(M)u : ` /∈ S} and D(M)+

u

def
= {S ∈ D(M)u : ` ∈ S}.

Define a map ϕ : D(M)u −→ D(M1, . . . ,M`−1)u ∪ D(M1, . . . ,M`−1)M(u) by letting

ϕ(S) = S \ {`} for all S ∈ D(M)u.

We claim that ϕ is a bijection, that ϕ(D(M)−u ) = D(M1, . . . ,M`−1)u and that

ϕ(D(M)+
u ) = D(M1, . . . ,M`−1)M(u). All the verifications are obvious, except for the

surjectivity of ϕ. But if S ′ ∈ D(M1, . . . ,M`−1)u then S ′ ∈ D(M)u (since M(u)¤u), and

if S ′′ ∈ D(M1, . . . ,M`−1)M(u) then S ′′ ∪ {`} ∈ D(M)u and this proves the surjectivity.

Therefore, by Theorem 7.8, Proposition 2.6 and our induction hypothesis,

∑

S∈D(M)u

q`(v)−|S| =
∑

S′∈D(M1,...,M`−1)u

q`(M(v))−|S′|+1 +
∑

S′′∈D(M1,...,M`−1)M(u)

q`(M(v))−|S′′|

= qR̃u,M(v)(q) + R̃M(u),M(v)(q)

= R̃u,v(q),

as desired. 2

The preceding result has the following consequence, which is needed in the rest of

this section.

Corollary 9.5 Let v ∈ W and (M1, . . . ,M`) be a regular sequence for v. Then π is a

bijection between {S ⊆ [`] : d1(S, `) = d2(S) = 0} and [e, v].
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Proof. Clearly, π(S) ∈ [e, v]. Furthermore, since [q`(u,v)](R̃u,v) = 1 for all u ∈ [e, v], we

conclude from Theorem 9.4 that for each u ∈ [e, v] there exists a unique distinguished

subset Su such that π(Su) = u and |Su| = `(u). Since a subset S ⊆ [`] is distinguished

if and only if d1(S, `) = 0, and `(π(S)) = |S| if and only if d2(S) = 0, the result

follows.2

In order to prove the second main result of this section we need some further

properties of the action of the Hecke algebra Ĥv on the module Hv defined in §8. The

next result is the analogue, for regular sequences, of Proposition 3.5 of [10]. Its proof

is similar to that of Proposition 3.5 of [10] and is therefore omitted.

Proposition 9.6 Let v ∈ W and (M1, . . . ,M`) be a regular sequence for v. Then

q
`
2 C ′

M`
(C ′

M`−1
(· · · (C ′

M1
(Te)))) =

∑

S⊆[`]

qd(S,`)Tπ(S), (11)

in Hv.

For brevity, we call a Coxeter system (W,S) nonnegative if its Kazhdan-Lusztig

polynomials Pu,v have nonnegative coefficients for all u, v ∈ W .

Proposition 9.7 Let (W,S) be a nonnegative Coxeter system, v ∈ W , and (M1, . . . ,M`)

be a regular sequence for v. Then there exist Lx ∈ N[q
1
2 + q−

1
2 ], for each x ≤ v, such

that Lv = 1 and

C ′
M`

(C ′
M`−1

(· · · (C ′
M1

(Te)))) =
∑

x≤v

LxC
′
x. (12)

Proof. Let, for brevity, C ′
i

def
= C ′

Mi
for i = 1, . . . , `. We proceed by induction on ` ≥ 1,

(12) being clear if ` = 1 (with Le = 0).

So let ` ≥ 2 and suppose that (12) holds for `−1. Then there exist L̃x ∈ N[q
1
2 +q−

1
2 ]

for each x ≤ M`(v) such that

C ′
`−1(C

′
`−2(· · · (C

′
1(Te)))) =

∑

x≤M`(v)

L̃xC
′
x

and L̃M`(v) = 1. Therefore, by Theorem 8.3,

C ′
`(C

′
`−1(· · · (C

′
1(Te)))) = C ′

`

( ∑

x≤M`(v)

L̃xC
′
x

)

=
∑

{x≤M`(v): M`(x)¤x}

L̃x

(
C ′

M`(x) +
∑

{z: M`(z)¢z}

µ(z, x)C ′
z

)

+
∑

{x≤M`(v): M`(x)¢x}

(q
1
2 + q−

1
2 )L̃xC

′
x,
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and the result follows. 2

We can now prove the second main result of this section, which plays a fundamental

role in the algorithm.

Theorem 9.8 Let (W,S) be a nonnegative Coxeter system, v ∈ W , (M1, . . . ,M`) be

a regular sequence for v, and A ⊆ {x ∈ [e, v] : Lx 6= 0}, v ∈ A. Then there esists

E ⊆ P([`]) such that

q−
`
2

∑

S∈E

qd(S,`)Tπ(S) =
∑

x∈A

LxC
′
x. (13)

Furthermore, for any y ∈ A \ {v}, y is maximal in A \ {v} if and only if

deg
( ∑

{S∈E: π(S)=y}

qd(S,`)
)
≥

`(y, v)

2
(14)

and

deg
( ∑

{S∈E: π(S)=x}

qd(S,`)
)

<
`(x, v)

2
(15)

for all y < x < v. If these conditions are satisfied then

Ly =
∑

{S∈E: π(S)=y, d(S,`)≥ `(y,v)
2

}

qd(S,`)− `(y,v)
2 +

∑

{S∈E: π(S)=y, d(S,`)>
`(y,v)

2
}

q
`(y,v)

2
−d(S,`) (16)

and

Py,v =
∑

{S∈E: π(S)=y, d(S,`)<
`(y,v)

2
}

qd(S,`) −
∑

{S∈E: π(S)=y, d(S,`)>
`(y,v)

2
}

q`(y,v)−d(S,`). (17)

Proof. Let x ∈ [e, v]. The coefficient of Tx in the right-hand side of (13) is
∑

y∈A Lyq
− `(y)

2 Px,y.

Since, by Proposition 9.7 and our hypotheses, Ly and Px,y are Laurent polynomials in

q
1
2 with nonnegative integer coefficients for all x, y ≤ v, by Propositions 9.6 and 9.7 we

have ∑

y∈A

Lyq
− `(y)

2 Px,y ≤
∑

y≤v

Lyq
− `(y)

2 Px,y = q−
`
2

∑

{S∈P([`]): π(S)=x}

qd(S,`),

where the ≤ is coefficientwise, and this implies (13).

Now let y be a maximal element of A\{v} and x ∈ [e, v]. Comparing the coefficients

of Tx on both sides of (13) we obtain that

∑

{S∈E: π(S)=x}

qd(S,`) =
∑

z∈A

Lzq
`(z,v)

2 Px,z (18)

=

{
Lyq

`(y,v)
2 + Py,v, if x = y,

Px,v, if y < x < v,
(19)
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and (14) and (15) follow since Ly 6= 0 and Ly(q) = Ly(q
−1). Conversely, let y ∈ A\{v}

be such that (14) and (15) hold. Then, by (18),

deg

(
∑

z∈A

Lzq
`(z,v)

2 Px,z

)
<

`(x, v)

2

for all y < x < v. Since Lz and Px,z are Laurent polynomials in q
1
2 with nonnegative

coefficients for all x, z ≤ v, this implies that x 6∈ A for all y < x < v, so y is maximal

in A \ {v}.

Finally, if y ∈ A \ {v} satisfies (14) and (15) then by (19) we have

∑

{S∈E: π(S)=y}

qd(S,`) = Lyq
`(y,v)

2 + Py,v,

and (16) and (17) follow since deg(Py,v) < `(y,v)
2

and Ly ∈ N[q
1
2 + q−

1
2 ]. 2

Theorem 9.8 yields an inductive, entirely poset theoretic way of computing the

Kazhdan-Lusztig polynomials, which generalizes the one given in [10]. In fact, let

v ∈ W and assume that we have already computed the polynomials Px,y for all x, y < v.

Take a regular sequence for v, and from it compute, for each x ≤ v, using Propositions

9.6 and 9.7, the coefficient Px of Tx in

q
`(v)
2

∑

x≤v

LxC
′
x.

We apply Theorem 9.8 to the set A = {x ∈ [e, v] : Lx 6= 0}. If deg(Px) < `(x,v)
2

for

all x < v then by Theorem 9.8 there are no maximal elements in A \ {v} so A = {v}.

Hence ∑

x∈[e,v]

Lx C ′
x = C ′

v

and Px = Px,v for all x ≤ v. Otherwise, let y < v be a maximal element such that

deg(Py) ≥
`(y,v)

2
. Then, by (16),

q
`(y,v)

2 Ly =
∑

i≥ `(y,v)
2

aiq
i +

∑

i>
`(y,v)

2

aiq
`(y,v)−i,

where
∑

i≥0 aiq
i def

= Py. Since, by induction, we have already computed Px,y for all

x ∈ [e, v] we may compute the differences

P ′
x = Px − q

`(y,v)
2 LyPx,y (20)

for all x ∈ [e, v]. Clearly, P ′
x is the coefficient of Tx in

q
`(v)
2

∑

x∈[e,v]\{y}

LxC
′
x.
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If deg(P ′
x) < `(x,v)

2
for all x < v then Theorem 9.8 applied to A \ {y} gives

∑

x∈[e,v]\{y}

LxC
′
x = C ′

v

and hence P ′
x = Px,v for all x ≤ v. Otherwise, let y1 < v be a maximal element such

that deg(P ′
y1

) ≥ `(y1,v)
2

, and repeat the above procedure with y1 in place of y (note that

y1 6≥ y by (20)). After at most |[e, v]| − 1 steps this process will stop.

As an immediate consequence of Theorem 9.8 we obtain the following result which,

in the case that the regular sequence comes from a reduced expression, is closely related

to Theorem 4.12 of [10].

Corollary 9.9 Let (W,S) be a nonnegative Coxeter system, v ∈ W , and (M1, . . . ,M`)

be a regular sequence for v. Then there exists E ⊆ P([`]) such that

Pu,v(q) =
∑

{S∈E:π(S)=u}

qd(S,`),

for all u ≤ v.

Proof. This follows immediately by taking A = {v} in Theorem 9.8. 2

10 A bijection

Our purpose in this section is to establish a bijection between subsequences of certain

regular sequences and certain paths in an appropriate directed graph. This bijection

has several nice properties, and transforms the concepts and statistics used in the

previous section into familiar ones on paths.

Let v ∈ W and M
def
= (M1, . . . ,M`) be a regular sequence for v.

Definition 10.1 We say that M is B-regular if

Mi(x) 6= Mi+1Mi+2 · · ·Mi+k · · ·Mi+2Mi+1(x)

for all i ∈ [`], k ∈ [` − i], and for all x ∈ [e, v] for which both sides are defined.

Note that M is B-regular if and only if

Mi(x) 6= Mi−1Mi−2 · · ·Mi−k · · ·Mi−2Mi−1(x)

for all i ∈ [`], k ∈ [i − 1], and for all x ∈ [e, v] for which both sides are defined.

Let v ∈ W and M
def
= (M1, . . . ,M`) be a B-regular sequence for v.
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Definition 10.2 The B-graph of v, with respect to M, is the directed graph having

[e, v] as vertex set and where, for any x, y ∈ [e, v], x → y if and only if `(x) < `(y) and

there exists i ∈ [`] such that

y = M`M`−1 · · ·Mi+1MiMi+1 · · ·M`−1M`(x).

Note that, if x → y, then there is a unique i ∈ [`] such that y = M` · · ·Mi · · ·M`(x)

(for if M` · · ·Mi · · ·M`(x) = M` · · ·Mj · · ·M`(x) for some 1 ≤ i < j ≤ ` then Mj(x̃) =

Mj−1 · · ·Mi · · ·Mj−1(x̃) where x̃
def
= Mj · · ·M`(x), which contradicts the fact that M is

B-regular). We therefore define

λ(x, y)
def
= λ(y, x)

def
= i.

For example, one may easily check that the regular sequence in Figure 5 is actually

B-regular. The corresponding B-graph is shown in Figure 6, where we have labeled all

edges x → y with λ(x, y), and we have kept all vertices in the same place for clarity.

Note that B-regular sequences always exist. In fact, given any reduced expression

s1s2 · · · sn of v, the sequences (λsn
, λsn−1 , . . . , λs1) and (ρs1 , ρs2 , . . . , ρsn

) are B-regular,

as it is easy to check. Therefore, the concept of a B-regular sequence is a generalization

of that of a reduced expression.

One of the crucial properties of the B-graphs is that they are always directed

subgraphs of the Bruhat graph. This hinges on the following result. Recall that we

denote by T the set of reflections of a Coxeter system (W,S).

Theorem 10.3 Let v ∈ W , and M be a special matching of v. Suppose x, y ∈ [e, v]

are such that x−1y ∈ T . Then

M(x)−1M(y) ∈ T. (21)

Proof. We assume that `(x) < `(y) and we proceed by induction on `(x, y) ≥ 1.

If `(x, y) = 1 then x ¢ y. If either M(x) ¤ x or M(y) ¢ y, then (21) follows

immediately from the definition of a special matching. If M(x) ¢ x ¢ y ¢ M(y) then,

by Lemma 2.1, M restricts to a special matching of [M(x),M(y)]. But it is well known

(see, e.g., [3], (4.7)) that a Bruhat interval of rank 3 is isomorphic to either S3 or to the

lattice of faces of a k-gon, Pk, for some k ≥ 3. On the other hand, it is easy to see that

Pk has no special matchings if k ≥ 4, while P3 has no special matching M satisfying

M(0̂) < M(1̂). Hence [M(x),M(y)] is isomorphic to S3, and it is known (see the proof

of Proposition 3.3 of [14]) that this implies that M(x)−1M(y) ∈ T .
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Figure 8: The B-graph corresponding to the B-regular sequence of Figure 5

Suppose now that `(x, y) ≥ 3. From our hypotheses and (the proof of) Proposi-

tion 3.3 of [14], we have that there exist a, b, c, d ∈ [x, y], all distinct, such that `(x) <

`(a) < `(c) < `(y), `(x) < `(b) < `(d) < `(y), and {x−1a, a−1c, c−1y, x−1b, b−1d, d−1y, a−1d,

b−1c} ⊆ T . Therefore, from our induction hypothesis, we conclude that

{M(x)−1M(a),M(a)−1M(c),M(c)−1M(y),M(x)−1M(b),M(b)−1M(d),

M(d)−1M(y),M(a)−1M(d),M(b)−1M(c)} ⊆ T. (22)

But (M(x)−1M(a))(M(a)−1M(c)) = (M(x)−1M(b))(M(b)−1M(c)) 6= e. Hence, by

Lemma 3.1,

Wx,a,b,c
def
= 〈M(x)−1M(a),M(a)−1M(c),M(x)−1M(b),M(b)−1M(c)〉

is a dihedral reflection subgroup of W . Similarly,

Wx,a,b,d
def
= 〈M(x)−1M(a),M(a)−1M(d),M(x)−1M(b),M(b)−1M(d)〉

and

Wb,c,d,y
def
= 〈M(b)−1M(c),M(c)−1M(y),M(b)−1M(d),M(d)−1M(y)〉
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are dihedral reflection subgroups of W . But Wx,a,b,c∩Wx,a,b,d ⊇ 〈M(x)−1M(a), M(x)−1M(b)〉.

Therefore, by Remark 3.2 of [14], there exists a dihedral reflection subgroup W ′ of W

such that W ′ ⊇ Wx,a,b,c∪Wx,a,b,d. Similarly, W ′∩Wb,c,d,y ⊇ 〈M(b)−1M(c),M(b)−1M(d)〉,

so there exists a dihedral reflection subgroup W ′′ of W such that W ′′ ⊇ W ′ ∪ Wb,c,d,y.

This implies that

{M(x),M(a),M(b),M(c),M(d),M(y)} ⊆ M(x)W ′′.

By Theorem 1.4 of [14], there is an isomorphism of directed graphs φ from the directed

graph induced on M(x)W ′′ by the Bruhat graph of W to the Bruhat graph of W ′′

(considered as an abstract Coxeter system). Hence, by (22), in the Bruhat graph of

W ′′ there are edges connecting φ(M(x)) with φ(M(a)), φ(M(a)) with φ(M(c)), and

φ(M(c)) with φ(M(y)). But W ′′ is a dihedral Coxeter group, hence for any u,w ∈

W ′′ there is an edge in the Bruhat graph of W ′′ connecting u with w if and only if

`′′(u,w) ≡ 1 (mod 2), where `′′ is the length function of W ′′ with respect to its set

of canonical generators. Therefore `′′(φ(M(x)), φ(M(a))) ≡ `′′(φ(M(a)), φ(M(c))) ≡

`′′(φ(M(c)), φ(M(y))) ≡ 1 (mod 2), which implies that `′′(φ(M(x)), φ(M(y))) ≡ 1

(mod 2), and hence that there is an edge, in the Bruhat graph of W ′′, connecting

φ(M(x)) with φ(M(y)). But φ is an isomorphism of directed graphs, so there is an

edge in the Bruhat graph of W connecting M(x) with M(y), and (21) follows. 2

We can now prove that the B-graphs are always directed subgraphs of the Bruhat

graph.

Corollary 10.4 Let v1, . . . , vr ∈ W and Ni be a special matching of vi for i = 1, . . . , r.

Let x ∈ W be such that NrNr−1 · · ·N2N1N2 · · ·Nr−1Nr(x) is defined. Then

x−1NrNr−1 · · ·N2N1N2 · · ·Nr−1Nr(x) ∈ T. (23)

Proof. We proceed by induction on r ≥ 1, the result being clear if r = 1. So assume

that r ≥ 2. From our hypothesis we have that Nr−1 · · ·N2N1N2 · · ·Nr−1(Nr(x)) is

defined. Hence, by our induction hypothesis, Nr(x)−1Nr−1 · · ·N2N1N2 · · ·Nr−1(Nr(x))

∈ T . Therefore, by Theorem 10.3, x−1NrNr−1 · · ·N2N1N2 · · ·Nr−1Nr(x) ∈ T . 2

An important consequence of Corollary 10.4 is the following result, which in the

case that the B-regular sequence comes from a reduced expression is a consequence of

the Exchange Condition.

Proposition 10.5 Let v ∈ W , (M1, . . . ,M`) be a B-regular sequence for v, and y ≤ v,

j ∈ [`] be such that Mj(y) is defined. Then the following are equivalent:
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i) Mj(y) ¤ y;

ii) M` · · ·Mj(y) > M` · · ·Mj+1(y).

Proof. Assume first that i) holds. We will prove, by induction on k, that

Mj+k · · ·Mj(y) > Mj+k · · ·Mj+1(y) (24)

for k = 0, . . . , ` − j. If k = 0 then (24) is true by our hypothesis i). So let k ≥ 1 and

assume, by induction, that

a
def
= Mj+k−1 · · ·Mj(y) > Mj+k−1 · · ·Mj+1(y)

def
= b. (25)

Note that

Mj+k(a) = Mj+k · · ·Mj+1MjMj+1 · · ·Mj+k(Mj+k(b)).

Therefore, by Corollary 10.4, Mj+k(a) and Mj+k(b) are comparable in the Bruhat order.

Hence, to prove (24), it is enough to show that

`(Mj+k(a)) ≥ `(Mj+k(b)). (26)

Suppose, by contradiction, that

`(Mj+k(a)) < `(Mj+k(b)). (27)

From (25) we have that `(a) > `(b). This, together with (27), forces that b¢a and this

implies that Mj+k(b) = a, since Mj+k is a special matching. Therefore

Mj+k(b) = Mj+k−1 · · ·Mj+1MjMj+1 · · ·Mj+k−1(b)

and this contradicts the hypothesis that (M1, . . . ,M`) is a B-regular sequence. This

proves (26) and hence (24) and concludes the induction step.

Assume now that i) doesn’t hold, i.e. Mj(y)¢ y. Then Mj(Mj(y))¤Mj(y). Hence,

by what we have just proved

M` · · ·MjMj(y) > M` · · ·Mj+1Mj(y)

so ii) doesn’t hold. 2

Note that the above proposition does not hold if (M1, . . . ,M`) is not B-regular. For

example, let W = S5, v = 32154, (M1, . . . ,M4) = (ρ(2,3), ρ(1,2), ρ(4,5), λ(1,2)), y = e, and

j = 2. Then (M1, . . . ,M4) is a regular sequence for v and M2(e)¤e but M4M3M2(e) =

12354 6≥ 21354 = M4M3(e).

We can now prove the main result of this section, which gives a bijection between

subsequences of a B-regular sequence and certain paths in the B-graph of v. The result

is new even in the case that the B-regular sequence comes from a reduced expression.

Recall the definition of π, d1(S, `) and d2(S) from §9.
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Theorem 10.6 Let v ∈ W and (M1, . . . ,M`) be a B-regular sequence for v. Then

there is a bijection between subsets S of [`] and undirected paths ∆ = (x0, x1, . . . , xs)

in the B-graph of v such that x0 = v and λ(x0, x1) < λ(x1, x2) < · · · < λ(xs−1, xs).

Furthermore:

i) `(∆) = ` − |S|;

ii) xs = π(S);

iii) d1(S, `) = |{i ∈ [s] : xi−1 < xi}|;

iv) d2(S) = 1
2
(` − `(xs) − `(∆)).

Proof. For S = {i1, . . . , ik}< ⊆ [`] let {j1, . . . , js}<
def
= [`] \ S and

xi
def
= Rji

· · ·Rj2Rj1(v)

for i = 0, . . . , s, where Ri
def
= M` · · ·Mi · · ·M` for i ∈ [`]. Then xi = Rji

(xi−1) and

hence λ(xi−1, xi) = ji for i ∈ [s]. Clearly s = ` − k and

xi = Rji
· · ·Rj2Rj1M` · · ·M1(e)

= M` · · · M̂ji
· · · M̂j2 · · · M̂j1 · · ·M1(e)

= M` · · ·Mji+1(y),

where y = π(S ∩ [ji − 1]), for each i ∈ [s], and̂means that the corresponding factor is

omitted. Hence xs = π(S) and, for i ∈ [s], xi−1 < xi if and only if

Rji
(xi) = M` · · ·Mji

(y) < M` · · ·Mji+1(y) = xi

which, by Proposition 10.5, happens if and only if Mji
(y) ¢ y namely if and only if

εji
(S) = 1. This proves iii).

Finally, by ii),

`(xs) = k − 2|{a ∈ [k] : MiaMia−1 · · ·Mi1(e) ¢ Mia−1 · · ·Mi1(e)}|

= k − 2
∑

a∈[k]

εia(S)

= k − 2d2(S).

It is clear that this map S 7→ (x0, x1, . . . , xs) is a bijection. 2

Combining Theorems 10.6 and 9.4 we obtain the following result.
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Corollary 10.7 Let v ∈ W , and (M1, . . . ,M`) be a B-regular sequence for v. Then,

for all u ≤ v,

R̃u,v(q) =
∑

∆

q`(∆)

where ∆ runs over all the directed paths u = xs → . . . → x2 → x1 → x0 = v in the

B-graph of v such that λ(x0, x1) < λ(x1, x2) < . . . < λ(xs−1, xs). 2

In the case that the B-regular sequence comes from a reduced expression Corollary

10.7 is equivalent to Corollary 3.4 of [16] for any of a certain family of corresponding

reflection orders.

We illustrate Corollary 10.7 with an example. Consider the B-regular sequence

(M1, . . . ,M5) illustrated in Figure 5. Then by Corollary 10.7 we can “read off” from

the corresponding B-graph (Figure 6) that, for example,

R̃e,v(q) = q5 + 2q3 + q,

corresponding to the directed paths from e to v having sequences of labels (5, 4, 3, 2, 1),

(5, 3, 2), (4, 3, 1) and (3).

Combining Theorem 10.6 with Corollary 9.9 we obtain the following result, which

appears to be new even in the case that the B-regular sequence comes from a reduced

expression.

Corollary 10.8 Let (W,S) be a nonnegative Coxeter system, v ∈ W , and (M1, . . . ,M`)

be a B-regular sequence for v. Then there is a subset E of the set of undirected paths

∆ = (x0, x1, . . . , x`(∆)) in the B-graph of v satisfying x0 = v and λ(x0, x1) < λ(x1, x2) <

· · · < λ(x`(∆)−1, x`(∆)), such that

Pu,v(q) =
∑

{∆∈E: x`(∆)=u}

q
1
2
(`(u,v)+`(∆)−2d(∆))

for all u ≤ v, where d(∆) = |{i ∈ [`(∆)] : xi−1 > xi}|. 2

Note that the subset E can be determined using the algorithm in §9 and Theorem

9.8.

11 R-regular sequences

In this section we generalize, using our main result, what is probably the most explicit

closed formula known for the Kazhdan-Lusztig polynomials which holds in complete

generality, namely Theorem 7.3 of [6].
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Let v ∈ W , and M
def
= (M1, . . . ,M`) be a regular sequence for v. We denote

by PM the set of palindromes in the alphabet {M1, . . . ,M`}, i.e. words of the form

Mi1 · · ·Mik−1
MikMik−1

· · ·Mi1 with i1, . . . , ik ∈ [`].

Definition 11.1 We say that M is a reflection regular sequence, or simply an R-

regular sequence, for v, if:

i) for p1, p2 ∈ PM, if p1(u0) = p2(u0) for some u0 ≤ v then p1(u) = p2(u) for all

u ≤ v for which both sides are defined;

ii) for p1, p2, . . . , pn ∈ PM, if pi and pi+1 coincide on a point, for each i = 1, . . . , n−1,

then p1 and pn coincide where they are both defined;

iii) M admits a reflection labeling.

We now define reflection labelings. Define an equivalence relation ∼ on PM by letting

p1 ∼ p2 if there exists u0 ∈ [e, v] such that p1(u0) = p2(u0) and taking the transitive

closure. Note that this is stronger than requiring that p1(u) = p2(u) for all u ≤ v for

which both sides are defined. We denote by RM
def
= PM/ ∼ the quotient set. If p ∈ PM

we let p be the corresponding class in RM. Note that, for each i, j ∈ [`], Mi = Mj if

and only if Mi(e) = Mj(e). Therefore, by Lemma 9.2, we may identify {Mi : i ∈ [`]}

with the set of atoms of [e, v]. We say that an element r ∈ RM is defined on some

u ≤ v if p(u) is defined for some p ∈ r. In this case we write r(u)
def
= p(u). Now let

(W ′, S ′) be another Coxeter system and T ′ be its set of reflections. A reflection labeling

of RM in (W ′, S ′) is a map L : RM → T ′ such that:

a) {L(Mi) : i ∈ [`]} = S ′;

b) L(Mi1 · · ·Mik · · ·Mi1) = L(Mi1) · · ·L(Mik) · · ·L(Mi1) for all i1, . . . , ik ∈ [`];

c) If r1, r2 ∈ RM, r1 6= r2, are both defined on some u ≤ v then L(r1) 6= L(r2).

In particular, |S ′| equals the number of atoms of [e, v].

It is not hard to see that R-regular sequences always exist. In fact, if v = s1 · · · s`

is a reduced expression for v then M
def
= (ρs1 , . . . , ρs`

) is clearly a regular sequence for

v satisfying i) and ii). If we denote by W ′ the parabolic subgroup of W generated by

{si : i ∈ [`]} and by T ′ its set of reflections, then the map L : PM −→ T ′ defined

by ρsi1
· · · ρsik

· · · ρsi1
7→ si1 · · · sik · · · si1 clearly factors through RM to a reflection

labeling. Similarly for (λs`
, . . . , λs1). Thus, the concept of an R-regular sequence is a

generalization of that of a reduced expression. On the other hand, one can show that

there are R-regular sequences which don’t come from reduced expressions.

44



Although this is not obvious from the definition, an R-regular sequence is also

B-regular.

Proposition 11.2 Let v ∈ W and M be an R-regular sequence for v. Then M is

B-regular.

Proof. Let M
def
= (M1, . . . ,M`) and fix i ∈ [`]. We will show that

Mi(x) 6= Mi−1 · · ·Mi−k · · ·Mi−1(x)

for all k ∈ [i− 1] and all x ∈ [e, v] for which both sides are defined, and the result will

follow from the remarks following the definition of a B-regular sequence in §10.

Suppose, by contradiction, that there are x ∈ [e, v] and k ∈ [i − 1] such that

Mi(x) = Mi−1 · · ·Mi−k · · ·Mi−1(x). Since M is R-regular this implies, by condition

i), that Mi(y) = Mi−1 · · ·Mi−k · · ·Mi−1(y) for all y ∈ [e, v] for which both sides are

defined. Let (v0, . . . , v`) be the regular chain associated to M. Then, in particular,

vi = Mi(vi−1) = Mi−1 · · ·Mi−k · · ·Mi−1(vi−1) = Mi−1 · · ·Mi−k+1(vi−k−1).

Therefore

i = `(vi) = `(Mi−1 · · ·Mi−k+1(vi−k−1)) ≤ `(vi−k−1) + k − 1 = i − 2,

which is a contradiction. 2

Note that the converse of the above proposition is not true. For example, let W = S4

and v = 3421. Then it is easy to check that M
def
= (ρ(2,3), ρ(3,4), ρ(2,3), λ(1,2), λ(2,3)) is a

B-regular sequence for v. However, M is not R-regular since ρ(2,3)(e) = λ(2,3)(e) but

ρ(2,3)(1243) 6= λ(2,3)(1243), so condition i) does not hold.

Let v ∈ W , M an R-regular sequence for v, and L : RM → T ′ be a reflection

labeling.

Definition 11.3 We define a labeled directed graph, that we call the R-graph of v with

respect to M, as follows. The R-graph has [e, v] as vertex set and, for any x, y ∈ [e, v],

x
r

−→ y if and only if `(y) > `(x) and y = r(x), for some r ∈ RM.

Note that the B-graph is a directed subgraph of the R-graph and, by Corollary 10.4,

the R-graph is a directed subgraph of the Bruhat graph.

If ∆ = (x0
r1−→ x1

r2−→ · · ·
rk−→ xk) is a directed path in the R-graph we write

E(∆)
def
= {r1, . . . , rk} and if ≺ is a reflection ordering on T ′ we let

D(∆, L,≺)
def
= {i ∈ [k − 1] : L(ri) Â L(ri+1)}. (28)
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Finally, we define an element R≺ in the incidence algebra of [e, v] by letting

R≺(x, y)
def
=

∑

{∆∈B(x,y):D(∆,L,≺)=∅}

q`(∆)

where B(x, y) denotes the set of all directed paths in the R-graph from x to y.

We can now state the first main result of this section. It is a “global version” of

Corollary 10.7 and generalizes Corollary 3.4 of [16]. The proof follows the lines of the

ones given in [13], [15] and [4, Theorem 5.3.4], and is therefore omitted.

Theorem 11.4 Let v ∈ W , M = (M1, . . . ,M`) be an R-regular sequence for v, L :

RM → T ′ be a reflection labeling and ≺ a reflection ordering on T ′. Then

R̃x,y(q) = R≺(x, y)

for all x ≤ y ≤ v.

Now fix v ∈ W , an R-regular sequence M for v, a reflection labeling L : RM → T ′

and a reflection ordering ≺ on T ′. Let ∆ ∈ B(x, y), where x ≤ y ≤ v. We define the

descent composition of ∆ with respect to ≺ to be the unique composition C(∆, L,≺

)
def
= (b1, . . . , bj) such that b1 + . . . + bj = `(∆) and D(∆, L,≺) = {b1, b1 + b2, . . . , b1 +

. . . + bj−1}. For x, y ≤ v, and α ∈ C, we let

cα(x, y)
def
= |{∆ ∈ B(x, y) : `(∆) = |α| and C(∆, L,≺) ≥c α}|. (29)

Using Theorem 11.4 one can prove the following result. Its proof is analogous to

that of Proposition 4.4 of [5] and is therefore omitted.

Proposition 11.5 Let x ≤ y ≤ v, and α ∈ C. Then

cα(x, y) =
∑

(x0,...,xr)∈Cr(x,y)

r∏

j=1

[qαj ](R̃xj−1,xj
)

where Cr(x, y) denotes the set of all chains of length r from x to y, and r
def
= `(α).

We can now state the second main result of this section, which generalizes the main

result of [6] (Theorem 7.2). Its proof is the same as that of Theorem 7.2 of [6] (except

that, for a path ∆ ∈ B(x, y), its descent set is now defined using the reflection labeling

L, see (28)) and is therefore omitted. Recall the definition of the polynomials Υα(q)

from §2.
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Theorem 11.6 Let v ∈ W , M be an R-regular sequence for v, L : RM → T ′ be a

reflection labeling and ≺ be a reflection ordering on T ′. Then

Px,y(q) − q`(x,y) Px,y

(
1

q

)
=

∑

∆∈B(x,y)

q
`(x,y)−`(∆)

2 ΥC(∆,L,≺)(q), (30)

for all x ≤ y ≤ v.

In the same way as Theorem 7.3 is deduced from Theorem 7.2 in [6] one obtains

the following result from Theorem 11.6 . Given n ∈ Z and A ⊆ Z we let n − A
def
=

{n − a : a ∈ A}. Recall our notations concerning lattice paths from §2.

Theorem 11.7 Let v ∈ W , M be an R-regular sequence for v, L : RM → T ′ be a

reflection labeling and ≺ be a reflection ordering on T ′. Then, for all x ≤ y ≤ v,

Px,y(q) =
∑

(Γ,∆)

(−1)Γ≥0+d+(Γ)q
`(x,y)+Γ(`(Γ))

2

where the sum is over all pairs (Γ, ∆) such that Γ is a lattice path, ∆ ∈ B(x, y),

`(Γ) = `(∆), N(Γ) = `(∆) − D(∆, L,≺), and Γ(`(Γ)) < 0. 2
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