- 1) L'anello
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad (\mathbf{Z}_4, +, \cdot) \text{ è un campo.}$
- ${f F} {f V}$ b) $({f R}[t],+,\cdot)$ ha infiniti elementi invertibili.
- **F V** c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}, +, \cdot) \text{ ha caratteristica zero.}$
 - 2) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V b) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F** V c) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
- **F** V d) Se $C = A \cdot B$, anche il determinante di C è zero.
 - 3) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) le righe di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- F V c) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 4) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V}$ b) S non è omogeneo.
- $\mathbf{F} \quad \mathbf{V} \quad c$) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \cdot \mathbf{V}$ d) la matrice completa associata a S è quadrata e ha rango massimo.
 - 5) La seguente operazione **non** cambia lo spazio delle soluzioni di un sistema lineare
- **F V** a) scambiare due righe della matrice incompleta.
- F V b) scambiare due colonne della matrice completa.
- F V c) moltiplicare una riga della matrice completa per zero.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
 - 6) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(0,0,0)\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$

- 7) Sia \mathcal{B} una base di uno spazio vettoriale V.
- **F V** a) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V}$ b) Allora \mathcal{B} è un insieme di generatori di V.
- **F V** c) Se dim V = n allora \mathcal{B} contiene n vettori.
- **F V** d) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
 - 8) La seguente trasformazione è lineare
- **F V** a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da $T(x,y) = (x, x^2, y)$.
- **F V** b) $T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K})$ definita da $T(A) = {}^t A$.
- **F V** c) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da $T(p) = t \cdot p$.
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
 - 9) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se v = -w allora T(v) = -T(w).
- **F V** b) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c)} \ T(L(v, w))$ è un sottospazio di W.
- **F V** d) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.

- 1) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** b) $\{(0,0,0)\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
 - 2) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se T(v) = T(w) allora $v w \in \ker V$.
- **F V** b) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F** V c) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- **F V** d) Se T(v) = -T(w) allora v = -w.
 - 3) La seguente trasformazione è lineare
- **F V** a) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- $\mathbf{F} \quad \mathbf{V}$ b) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c)} \quad T : \mathbf{R}[t] \to \mathbf{R}[t] \text{ definita da } T(p) = p'.$
- **F V** d) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da T(x,y) = (x,x,y).
 - 4) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) la matrice completa associata a S è quadrata e ha rango massimo.
- ${f F} {f V}$ b) le colonne di A sono linearmente indipendenti.
- **F V** c) non è omogeneo.
- $\mathbf{F} \quad \mathbf{V} \quad d$) b non è combinazione lineare delle colonne di A.
 - 5) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F V** a) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V b) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F** V c) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F** V d) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
 - 6) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{R}, +, \cdot)$ è un campo.
- **F** V b) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- **F** V c) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.

- 7) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- $\mathbf{F} \quad \mathbf{V}$ a) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- **F** V b) scambiare le righe della matrice completa.
- F V c) scambiare le colonne della matrice incompleta.
- F V d) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
 - 8) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) le righe di A sono linearmente indipendenti.
- F V b) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- **F V** d) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 9) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- $\mathbf{F} \quad \mathbf{V} \quad \text{a) Ogni vettore di } V$ è combinazione lineare dei vettori di \mathcal{B} .
- ${f F} {f V}$ b) Allora ${\cal B}$ è un insieme linearmente indipendente.
- **F V** c) Se \mathcal{B} contiene n vettori allora dim V = n.
- **F V** d) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.

- 1) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Se $C = A \cdot B$, anche il determinante di C è zero.
- **F V** b) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V c) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- $\mathbf{F} \mathbf{V}$ d) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
 - 2) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- **F** V a) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
- F V b) moltiplicare una riga della matrice completa per zero.
- F V c) scambiare due colonne della matrice completa.
- F V d) scambiare due righe della matrice incompleta.
 - 3) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** d) $\{(0,0,0)\}.$
 - 4) Sia \mathcal{B} una base di uno spazio vettoriale V.
- **F V** a) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- **F V** b) Se dim V = n allora \mathcal{B} contiene n vettori.
- **F V** c) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Allora \mathcal{B} è un insieme di generatori di V.
 - 5) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- F V a) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- $\mathbf{F} \quad \mathbf{V}$ b) le righe di A sono linearmente indipendenti.
- **F** V c) le colonne di A sono linearmente indipendenti.
- F V d) esiste un minore di ordine 2 con determinante diverso da zero.
 - 6) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V}$ b) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad S \text{ non è omogeneo.}$
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.

- 7) La seguente trasformazione è lineare
- **F V** a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definited da $T(x,y) = (x, x^2, y)$.
- $\mathbf{F} \quad \mathbf{V} \qquad \text{b)} \ T: \mathbf{R}[t] \to \mathbf{R}[t] \ \text{definita da} \ T(p) = t \cdot p.$
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \text{ definita da } T(A) = {}^t A.$
 - 8) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se v = -w allora T(v) = -T(w).
- **F V** b) T(L(v, w)) è un sottospazio di W.
- **F V** c) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
 - 9) L'anello
- $\mathbf{F} \quad \mathbf{V} \quad a) \quad (\mathbf{Z}, +, \cdot) \text{ ha caratteristica zero.}$
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{Z}_4, +, \cdot)$ è un campo.
- **F** V c) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
- **F V** d) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.

- 1) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- $\mathbf{F} \quad \mathbf{V}$ a) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** b) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- **F V** c) Se T(v) = T(w) allora $v w \in \ker V$.
- **F V** d) Se T(v) = -T(w) allora v = -w.
 - 2) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- ${f F}$ ${f V}$ b) scambiare le colonne della matrice incompleta.
- F V c) scambiare le righe della matrice completa.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
 - 3) L'anello
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
- **F** V b) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{R}, +, \cdot) \text{ è un campo.}$
- **F** V d) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
 - 4) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** c) $\{(0,0,0)\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
 - 5) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V}$ a) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- $\mathbf{F} \quad \mathbf{V}$ b) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da T(p) = p'.
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- **F** V d) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definited da T(x,y) = (x,x,y).
 - 6) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- ${f F} {f V}$ a) Allora ${\cal B}$ è un insieme linearmente indipendente.
- **F** V b) Se \mathcal{B} contiene n vettori allora dim V = n.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
- **F V** d) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.

- Num. Matr. 01000
- 7) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- \mathbf{F} \mathbf{V} a) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- b) esiste un minore di ordine 2 con determinante diverso da zero. \mathbf{F} \mathbf{V}
- \mathbf{F} c) le righe di A sono linearmente indipendenti.
- \mathbf{F} \mathbf{V} d) le colonne di A sono linearmente indipendenti.
 - 8) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- \mathbf{F} a) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
- b) Se B è ottenuta da A scambiando due righe, $\det B = \det A$. \mathbf{F} \mathbf{V}
- \mathbf{V} c) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$. \mathbf{F}
- \mathbf{F} \mathbf{V} d) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
 - 9) Un sistema lineare S = (A, b) è impossibile se
- \mathbf{F} a) b non è combinazione lineare delle colonne di A.
- \mathbf{F} \mathbf{V} b) non è omogeneo.
- \mathbf{F} \mathbf{V} c) le colonne di A sono linearmente indipendenti.
- \mathbf{F} \mathbf{V} d) la matrice completa associata a S è quadrata e ha rango massimo.

- 1) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Se $C = A \cdot B$, anche il determinante di C è zero.
- **F V** b) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- $\mathbf{F} \quad \mathbf{V} \quad c$) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F** V d) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
 - 2) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- **F** V a) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- **F V** b) le righe di A sono linearmente indipendenti.
- F V c) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 3) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \text{ definita da } T(A) =^t A.$
- **F V** b) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** c) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definita da $T(x,y) = (x, x^2, y)$.
- **F V** d) $T: \mathbf{R}[t] \to \mathbf{R}[t]$ definita da $T(p) = t \cdot p$.
 - 4) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) S non è omogeneo.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \mathbf{V} \mathbf{c}$) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V} \quad \mathbf{d} \quad b \text{ non è combinazione lineare delle colonne di } A.$
 - 5) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare due colonne della matrice completa.
- **F V** b) scambiare due righe della matrice incompleta.
- **F** V c) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
- F V d) moltiplicare una riga della matrice completa per zero.
 - 6) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(0,0,0)\}$.
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$

- 7) Sia $\mathcal B$ una base di uno spazio vettoriale V.
- $\mathbf{F} \quad \mathbf{V}$ a) Allora \mathcal{B} è un insieme di generatori di V.
- **F V** b) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
- **F V** c) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Se dim V = n allora \mathcal{B} contiene n vettori.
 - 8) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- **F V** b) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
- **F V** c) Se v = -w allora T(v) = -T(w).
- **F V** d) T(L(v, w)) è un sottospazio di W.
 - 9) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{Z}_4, +, \cdot)$ è un campo.
- **F V** c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- **F V** d) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.

- 1) Sia $\mathcal B$ una base di uno spazio vettoriale V finitamente generato.
- **F** V a) Se \mathcal{B} contiene n vettori allora dim V = n.
- **F V** b) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) Allora \mathcal{B} è un insieme linearmente indipendente.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
 - 2) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- $\mathbf{F} \quad \mathbf{V} \quad \text{a) } \{(0,0,0)\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
 - 3) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F** V a) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F** V b) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F V** c) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V d) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
 - 4) L'anello
- **F** V a) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- **F** V b) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{R}, +, \cdot) \text{ è un campo.}$
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
 - 5) La seguente trasformazione è lineare
- **F V** a) $T: \mathbf{R}[t] \to \mathbf{R}[t]$ definite da T(p) = p'.
- **F** V b) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definited da T(x,y) = (x,x,y).
- **F V** c) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
 - 6) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- **F V** b) Se T(v) = -T(w) allora v = -w.
- **F** V c) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** d) Se T(v) = T(w) allora $v w \in \ker V$.

- 7) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \mathbf{V}$ b) la matrice completa associata a S è quadrata e ha rango massimo.
- **F V** c) non è omogeneo.
- ${f F} {f V} {f V}$ d) b non è combinazione lineare delle colonne di A.
 - 8) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- F V b) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le righe di A sono linearmente indipendenti.
- **F V** d) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 9) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare le righe della matrice completa.
- **F** V b) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- F V c) scambiare le colonne della matrice incompleta.
- ${f F}$ ${f V}$ d) moltiplicare una riga della matrice completa per uno scalare diverso da zero.

- 1) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- $\mathbf{F} \quad \mathbf{V}$ a) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
- **F** V b) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** c) Se $C = A \cdot B$, anche il determinante di C è zero.
- **F V** d) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
 - 2) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- F V a) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- **F V** c) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le righe di A sono linearmente indipendenti.
 - 3) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) S non è omogeneo.
- $\mathbf{F} \quad \mathbf{V} \qquad \mathbf{b}) \ b \ \text{non è combinazione lineare delle colonne di } A.$
- $\mathbf{F} \quad \mathbf{V} \quad c$) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \mathbf{V}$ d) la matrice completa associata a S è quadrata e ha rango massimo.
 - 4) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare due colonne della matrice completa.
- F V b) moltiplicare una riga della matrice completa per zero.
- F V c) scambiare due righe della matrice incompleta.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
 - 5) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se v = -w allora T(v) = -T(w).
- **F V** b) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
- **F V** c) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- $\mathbf{F} \quad \mathbf{V} \quad d) \ T(L(v, w))$ è un sottospazio di W.
 - 6) L'anello
- **F V** a) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- **F** V b) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- $\mathbf{F} \quad \mathbf{V} \qquad d) \quad (\mathbf{Z}_4, +, \cdot) \text{ è un campo.}$

7) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3

- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(x, y, z) \in \mathbb{R}^3 \mid x \neq 0\}.$
- **F V** c) $\{(0,0,0)\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
 - 8) Sia \mathcal{B} una base di uno spazio vettoriale V.
- **F V** a) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V} \qquad \text{b) Se } v_1, \ldots, v_k \in \mathcal{B} \text{ e } a_1v_1 + \cdots + a_kv_k = 0_V \text{ allora } a_1 = \cdots = a_k = 0.$
- ${f F} {f V} {f C}$ c) Allora ${\cal B}$ è un insieme di generatori di V.
- **F** V d) Se dim V = n allora \mathcal{B} contiene n vettori.
 - 9) La seguente trasformazione è lineare
- **F V** a) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definita da $T(x,y) = (x, x^2, y)$.
- **F V** b) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- $\mathbf{F} \quad \mathbf{V} \qquad \mathrm{c}) \ T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \ \mathrm{definita} \ \mathrm{da} \ T(A) =^t A.$
- **F V** d) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da $T(p) = t \cdot p$.

- 1) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- **F** V a) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- F V b) scambiare le colonne della matrice incompleta.
- F V c) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- F V d) scambiare le righe della matrice completa.
 - 2) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T : \mathbf{R}[t] \to \mathbf{R}[t] \text{ definita da } T(p) = p'.$
- **F V** b) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- **F V** c) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definita da T(x,y) = (x,x,y).
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
 - 3) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{R}, +, \cdot)$ è un campo.
- **F V** b) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
- **F** V d) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
 - 4) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- **F V** b) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** c) Se T(v) = -T(w) allora v = -w.
- **F** V d) Se T(v) = T(w) allora $v w \in \ker V$.
 - 5) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le righe di A sono linearmente indipendenti.
- **F V** b) le colonne di A sono linearmente indipendenti.
- **F** V c) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- F V d) esiste un minore di ordine 2 con determinante diverso da zero.
 - 6) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F V** a) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V b) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** c) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.

7) Il seguente è un sottospazio vettoriale di ${\bf R}^3$

- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** b) $\{(x, y, z) \in \mathbb{R}^3 \mid x \in \mathbb{Z}\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** d) $\{(0,0,0)\}.$
 - 8) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) la matrice completa associata a S è quadrata e ha rango massimo.
- F V b) non è omogeneo.
- ${f F} {f V} {f C} {f b}$ non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 9) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- **F V** a) Se \mathcal{B} contiene n vettori allora dim V = n.
- ${f F} {f V} {f V}$ b) Allora ${\cal B}$ è un insieme linearmente indipendente.
- $\mathbf{F} \quad \mathbf{V} \qquad \text{c) Se } v \in V \text{ e } v \notin \mathcal{B} \text{ allora } \mathcal{B} \cup \{v\} \text{ non è una base di } V.$
- $\mathbf{F} \quad \mathbf{V} \quad d$) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .

- 1) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- **F** V b) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- F V c) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le righe di A sono linearmente indipendenti.
 - 2) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \text{ definita da } T(A) = {}^t A.$
- **F V** b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definited da $T(x, y) = (x, x^2, y)$.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c)} \quad T : \mathbf{R}[t] \to \mathbf{R}[t] \text{ definita da } T(p) = t \cdot p.$
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
 - 3) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- $\mathbf{F} \quad \mathbf{V} \quad \text{a) Se } \{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- **F V** b) Se v = -w allora T(v) = -T(w).
- **F** V c) T(L(v, w)) è un sottospazio di W.
- **F V** d) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
 - 4) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \mathbf{V}$ a) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V}$ b) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad d$) S non è omogeneo.
 - 5) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- **F** V a) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
- F V b) moltiplicare una riga della matrice completa per zero.
- **F V** c) scambiare due righe della matrice incompleta.
- F V d) scambiare due colonne della matrice completa.
 - 6) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** c) $\{(0,0,0)\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$

- 7) Sia $\mathcal B$ una base di uno spazio vettoriale V.
- $\mathbf{F} \quad \mathbf{V}$ a) Allora \mathcal{B} è un insieme di generatori di V.
- **F V** b) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- **F V** c) Se dim V = n allora \mathcal{B} contiene n vettori.
- **F V** d) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
 - 8) L'anello
- **F V** a) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- **F V** c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}_4, +, \cdot) \text{ è un campo.}$
 - 9) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F** V a) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** b) Se $C = A \cdot B$, anche il determinante di C è zero.
- ${f F}$ ${f V}$ c) Se B è ottenuta da A scambiando due righe, det $B=\det A$.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.

- 1) La seguente trasformazione è lineare
- **F V** a) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definite da T(p) = p'.
- **F V** b) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** d) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definita da T(x,y) = (x,x,y).
 - 2) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- **F V** a) Se \mathcal{B} contiene n vettori allora dim V = n.
- $\mathbf{F} \quad \mathbf{V} \qquad \mathbf{b}$) Allora \mathcal{B} è un insieme linearmente indipendente.
- \mathbf{F} \mathbf{V} c) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
- **F V** d) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
 - 3) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F** V a) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** b) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V c) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F V** d) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
 - 4) L'anello
- **F V** a) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{R}, +, \cdot)$ è un campo.
- **F** V c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
 - 5) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)}$ le colonne di A sono linearmente indipendenti.
- **F V** b) le righe di A sono linearmente indipendenti.
- **F** V c) esiste un minore di ordine 2 con determinante diverso da zero.
- **F** V d) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 6) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(0,0,0)\}.$
- **F V** b) $\{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$

- 7) La seguente operazione **non** cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare le righe della matrice completa.
- **F** V b) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- **F V** c) scambiare le colonne della matrice incompleta.
- F V d) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
 - 8) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V}$ b) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V} \qquad c$) non è omogeneo.
- ${f F} {f V} {f V}$ d) b non è combinazione lineare delle colonne di A.
 - 9) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- ${f F} {f V}$ a) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- **F V** b) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** c) Se T(v) = T(w) allora $v w \in \ker V$.
- **F V** d) Se T(v) = -T(w) allora v = -w.

- 1) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad S \text{ non è omogeneo.}$
- $\mathbf{F} \quad \mathbf{V} \quad d$) b non è combinazione lineare delle colonne di A.
 - 2) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** b) $\{(0,0,0)\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
 - 3) Sia \mathcal{B} una base di uno spazio vettoriale V.
- **F V** a) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- **F** V b) Se dim V = n allora \mathcal{B} contiene n vettori.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c)} \quad \text{Allora } \mathcal{B} \text{ è un insieme di generatori di } V.$
- **F V** d) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
 - 4) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- **F** V a) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
- F V b) scambiare due righe della matrice incompleta.
- F V c) scambiare due colonne della matrice completa.
- **F** V d) moltiplicare una riga della matrice completa per zero.
 - 5) La seguente trasformazione è lineare
- **F V** a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definited da $T(x,y) = (x, x^2, y)$.
- **F V** b) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da $T(p) = t \cdot p$.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c)} \quad T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \text{ definita da } T(A) =^t A.$
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
 - 6) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se v = -w allora T(v) = -T(w).
- **F V** b) T(L(v, w)) è un sottospazio di W.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c) Se } \{u, w\} \text{ genera } V \text{ allora } \{T(u), T(w)\} \text{ genera } W.$
- **F V** d) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.

- 7) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- **F V** b) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- **F** V c) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \qquad d) \quad (\mathbf{Z}_4, +, \cdot) \text{ è un campo.}$
 - 8) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Se $C = A \cdot B$, anche il determinante di C è zero.
- $\mathbf{F} \quad \mathbf{V}$ b) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F** V c) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** d) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
 - 9) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- F V b) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le righe di A sono linearmente indipendenti.

- 1) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F** V a) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F** V b) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** c) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F V** d) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
 - 2) Il seguente è un sottospazio vettoriale di ${\bf R}^3$
- **F V** a) $\{(0,0,0)\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
 - 3) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- $\mathbf{F} \cdot \mathbf{V}$ a) Allora \mathcal{B} è un insieme linearmente indipendente.
- **F V** b) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V} \quad c$) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
- **F** V d) Se \mathcal{B} contiene n vettori allora dim V = n.
 - 4) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- F V a) esiste un minore di ordine 2 con determinante diverso da zero.
- **F** V b) le colonne di A sono linearmente indipendenti.
- **F V** c) le righe di A sono linearmente indipendenti.
- **F** V d) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 5) L'anello
- **F V** a) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- **F** V b) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{R}, +, \cdot)$ è un campo.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
 - 6) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T: M_n(\mathbf{K}) \to \mathbf{K} \text{ definita da } T(A) = \det A.$
- **F V** b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da T(x,y) = (x,x,y).
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** d) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da T(p) = p'.

- 7) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare le righe della matrice completa.
- **F** V b) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- F V c) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- ${f F}$ ${f V}$ d) scambiare le colonne della matrice incompleta.
 - 8) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V}$ b) la matrice completa associata a S è quadrata e ha rango massimo.
- ${f F} {f V} {f C} {f b}$ non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \qquad \mathbf{d}$) non è omogeneo.
 - 9) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- ${f F} {f V}$ a) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** b) Se T(v) = -T(w) allora v = -w.
- **F V** c) Se T(v) = T(w) allora $v w \in \ker V$.
- **F V** d) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.

- 1) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le righe di A sono linearmente indipendenti.
- F V b) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- F V c) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 2) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \mathbf{V}$ b) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad S \text{ non è omogeneo.}$
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 3) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) moltiplicare una riga della matrice completa per zero.
- **F** V b) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
- F V c) scambiare due colonne della matrice completa.
- **F V** d) scambiare due righe della matrice incompleta.
 - 4) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbb{R}^3 \mid x \neq 0\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbb{R}^3 \mid x \in \mathbb{Z}\}.$
- **F V** d) $\{(0,0,0)\}.$
 - 5) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V b) Se $C = A \cdot B$, anche il determinante di C è zero.
- **F** V c) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F** V d) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
 - 6) La seguente trasformazione è lineare
- **F V** a) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da $T(p) = t \cdot p$.
- **F V** b) $T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K})$ definita da $T(A) = {}^t A$.
- **F V** c) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definited da $T(x, y) = (x, x^2, y)$.
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).

- 7) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- $\mathbf{F} \quad \mathbf{V}$ a) T(L(v, w)) è un sottospazio di W.
- **F V** b) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c) Se } v = -w \text{ allora } T(v) = -T(w).$
- **F V** d) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
 - 8) Sia \mathcal{B} una base di uno spazio vettoriale V.
- **F V** a) Se dim V = n allora \mathcal{B} contiene n vettori.
- $\mathbf{F} \quad \mathbf{V}$ b) Allora \mathcal{B} è un insieme di generatori di V.
- **F V** c) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V} \qquad \mathrm{d)} \ \mathrm{Se} \ v_1, \ldots, v_k \in \mathcal{B} \ \mathrm{e} \ a_1 v_1 + \cdots + a_k v_k = 0_V \ \mathrm{allora} \ a_1 = \cdots = a_k = 0.$
 - 9) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{Z}_4, +, \cdot)$ è un campo.
- ${f F} {f V}$ b) $({f Z},+,\cdot)$ ha caratteristica zero.
- **F V** c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- **F V** d) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.

- 1) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T : \mathbf{R}^2 \to \mathbf{R}^3 \text{ definita da } T(x,y) = (x,x,y).$
- $\mathbf{F} \quad \mathbf{V}$ b) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** d) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definite da T(p) = p'.
 - 2) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- **F V** a) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
- ${f F} {f V} {f V}$ b) Allora ${\cal B}$ è un insieme linearmente indipendente.
- **F** V c) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
- **F** V d) Se \mathcal{B} contiene n vettori allora dim V = n.
 - 3) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- \mathbf{F} \mathbf{V} a) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
- **F** V b) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
- **F V** c) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** d) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
 - 4) L'anello
- **F V** a) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
- **F** V c) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{R}, +, \cdot) \ e$ un campo.
 - 5) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \ b \text{ non è combinazione lineare delle colonne di } A.$
- **F V** b) non è omogeneo.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad d$) la matrice completa associata a S è quadrata e ha rango massimo.
 - 6) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- F V a) esiste un minore di ordine 2 con determinante diverso da zero.
- ${f F} {f V} {f V}$ b) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le righe di A sono linearmente indipendenti.

- 7) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se T(v) = -T(w) allora v = -w.
- **F** V b) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** c) Se T(v) = T(w) allora $v w \in \ker V$.
- **F V** d) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
 - 8) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- ${f F}$ ${f V}$ b) scambiare le colonne della matrice incompleta.
- F V c) scambiare le righe della matrice completa.
- **F V** d) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
 - 9) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbb{R}^3 \mid x \neq 0\}.$
- $\mathbf{F} \quad \mathbf{V} \qquad \text{b) } \{(x,y,z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** c) $\{(0,0,0)\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$

- 1) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) S non è omogeneo.
- $\mathbf{F} \quad \mathbf{V}$ b) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \quad \mathbf{c}$) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 2) Sia \mathcal{B} una base di uno spazio vettoriale V.
- $\mathbf{F} \quad \mathbf{V}$ a) Se dim V = n allora \mathcal{B} contiene n vettori.
- **F V** b) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- **F V** c) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Allora \mathcal{B} è un insieme di generatori di V.
 - 3) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare due colonne della matrice completa.
- F V b) moltiplicare una riga della matrice completa per zero.
- **F** V c) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
- **F V** d) scambiare due righe della matrice incompleta.
 - 4) La seguente trasformazione è lineare
- **F V** a) $T: \mathbf{R}[t] \to \mathbf{R}[t]$ definite da $T(p) = t \cdot p$.
- **F V** b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da $T(x,y) = (x, x^2, y)$.
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** d) $T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K})$ definita da $T(A) = {}^t A$.
 - 5) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) T(L(v, w)) è un sottospazio di W.
- **F V** b) Se v = -w allora T(v) = -T(w).
- **F V** c) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
- **F V** d) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
 - 6) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** d) $\{(0,0,0)\}.$

- 7) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{Z}_4, +, \cdot)$ è un campo.
- **F** V c) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
- **F V** d) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
 - 8) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Se $C = A \cdot B$, anche il determinante di C è zero.
- **F V** b) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V c) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
 - 9) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- $\mathbf{F} \quad \mathbf{V}$ b) le righe di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- F V d) esiste un minore di ordine 2 con determinante diverso da zero.

- 1) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
- **F** V b) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{R}, +, \cdot) \text{ è un campo.}$
- **F V** d) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
 - 2) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** b) $\{(0,0,0)\}$.
- **F V** c) $\{(x, y, z) \in \mathbb{R}^3 \mid x \in \mathbb{Z}\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
 - 3) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- **F V** a) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le righe di A sono linearmente indipendenti.
- **F** V d) esiste un minore di ordine 2 con determinante diverso da zero.
 - 4) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F V** a) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
- **F** V b) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** c) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- $\mathbf{F} \cdot \mathbf{V}$ d) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
 - 5) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- F V b) scambiare le righe della matrice completa.
- F V c) scambiare le colonne della matrice incompleta.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
 - 6) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- **F V** c) non è omogeneo.
- $\mathbf{F} \cdot \mathbf{V}$ d) la matrice completa associata a S è quadrata e ha rango massimo.

- 7) Sia $\mathcal B$ una base di uno spazio vettoriale V finitamente generato.
- $\mathbf{F} \quad \mathbf{V} \quad \text{a) Ogni vettore di } V$ è combinazione lineare dei vettori di \mathcal{B} .
- **F** V b) Se \mathcal{B} contiene n vettori allora dim V = n.
- $\mathbf{F} \quad \mathbf{V} \quad c$) Allora \mathcal{B} è un insieme linearmente indipendente.
- **F V** d) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
 - 8) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se T(v) = T(w) allora $v w \in \ker V$.
- **F V** b) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c) Se } \{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** d) Se T(v) = -T(w) allora v = -w.
 - 9) La seguente trasformazione è lineare
- **F V** a) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad O (\mathcal{F}_O^2 indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** b) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da T(p) = p'.
- $\mathbf{F} \quad \mathbf{V} \quad \text{c)} \quad T: M_n(\mathbf{K}) \to \mathbf{K} \text{ definita da } T(A) = \det A.$
- **F V** d) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da T(x,y) = (x,x,y).

- 1) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \text{ definita da } T(A) = {}^t A.$
- **F V** b) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da $T(p) = t \cdot p$.
- **F V** c) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da $T(x,y) = (x, x^2, y)$.
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
 - 2) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- $\mathbf{F} \quad \mathbf{V}$ b) T(L(v, w)) è un sottospazio di W.
- **F V** c) Se v = -w allora T(v) = -T(w).
- **F V** d) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
 - 3) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- **F** V b) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- F V c) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le righe di A sono linearmente indipendenti.
 - 4) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(0,0,0)\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
 - 5) Sia \mathcal{B} una base di uno spazio vettoriale V.
- $\mathbf{F} \quad \mathbf{V}$ a) Allora \mathcal{B} è un insieme di generatori di V.
- **F V** b) Se dim V = n allora \mathcal{B} contiene n vettori.
- **F V** c) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- **F V** d) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
 - 6) L'anello
- **F V** a) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
- **F** V b) $(\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- **F V** c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}_4, +, \cdot) \ e \ un \ campo.$

10101

- 7) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F** V a) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** b) Se $C = A \cdot B$, anche il determinante di C è zero.
- \mathbf{F} \mathbf{V} c) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
- **F V** d) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
 - 8) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V}$ b) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad S \text{ non è omogeneo.}$
- $\mathbf{F} \cdot \mathbf{V}$ d) la matrice completa associata a S è quadrata e ha rango massimo.
 - 9) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- **F V** a) scambiare due righe della matrice incompleta.
- ${f F} {f V}$ b) moltiplicare una riga della matrice completa per zero.
- ${f F}$ ${f V}$ c) scambiare due colonne della matrice completa.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.

- 1) Un sistema lineare S = (A, b) è impossibile se
- **F V** a) non è omogeneo.
- $\mathbf{F} \quad \mathbf{V}$ b) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V} \quad c) \ b$ non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 2) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{R}, +, \cdot)$ è un campo.
- ${f F} {f V}$ b) $({f Z},+,\cdot)$ possiede divisori dello zero.
- **F** V c) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- **F** V d) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
 - 3) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** d) $\{(0,0,0)\}.$
 - 4) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- $\mathbf{F} \quad \mathbf{V}$ a) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** b) Se T(v) = -T(w) allora v = -w.
- **F** V c) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- **F V** d) Se T(v) = T(w) allora $v w \in \ker V$.
 - 5) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le righe di A sono linearmente indipendenti.
- **F** V b) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- **F** V c) le colonne di A sono linearmente indipendenti.
- F V d) esiste un minore di ordine 2 con determinante diverso da zero.
 - 6) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F V** a) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V b) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
- **F** V c) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.

- 7) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad \text{Allora } \mathcal{B} \text{ è un insieme linearmente indipendente.}$
- **F V** b) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
- **F V** c) Se \mathcal{B} contiene n vettori allora dim V = n.
- $\mathbf{F} \mathbf{V}$ d) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
 - 8) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare le colonne della matrice incompleta.
- **F** V b) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- F V c) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- F V d) scambiare le righe della matrice completa.
 - 9) La seguente trasformazione è lineare
- **F V** a) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- **F V** b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da T(x,y) = (x,x,y).
- **F V** c) $T: \mathbf{R}[t] \to \mathbf{R}[t]$ definita da T(p) = p'.
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad O (\mathcal{F}_O^2 indica lo spazio dei vettori geometrici del piano applicati in O).

- 1) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) S non è omogeneo.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad c) \ b \text{ non è combinazione lineare delle colonne di } A.$
- $\mathbf{F} \quad \mathbf{V} \quad \mathbf{d}$) la matrice completa associata a S è quadrata e ha rango massimo.
 - 2) La seguente operazione **non** cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare due colonne della matrice completa.
- F V b) scambiare due righe della matrice incompleta.
- F V c) moltiplicare una riga della matrice completa per zero.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
 - 3) La seguente trasformazione è lineare
- **F V** a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definita da $T(x,y) = (x, x^2, y)$.
- $\mathbf{F} \quad \mathbf{V} \qquad \text{b)} \ T: \mathbf{R}[t] \to \mathbf{R}[t] \ \text{definita da} \ T(p) = t \cdot p.$
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** d) $T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K})$ definited a $T(A) = {}^t A$.
 - 4) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se v = -w allora T(v) = -T(w).
- **F** V b) T(L(v, w)) è un sottospazio di W.
- **F V** c) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
- **F** V d) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
 - 5) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(0,0,0)\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
 - 6) Sia \mathcal{B} una base di uno spazio vettoriale V.
- **F V** a) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- **F** V b) Se dim V = n allora \mathcal{B} contiene n vettori.
- **F V** c) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Allora \mathcal{B} è un insieme di generatori di V.

- 7) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- **F V** b) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{Z}_4, +, \cdot) \text{ è un campo.}$
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
 - 8) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Se $C = A \cdot B$, anche il determinante di C è zero.
- ${f F}$ ${f V}$ b) Se B è ottenuta da A scambiando due righe, det $B=\det A$.
- **F V** c) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- $\mathbf{F} \quad \mathbf{V}$ d) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
 - 9) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- F V b) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le righe di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.

- 1) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F** V a) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F** V b) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
- **F** V c) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F V** d) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
 - 2) L'anello
- **F V** a) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad b) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
- **F V** c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{R}, +, \cdot) \ e$ un campo.
 - 3) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le colonne di A sono linearmente indipendenti.
- **F V** b) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- F V c) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le righe di A sono linearmente indipendenti.
 - 4) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad \text{Allora } \mathcal{B} \text{ è un insieme linearmente indipendente.}$
- **F V** b) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
- **F** V c) Se \mathcal{B} contiene n vettori allora dim V = n.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
 - 5) La seguente operazione **non** cambia lo spazio delle soluzioni di un sistema lineare
- F V a) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- F V b) scambiare le colonne della matrice incompleta.
- F V c) scambiare le righe della matrice completa.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
 - 6) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) b non è combinazione lineare delle colonne di A.
- **F V** b) non è omogeneo.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \cdot \mathbf{V}$ d) la matrice completa associata a S è quadrata e ha rango massimo.

- 7) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V}$ a) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- **F V** b) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definita da T(x,y) = (x,x,y).
- **F V** c) $T: \mathbf{R}[t] \to \mathbf{R}[t]$ definita da T(p) = p'.
- - 8) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- $\mathbf{F} \quad \mathbf{V}$ a) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** b) Se T(v) = -T(w) allora v = -w.
- **F** V c) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- **F V** d) Se T(v) = T(w) allora $v w \in \ker V$.
 - 9) Il seguente è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** c) $\{(0,0,0)\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$

- 1) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare due colonne della matrice completa.
- F V b) scambiare due righe della matrice incompleta.
- F V c) moltiplicare una riga della matrice completa per zero.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
 - 2) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(0,0,0)\}$.
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
 - 3) Sia \mathcal{B} una base di uno spazio vettoriale V.
- $\mathbf{F} \quad \mathbf{V}$ a) Allora \mathcal{B} è un insieme di generatori di V.
- **F V** b) Se dim V = n allora \mathcal{B} contiene n vettori.
- **F V** c) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
- **F V** d) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
 - 4) L'anello
- **F V** a) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- **F** V b) $(\mathbf{R}[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \qquad c) \quad (\mathbf{Z}_4, +, \cdot) \text{ è un campo.}$
- $\mathbf{F} \quad \mathbf{V} \quad \mathbf{d} \quad (\mathbf{Z}, +, \cdot) \text{ ha caratteristica zero.}$
 - 5) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \text{ definita da } T(A) = {}^t A.$
- **F V** b) $T : \mathbf{R}[t] \to \mathbf{R}[t]$ definita da $T(p) = t \cdot p$.
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- $\mathbf{F} \quad \mathbf{V} \quad \text{d)} \quad T: \mathbf{R}^2 \to \mathbf{R}^3 \text{ definita da } T(x,y) = (x,x^2,y).$
 - 6) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- **F V** b) T(L(v, w)) è un sottospazio di W.
- **F V** c) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
- **F V** d) Se v = -w allora T(v) = -T(w).

- 7) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- $\mathbf{F} \quad \mathbf{V}$ a) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
- **F** V b) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** c) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F V** d) Se $C = A \cdot B$, anche il determinante di C è zero.
 - 8) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- F V a) esiste un minore di ordine 2 con determinante diverso da zero.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le righe di A sono linearmente indipendenti.
- **F V** d) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 9) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) S non è omogeneo.
- $\mathbf{F} \quad \mathbf{V}$ b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad c) \ b$ non è combinazione lineare delle colonne di A.
- $\mathbf{F} \mathbf{V}$ d) la matrice completa associata a S è quadrata e ha rango massimo.

- 1) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- **F** V a) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F V** b) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- \mathbf{F} \mathbf{V} c) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
- **F** V d) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
 - 2) L'anello
- **F V** a) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{R}, +, \cdot)$ è un campo.
- **F V** c) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.
 - 3) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V} \quad \text{a) non è omogeneo.}$
- $\mathbf{F} \quad \mathbf{V}$ b) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V} \quad \mathbf{c}$) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 4) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- **F V** a) le colonne di A sono linearmente indipendenti.
- **F V** b) le righe di A sono linearmente indipendenti.
- F V c) esiste un minore di ordine 2 con determinante diverso da zero.
- ${f F}$ ${f V}$ d) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 5) La seguente trasformazione è lineare
- **F V** a) $T: \mathbf{R}[t] \to \mathbf{R}[t]$ definited da T(p) = p'.
- **F V** b) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
- **F V** c) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definited da T(x,y) = (x,x,y).
- **F V** d) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad O (\mathcal{F}_O^2 indica lo spazio dei vettori geometrici del piano applicati in O).
 - 6) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- **F V** a) Se \mathcal{B} contiene n vettori allora dim V = n.
- $\mathbf{F} \cdot \mathbf{V}$ b) Allora \mathcal{B} è un insieme linearmente indipendente.
- **F V** c) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .

7) Il seguente è un sottospazio vettoriale di ${\bf R}^3$

- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** d) $\{(0,0,0)\}.$
 - 8) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- $\mathbf{F} \quad \mathbf{V}$ a) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- ${f F} {f V}$ b) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
- **F V** c) Se T(v) = -T(w) allora v = -w.
- **F V** d) Se T(v) = T(w) allora $v w \in \ker V$.
 - 9) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare le colonne della matrice incompleta.
- ${f F}$ ${f V}$ b) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
- $\mathbf{F} \quad \mathbf{V} \quad c$) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- F V d) scambiare le righe della matrice completa.

- 1) Sia \mathcal{B} una base di uno spazio vettoriale V.
- $\mathbf{F} \quad \mathbf{V}$ a) Allora \mathcal{B} è un insieme di generatori di V.
- **F V** b) Se $v \in \mathcal{B}$ allora $\mathcal{B} \setminus \{v\}$ non è una base di V.
- **F V** c) Se $v_1, \ldots, v_k \in \mathcal{B}$ e $a_1v_1 + \cdots + a_kv_k = 0_V$ allora $a_1 = \cdots = a_k = 0$.
- **F V** d) Se dim V = n allora \mathcal{B} contiene n vettori.
 - 2) Sia S = (A, b) un qualunque sistema lineare impossibile. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) b non è combinazione lineare delle colonne di A.
- $\mathbf{F} \quad \mathbf{V}$ b) S non è omogeneo.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \mathbf{V}$ d) la matrice completa associata a S è quadrata e ha rango massimo.
 - 3) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) moltiplicare una riga della matrice completa per zero.
- F V b) scambiare due colonne della matrice completa.
- F V c) scambiare due righe della matrice incompleta.
- **F** V d) eliminare una riga della matrice completa del tipo $(0 \cdots 0 \ 1)$.
 - 4) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se $\{u, w\}$ genera V allora $\{T(u), T(w)\}$ genera W.
- **F V** b) Se v = -w allora T(v) = -T(w).
- **F V** c) Se $v \neq 0_V$ e $T(v) = 0_W$ allora T non è iniettiva.
- $\mathbf{F} \quad \mathbf{V} \quad \text{d)} \ T(L(v, w))$ è un sottospazio di W.
 - 5) L'anello
- $\mathbf{F} \quad \mathbf{V}$ a) $(\mathbf{Z}_4, +, \cdot)$ è un campo.
- **F** V b) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è unitario.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{Z}, +, \cdot)$ ha caratteristica zero.
- $\mathbf{F} \quad \mathbf{V} \quad d$) ($\mathbf{R}[t], +, \cdot$) ha infiniti elementi invertibili.
 - 6) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante zero.
- **F V** a) Allora esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V b) Se B è ottenuta da A scambiando due righe, $\det B = \det A$.
- **F V** c) Se $C = A \cdot B$, anche il determinante di C è zero.
- **F** V d) Allora esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.

- 7) Sia $A \in \mathcal{M}_{4\times 3}(\mathbf{R})$ una matrice di rango 3.
- $\mathbf{F} \quad \mathbf{V}$ a) le righe di A sono linearmente indipendenti.
- F V b) esiste un minore di ordine 2 con determinante diverso da zero.
- **F V** c) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
- $\mathbf{F} \quad \mathbf{V} \quad d$) le colonne di A sono linearmente indipendenti.
 - 8) La seguente trasformazione è lineare
- $\mathbf{F} \quad \mathbf{V} \quad \text{a)} \quad T: \mathcal{M}_n(\mathbf{K}) \to \mathcal{M}_n(\mathbf{K}) \text{ definita da } T(A) = {}^t A.$
- $\mathbf{F} \quad \mathbf{V}$ b) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definita da $T(x,y) = (x,x^2,y)$.
- **F V** c) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 100° in senso antiorario intorno ad $O(\mathcal{F}_O^2)$ indica lo spazio dei vettori geometrici del piano applicati in O).
- $\mathbf{F} \quad \mathbf{V} \quad \text{d)} \quad T : \mathbf{R}[t] \to \mathbf{R}[t] \text{ definita da } T(p) = t \cdot p.$
 - 9) Il seguente **non** è un sottospazio vettoriale di \mathbb{R}^3
- **F V** a) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
- **F V** b) $\{(x, y, z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** c) $\{(0,0,0)\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$

- 1) Sia \mathcal{B} una base di uno spazio vettoriale V finitamente generato.
- **F V** a) Se $v \in V$ e $v \notin \mathcal{B}$ allora $\mathcal{B} \cup \{v\}$ non è una base di V.
- $\mathbf{F} \quad \mathbf{V}$ b) Ogni vettore di V è combinazione lineare dei vettori di \mathcal{B} .
- **F V** c) Se \mathcal{B} contiene n vettori allora dim V = n.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Allora \mathcal{B} è un insieme linearmente indipendente.
 - 2) Sia $A \in \mathcal{M}_n(\mathbf{K})$ una matrice con determinante diverso da zero. Allora
- $\mathbf{F} \quad \mathbf{V}$ a) Se B è ottenuta da A scambiando due righe, det $B = \det A$.
- **F** V b) esiste $v \in \mathbf{K}^n$ che non appartiene allo spazio generato dalle righe.
- **F** V c) esiste $B \in \mathcal{M}_n(\mathbf{K})$ tale che $A \cdot B = I_n$.
- **F** V d) Se $C = A \cdot B$, anche il determinante di C è diverso da zero.
 - 3) Sia $A \in \mathcal{M}_{3\times 4}(\mathbf{R})$ una matrice di rango 3.
- F V a) esiste un minore di ordine 2 con determinante diverso da zero.
- **F V** b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad$ c) le righe di A sono linearmente indipendenti.
- **F** V d) riducendo A a gradini per righe si ottiene una matrice con una riga nulla.
 - 4) La seguente trasformazione è lineare
- **F V** a) $T: \mathbf{R}^2 \to \mathbf{R}^3$ definited da T(x, y) = (x, x, y).
- **F V** b) $T: \mathcal{F}_O^2 \to \mathcal{F}_O^2$ che associa al vettore v il vettore ottenuto ruotando v di 30° in senso antiorario intorno ad O (\mathcal{F}_O^2 indica lo spazio dei vettori geometrici del piano applicati in O).
- **F V** c) $T: \mathbf{R}[t] \to \mathbf{R}[t]$ definita da T(p) = p'.
- **F V** d) $T: M_n(\mathbf{K}) \to \mathbf{K}$ definita da $T(A) = \det A$.
 - 5) La seguente operazione non cambia lo spazio delle soluzioni di un sistema lineare
- F V a) scambiare le colonne della matrice incompleta.
- F V b) scambiare le righe della matrice completa.
- **F** V c) eliminare una riga della matrice completa del tipo $(0 \cdots 0)$.
- **F** V d) moltiplicare una riga della matrice completa per uno scalare diverso da zero.
 - 6) Un sistema lineare S = (A, b) è impossibile se
- $\mathbf{F} \quad \mathbf{V}$ a) non è omogeneo.
- **F V** b) le colonne di A sono linearmente indipendenti.
- $\mathbf{F} \quad \mathbf{V} \quad \mathbf{c}$) la matrice completa associata a S è quadrata e ha rango massimo.
- $\mathbf{F} \quad \mathbf{V} \quad d$) b non è combinazione lineare delle colonne di A.

- 7) Il seguente è un sottospazio vettoriale di ${\bf R}^3$
- $\mathbf{F} \quad \mathbf{V} \qquad \text{a) } \{(x,y,z) \in \mathbf{R}^3 \mid x \in \mathbf{Z}\}.$
- **F V** b) $\{(0,0,0)\}$.
- **F V** c) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
- **F V** d) $\{(x, y, z) \in \mathbf{R}^3 \mid x \neq 0\}.$
 - 8) Sia $T: V \to W$ una trasformazione lineare e siano $v, w \in V$.
- **F V** a) Se T(v) = -T(w) allora v = -w.
- **F V** b) Se T(v) = T(w) allora $v w \in \ker V$.
- ${f F} {f V} {f C}$ c) Se U è un sottospazio di W allora $T^{-1}(U)$ è un sottospazio di V.
- $\mathbf{F} \quad \mathbf{V} \quad d$) Se $\{T(u), T(w)\}$ genera W allora T è suriettiva.
 - 9) L'anello
- **F V** a) $(\mathcal{M}_n(\mathbf{K}), +, \cdot)$ è commutativo.
- $\mathbf{F} \quad \mathbf{V}$ b) $(\mathbf{Z}_3[t], +, \cdot)$ ha infiniti elementi invertibili.
- $\mathbf{F} \quad \mathbf{V} \quad c) \quad (\mathbf{R}, +, \cdot)$ è un campo.
- $\mathbf{F} \quad \mathbf{V} \quad d) \quad (\mathbf{Z}, +, \cdot)$ possiede divisori dello zero.