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Abstract In this paper we are concerned with a family of elliptic operators rep-
resented as sum of square vector fields: Lε =

∑m
i=1X

2
i + ε∆, in Rn where ∆ is the

Laplace operator, m < n, and the limit operator L =
∑m
i=1X

2
i is hypoelliptic. It

is well known that Lε admits a fundamental solution Γε. Here we establish some a
priori estimates uniform in ε of it, using a generalization of the freesing and lifting
technique of Rothschild and Stein. As a consequence we deduce some a priori es-
timates uniform in ε, for solutions of the approximated equation Lεu = f , and for
the limit equation Lu = f . These estimates can be used in particular while study-
ing regularity of viscosity solutions of nonlinear equations represented in terms of
vector fields.

2000 MSC: 35H10, 35A08, 43A80, 35B45.
Key words Hypoelliptic operators, Carnot groups, fundamental solution, a priori

estimates

1. Introduction

Let X1, . . . , Xm be smooth real vector fields on an open set Ω ⊂ Rn satisfying
the Hörmander condition for the hypoellipticity

(1) rank Lie(X1, . . . , Xm)(x) = n, ∀x ∈ Ω.

It is well known that the operator

(2) L =
m∑

i=1

X2
i

is hypoelliptic, and estimates of the its fundamental solution Γ are very well known
(see [9], [20], [18], see also [22]). However, in many applications it is necessary to
study elliptic regularization of this type of operators. Due to assumption (1), for
every fixed point x0 there exists a neighborhood of it (again denoted Ω) and there
exist vector fields Xm+1, . . . , Xn ∈ Lie(X1, . . . , Xm) such that

X1, . . . , Xm, Xm+1, . . . , Xn

is a basis of the tangent space at x for every x ∈ Ω. Then the operator

(3) Lε =
m∑

i=1

X2
i + ε

n∑

i=m+1

X2
i

is uniformly elliptic in Ω. This approximation can be used to study interior regu-
larity of viscosity solutions of nonlinear problems, when the vector fields Xi depend
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on the solution: Xi = Xi(u,∇u). We refer to [24] and [2] for nonlinear differential
equation of this type, arising in complex analysis or mathematica finance. A simple
example could be

(4) Lu = ∂2
xu+ (∂y + u∂z)2u = f, u = u0 on ∂Ω.

This problem can not be studied directly, but, under very general assumptions on
the open set Ω and the boundary datum u0, the approximating problem:

(5) Lεu = f, u = u0 on ∂Ω,

has a C∞ solution uε with gradient bounded uniformly with respect to ε. In order
to prove the existence of a classical solution of (4) it is natural to establish interior
estimates uniform in ε for the C∞ solutions of (5) and then let ε go to 0. As a
first step in this direction we consider operators with C∞ coefficients, and establish
uniform estimates for the fundamental solution.

The fundamental solutions of the operators L and Lε can be estimated in terms
of the measure of the spheres of the the respective control distance: d and dεc. In
particular, in the locally homogeneous case, there exists a constant Q > n, called
homogeneous dimension of the space such that (see [10]):

Theoremfor every compact set K ⊂ Ω there exist constant C > 0 and Cε
(dependent on ε) such that for every x, y ∈ K with x 6= y

(6) |Γ(x, y)| ≤ Cd2−Q(x, y),

(7) |Γε(x, y)| ≤ Cεd2−n
εc (x, y).

We explicitly note that it is not possible to deduce property of the limit operator
L and its fundamental solution from this estimate, since the constant Cε goes to +∞
with ε, and the exponents of the distance in (7) and (6) are different. This is due to
the fact that, while studying the operator Lε, the vector fields εXm+1, · · · , εXn can
be considered first order operators. While studying the limit operator L, the vector
fields Xm+1, · · · , Xn only arises as commutators so that they have to be considered
higher order operators, at the same point x.

In order to obtain uniform estimates of Γε we will introduce here a new definition
of distance dε in Rn, which, in the homogeneous case, provides for Lε estimates of
the form

|Γε(x, y)| ≤ Cd2−Q
ε (x, y).

In other words Γε is equivalent to the same power of dε as the limit fundamental
solution (6) and constant C is independent of ε.

In the general case we prove the following estimate:

Theorem 1.1. For every compact set K ⊂ Ω and p ∈ N there exist positive
constants C,Cp independent of ε such that

(8) |εjXi1 · · ·XipΓε(x, y)| ≤ Cp d2−p
ε (x, y)

|Bε(x, dε(x, y))| , i1, . . . , ip ∈ {1, . . . , n},

for every x, y ∈ K with x 6= y, where j denotes the number of indices i ∈ {m +
1, . . . , n} and Bε(x, r) denotes the ball with center x and radius r in the distance
dε. If p = 0 we mean that no derivative are applied on Γ.
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Besides, for every 0 < a < b

(9)
∫

a≤dε(x,y)≤b
|εqXi1Xi2Γε(x, y)|dy ≤ C(b− a) i1, i2 ∈ {1, . . . , n}.

�

The main idea of the proof is a new application of the lifting method introduced
in [19], together with a new definition of a distance dε. Indeed we introduce m
vector fields

X̃n+1, . . . , X̃n+m,

such that the Lie algebra generated by

X̃1, . . . , X̃m, X̃n+1 + εX̃m+1, . . . , X̃n+m + εX̃n,

is free up to a suitable step s. These vectors eliminate any ambiguity in the order
of the operators, since X̃n+1 + εX̃m+1, . . . , X̃n+m + εX̃n and of first order, while
X̃m+1, . . . , X̃n of higher order. The original operator (3) is consequently lifted to a
new operator

L̃ε =
m∑

i=1

X̃2
i +

n∑

i=m+1

(X̃i+n−m + εX̃i)2,

whose fundamental solution Γ̃ε, locally satisfies uniform estimates with respect to
ε. Integrating in the added variables we obtain the proof of Theorem 1.1. The
distance dε is the projection on Rn of the control distance d̃ε associated to L̃ε. It
is not equivalent to the control distance dεc associated to the operator Lε as in
[18], but it has the correct homogeneity properties which allows us to prove (6).
This property outline the difference from the standard Rothschild-Stein procedure,
where the balls with respect to the distance dεc of the initial operator coincide with
the projection on Rn of the balls of the lifted operator.

From Theorem 1.1 the uniform interior estimates of the solution motivating our
study, immediately follow. Let Ω0 ⊂ Ω, and W k,q

ε,X(Ω0) be the set of functions
f ∈ Lq(Ω0) such that

εjXi1 · · ·Xikf ∈ Lq(Ω0), i1, . . . , ik ∈ {1, . . . , n},
with natural norm

||f ||Wk,q
ε,X(Ω0) =

∑

i1,...,ik∈{1,...,n}
εj ||Xi1 . . . Xikf ||Lq(Ω0),

where j denotes the number of indices i ∈ {m+ 1, . . . , n}. We have:

Corollary 1.1. Assume that u ∈ Lqloc(Ω) is a solution of

Lεu = f in Ω,

with f ∈ W k,q
ε,X(Ω) and let B(x, 2r) ⊂⊂ Ω, where B(x, r) is a sphere in the con-

trol distance associated to the vector fields X1, . . . , Xm alone. Then there exists a
constant C independent of ε such that

||u||Wk+2,q
ε,X (B(x,r)) ≤ C||f ||Wk,q

ε,X(B(x,2r)).

This result improves a previous result of Krylov [17], where analogous estimates
of solutions of Lεu = f are provided, but the optimal exponent in immersion is not
reached. If we let ε go to 0 we recover the well known estimate of [19].
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2. Preliminaries and known results

In this section we review the properties of the fundamental solution of an operator
of type (3), proved by [19], [8], [20]. In particular, Rothschild and Stein proved that
it is always possible to assume, up to a lifting procedure, that the system of vector
fields X1, . . . , Xm is free up to order s in a neighborhood of a fixed point x0. This
means that the only relations between the commutators of order less or equal to
s are only the ones induced by anticommutativity and Jacobi’s identity. Then it
is possible to complete X1, . . . , Xm to a basis of the space, for example with the
collection

Xm+1, . . . , Xn

of all the commutators.
We will say that a commutator has degree s

deg(X) = s if X = Ad(Xi1 , . . . , Xis),

with i1, . . . is ∈ {1, . . . ,m} and we call homogeneous dimension of the space the
number

(10) Q =
n∑

i=1

deg(Xi).

Via the exponential mapping a distance is naturally defined on the associated Lie
group. Indeed, for every fixed point x0 in Rn then there exist a neighborhood V of
x0 and for every x ∈ V a neighborhood Ux of x in the Lie algebra, such that for
every x ∈ V the exponential mapping

(11) u 7−→ y = exp

(
n∑

i=1

uiXi

)
(x).

is defined in Ux. Suitable restricting V and choosing W ⊂⊂ V we can assume
that for every x ∈ W the map in (11) is defined on the same U ⊂ Ux and it is a
diffeomorphism from U onto the image. Its inverse mapping denoted Θx(u) satisfies
U ⊆ Θx(V ) for every x ∈W. Finally

Θ : W ×W → Rn,
defined by Θ(x, y) = Θx(y) is C∞ on W × W . For a fixed x, the function Θx

introduces a change of variable called canonical.
Now we can define

Definition 2.1. It is called distance associated to the vector fields X1, . . . , Xm,
Xm+1, . . . , Xn the function

d(x, y) =
n∑

i=1

|ui|
1

deg(Xi) , x, y ∈W.

If (Xi)i=1,...,m are nilpotent and free the exponential map is a global isomor-
phism between the free and nilpotent Lie algebra g(m, s), and its associated Lie
group G(m, s). Hence we can assume that it is simply the identity. Since on the
algebra a natural dilation is defined, via the exponential map a dilation is also in-
duced on G(m, s), which becomes an homogeneous Carnot group with homogeneous
dimension Q. In this case the fundamental solution of the sublaplacian operator
(2) is represented as

Γ(x, y) = k0(Θ(x, y)),
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where k0 is an homogeneous kernel of order Q− 2. By the homogeneity properties,
it also follows that, for every p ∈ N there exists a positive constant cp such that for
every i1 . . . , ip ∈ {1, . . . ,m}, one has

(12) |Xi1 · · ·XipΓ(x, y)| ≤ cpd2−Q−p(x, y).

In case the vector fields Xi are free only up to a step s, then the exponential map
is only a local diffeomorphism between the Lie algebra and the group. However,
via the canonical coordinates, Rothschild and Stein proved that it is again possible
to reduce to the homogeneous case:

Theorem 2.1. (Theorem 5 in [19]) In the u-coordinates given by Θx and in the
neighborhoods U,W defined in (11) we can write

X̃i = Yi +Rxi , ∀x ∈W

on U , with Yi generators of the free Lie algebra with m generators and step s, and
Rxi a vector field of degree ≤ 0 depending smoothly on x ∈W .

In this case a parametrix of the fundamental solution of the operator L in (2) is
given in terms of suitable homogeneous kernels.

Theorem 2.2. (Theorem 2 in [20]) Let a ∈ C∞0 (W ) and p ∈ N. There exist
ki homogeneous kernels on the group G(m, s), functions ai, bi ∈ C∞0 (W ), Ti(x, y)
depending on the derivatives of Θ of order p, Ep ∈ C∞(W × W ) such that the
function

(13) Kp(x, y) =
d∑

i=1

ai(x)ki(Θ(x, y))Ti(x, y)bi(y) + Ep(x, y)

is a parametrix of the fundamental solution. It satisfies

(14) Lx(Kp(x, y)) = a(x)δy(x) +Hp(x, y)

where Hp ∈ Cp0 (W ×W ), δy is the Dirac distribution at y, and Lx means that the
differentiation is in the x-variable.

From this theorem Sánchez-Calle deduces the well known estimates on the fun-
damental solution:

Theorem 2.3. For every compact set K ⊂ Ω and integer p ≥ 0 there exists positive
constant Cp such that for every x, y ∈ K with x 6= y

|Xi1 · · ·XipΓ(x, y)| ≤ Cp d2−p(x, y)
|Bd(x, d(x, y))| , i1, . . . , ip ∈ {1, . . . ,m}.

3. Uniform estimates

In this section we proof uniform estimates for the fundamental solution of Lε in
(3), both in the homogeneous and in the general situation.
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3.1. The homogeneous case. Let X1, . . . , Xm be a family of homogeneous real
vector fields. Up to a change of variables we can assume that Xi agrees at origin
with ∂xi , and, up to a lifting, that their generated Lie algebra is the free and
nilpotent Lie algebra g(m, s). We complete the collection Xi, . . . , Xm to a basis of
Rn

X1, . . . , Xm, Xm+1, . . . , Xn.

A possible choice of Xi, . . . , Xm is the family of all the commutators of step ≤ s.
The generic point of the space is denoted x ∈ Rn . In order to prove Theorem

1.1 we perform a modification of the lifting procedure. We choose n − m new
variables of the space and n − m new vector fields Xn+1, . . . , X2n−m, depending
on these new variables, free and nilpotent of step s. By Theorem 4 in [19], there
exist families of vector fields X̃1, . . . , X̃m lifting X1, . . . , Xm and X̃n+1, . . . , X̃2n−m
lifting Xn+1, . . . , X2n−m, such that

X̃1, . . . , X̃m, X̃n+1, . . . , X̃2n−m

are generators of the free Lie algebra g(n, s).
In this lifting procedure the vector fields Xm+1, . . . , Xn will be lifted to suitable

vector fields, denoted
X̃m+1, . . . , X̃n.

The dimension of the vector space will now be denoted N .
The generic point will be x̃ = (x, x̂), where x ∈ Rn denotes the initial variables,

x̂ ∈ RN−n the added ones. In the initial variables we have canonical coordinates
on Rn around any fixed point x, Θx(y) = u and the distance d associated to
X1, . . . , Xn defined as in Definition 2.1. In the lifted space RN we can complete the
family X̃1, . . . , X̃n+m previously defined to a basis of the Lie algebra. The resulting
basis will consequently be denoted:

X̃1, . . . , X̃m, X̃m+1, . . . , X̃n, X̃n+1, . . . , X̃2n−m, X̃2n−m+1, . . . , X̃N .

We will denote Θx̃(ỹ) = ũ the canonical coordinates with respect to this basis,
and d̃ the associated distance, according to Definition 2.1 and Q̃ the homogeneous
dimension according to (10).

Also the family

X̃ε,i = X̃i, i = 1, . . . ,m, X̃ε,i = X̃i + εX̃i−n+m, i = n+ 1, . . . , 2n−m
is a family of generators for the Lie algebra g(n, s). Let ψε be a Lie algebra isomor-
phism defined on the generators as

ψε(X̃i) = X̃ε,i, i = 1, . . . ,m, and i = n+ 1, . . . , 2n−m.
Clearly ψε can be extended on the whole algebra via the bracket, so that

(15) X̃ε,i = ψε(X̃i) = X̃i +
N∑

j=1

aijX̃j , ∀i = 1, . . . , N,

where

(16) aij ≤ ε ∀i, j ∈ {1, . . . , N}.
Then one easily checks that the jacobian determinant of ψε is 1. We denote by d̃ε
the distance associated to X̃ε,1, . . . , X̃ε,N according to Definition 2.1.
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The function ψε induces, via the mapping Θ, also a change of variables on group
RN

Φε : RN → RN , Φε = Exp ◦ φε ◦Θ0.

Obviously also the jacobian determinant of Φε is independent of ε at every point,
besides

d̃ε(x̃, ỹ) =
N∑

i=1

|Φε(ũ)i|
1

deg(ψε(X̃i)) = d̃(Φε(x̃),Φε(ỹ)).

We can now define two lifted operators:

L̃ =
m∑

i=1

X̃2
i +

2n−m∑

i=n+1

X̃2
i

and

L̃ε =
m∑

i=1

X̃2
ε,i +

2n−m∑

i=n+1

X̃2
ε,i =

m∑

i=1

X̃2
ε,i +

n∑

i=m+1

(X̃i+n−m + εX̃i)2.

The estimate of Γε independent of ε will be obtained by comparison of these two
lifted operator. Indeed, the first is independent of ε and has exactly the same
structure of one second one, and the change of variables Φε which change the first
operator in the second one has jacobian determinant independent of ε

Note that the balls Bd(x, r) in the distance d are projection on Rn of the balls
Bd̃((x, 0), r) in the distance d̃. Indeed, we can define

π1 : RN −→ Rn, π1(x, x̂) = x

and apply the following result

Lemma 3.1. (Lemma 3.1 in [18])

π1 : Bd̃((x, 0), r) −→ Bd(x, r),

and the map is onto.

This is not the case of the balls Bdεc(x, r) in the control distance dεc associated to
Lε, which are not the projection of the balls B̃ε((x, 0), r) associated to the operator
L̃ε.

According to Lemma 3.1 we define a new distance dε on Rn, which as we ..?,
is different from the ones introduced in [18] and [20], and which will be used to
estimate the fundamental solution for the operator Lε.

We will denote

(17) Bε(x, r) = π1(B̃ε((x, 0), r))

where B̃ε is the ball associated to d̃ε.

Lemma 3.2. The family of balls Bε defines a quasi-distance dε on Rn.

See [25] page 11.

If Γ̃ is the fundamental solution for L̃, and Γ̃ε the fundamental solution for the
regularized operator L̃ε, then

Γ̃ε(x̃, ỹ) = Γ̃(Φε(x̃),Φε(ỹ)).
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If p ∈ N then there exists a positive constant Cp such that for every i1 . . . , ip ∈
{1, . . . ,m}, one has

(18) |X̃ε,i1 · · · X̃ε,ip Γ̃ε(x̃, ỹ)| ≤ Cp(d̃(Φε(x̃),Φε(x̃))2−Q−p.

The constant Cp is independent of ε. We are interested in a similar estimates for
the fundamental solution Γε.

Lemma 3.3. For every compact set K ⊂ Rn there exist positive constants C1, C2

independent of ε such that if B̃ε((x, 0), r) denotes the ball in the metric d̃ε, and
χB̃ε((x,0),r) is the characteristic function of the ball B̃ε((x, 0), r), then for every
x ∈ K and r > 0

C1r
Q̃−Q ≤

∫
χB̃ε((x,0),r)dŷ ≤ C2r

Q̃−Q.

Note that the integration is performed only in the added variables ŷ.

Proof ∫
χB̃ε((x,0),r)dŷ =

∣∣∣
{
ŷ : ∃y ∈ Rn : (y, ŷ) ∈ B̃ε((x, 0)

)}∣∣∣ =

by definition of Bε

=

∣∣∣∣∣∣
⋃

y∈Bε(x,r)

{
ŷ : d̃ε

(
(y, ŷ), (x, 0)

)
< r
}
∣∣∣∣∣∣

=

=

∣∣∣∣∣∣
⋃

y∈Bε(x,r)

{
ŷ : (y, ŷ) = exp

( n∑

i=1

uε,iX̃ε,i +
N∑

i=n+1

ûε,iX̃ε,i

)
(x, 0), |ũε,i|

1
deg(X̃ε,i) < r

}∣∣∣∣∣∣
,

recall that ũ = (u, û). By Lemma 3.2 in [18] there exist constants η1, η2, C > 0,
0 < η2 < η1 < 1, only depending on the Campbell-Hausdorff formula, such that
∀y ∈ Bε(x, r), ∀ûε, such that |ûε,j | ≤ η2r

deg(X̃ε,j) for every j = n+ 1, . . . , N , there
exists unique uε, and ŷ such that |uε,j | ≤ η1r

deg(Xε,j) for every j = 1, . . . , n, and

(y, ŷ) = exp
( n∑

i=1

uε,iX̃ε,i +
N∑

i=n+1

ûε,iX̃ε,i

)
(x, 0).

Besides the map
û 7→ ŷ

is a diffeomorphism, with jacobian determinant only depending on the constant C.
Then ∫

χB̃ε((x,0),r)dŷ ≤
∣∣∣
{
ûε : |ûε,j | ≤ η2r

deg(X̃ε,j), ∀j = n+ 1, . . . , N
}∣∣∣ =

(since the restriction of ψε to the subspace generated by the new variables û has
still determinant 1)

=
∣∣∣
{
û:|ûj | ≤ η2r

deg(X̃j), ∀j = n+ 1, . . . , N
}∣∣∣ = CrQ̃−Q

where the last inequality does not depend on ε any more.
The remaining inequality is obvious because of∣∣∣∣∣∣
⋃

y∈Bε(x,r)

{
ŷ : (y, ŷ) = exp

( n∑

i=1

uε,iX̃ε,i +
N∑

i=n+1

ûε,iX̃ε,i

)
(x, 0), |ũε,i| ≤ η1r

deg(X̃ε,i)

}∣∣∣∣∣∣
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≥
∣∣∣
{
ûε : |ûε,j | ≤ η2r

deg(X̃ε,j), ∀j = n+ 1, . . . , N
}∣∣∣ .

Remark 3.1. We have
c1r

Q ≤ |Bε(x, r)| ≤ c2rQ,
with c1, c2 positive constant independent of ε. Indeed, by Lemma 3.3

|Bε(x, r)| ≤
∫

Bε(x,r)

c

rQ̃−Q

∫
χB̃ε((x,0),r)dŷ dy ≤

≤ c

rQ̃−Q

∫

π1(B̃ε((x,0),r))

∫
χB̃ε((x,0),r)dŷ dy =

c

rQ̃−Q

∫

B̃((x,0),r)

dŷ dy = c2r
Q.

We can now conclude in a standard way the proof that Γε is a regular kernel:
Proof of Theorem 1.1 for homogeneous vector fields. The proof is a

consequence of Remark 3.1, which is uniform in ε. For reader convenience we
provide here estimate (8) with p = 0. It is known (see for example [19], pag 302)
that a local parametrix for Γε is provided by∫

Γ̃ε((x, 0), (y, ŷ))b(ŷ)dŷ

where b is any function of class C∞ with compact support. On the other side∫
Γ̃ε((x, 0), (y, ŷ))b(ŷ)dŷ ≤

∑

j

∫

η2−j≤d̃ε((x,0),(y,ŷ))≤η2−j+1
Γ̃ε((x, 0), (y, ŷ))b(ŷ)dŷ ≤

≤ c
∑

j

∫

η2−j≤d̃ε((x,0),(y,ŷ))≤η2−j+1
(d̃ε((x, 0), (y, ŷ)))−Q̃+2dŷ ≤ cd2−Q

ε (x, y),

since in each term of the sum dε(x, y) ≤ d̃ε((x, 0), (y, ŷ)) ≤ η2−j+1. �

Also note that we have the following local inclusions, which ensure that local
estimates uniform in ε with respect to dε are local estimates uniform in ε with
respect to the distance d:

Lemma 3.4. For every compact set K ⊂ Rn there exists a positive constant C
independent of ε such that for every x ∈ K

Bε(x, r) ⊂ B(x,C(r + (εr)
1
s ))

and
B(x, r) ⊂ Bε(x,C(r + (εr)

1
s )),

where s is the step of Lie algebra.

Proof Let us consider a point y ∈ Bε(x, r). Then there exists ŷ ∈ RN−n such
that

(19) (y, ŷ) = exp
( N∑

i=1

ũε,iX̃ε,i

)
(x, 0) and |ũε,i|

1
deg(X̃ε,i) < r.

By (15) we can write

(y, ŷ) = exp
( N∑

i=1

ũε,i
(
X̃i+

N∑

j=1

aijX̃j

))
(x, 0) = exp

( N∑

j=1

N∑

i=1

ũε,i
(
δij+aij

)
X̃j

)
(x, 0).
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Now ∣∣∣ũε,i
(
δij + aij

)∣∣∣
1

deg(X̃j) ≤
by (16) and the fact that deg(̃Xj) ≤ s

≤ C|ũε,j |
1

deg(X̃j) + |εũε,i| 1s ≤ C
(
r + (εr)

1
s

)
,

by (19). It follows that y ∈ B(x,C
(
r + (εr)

1
s

)
). �

Proof of Corollary 1.1 for homogeneous vector fields

Lεu = f in Ω,

with f ∈ W k,q
ε,X(Ω) and let B(x, 8r) ⊂⊂ Ω. Then Bε(x, 4r) ⊂⊂ Ω for every ε.

From the preceding Theorem 1.1 and standard properties of singular integrals it
immediately follows that

||u||Wk+2,q
ε,X (B(x,r)) ≤ ||u||Wk+2,q

ε,X (Bε(x,2r))
≤ C||f ||Wk,q

ε,X(Bε(x,4r))
≤ C||f ||Wk,q

ε,X(B(x,8r)).

3.2. The general case. Let X1, . . . , Xm be a family of smooth real vector fields
on Rn satisfying the Hörmander condition (1). Then the preceding construction
has to be slightly modified. Indeed, up to a lifting we can assume that the given
vector fields are free at step s in a neighborhood U of x0. Let us denote

Xm+1, . . . , Xn

a completion of the basis of the space. The exponential map is now only a local
diffeomorphis between the Lie algebra and the group. For a fixed x0, as in Definition
2.1 there exist neighborhood U of 0 and neighborhoods V,W of x0 on which the
exponential mapping is a diffeomorphism. We will denote

Θx(y) = u

the canonical coordinates induced by X1, . . . , Xn.
In the fixed neighborhood of x0 the vectors (Xi)i=1,...,m can be represented in

local coordinates in terms of homogeneous vector fields, (Yi)i=1,...,m as recalled in
Theorem 2.1.

Let us define frozen vector fields also for the remaining vectors

εXm+1, . . . , εXn.

We explicitly note that if

Xk = Ad(Xi1 , . . . , Xip),

we can not simply take as frozen vector of εXk the vector

εAd(Yi1 , . . . , Yip),

Indeed, applying iteratively Theorem 2.1 we get

εXk = εAd(Xi1 , . . . , Xip) = εAd(Yi1 , . . . , Yip) +Rk,

where Rk has degree less or equal to k − 1. On the other hand while studying the
operator Lε the vectors εAd(Xi1 , . . . , Xip) has to be considered of degree 1, and we
need an approximation with homogeneous vectors, and rest of degree ≤ 0.
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Theorem 3.1. Let W be the fixed neighborhood of x0 in Rn. There exist vec-
tors (Yi)i=m+1,...,n which complete Y1, . . . , Ym to a basis, and such that in the u−
coordinates we have

εXi = εYi +Rxi i = m+ 1, . . . , n

on U , and Rxi a vector field of degree ≤ 0 depending smoothly on x ∈W . In general
Ym+1, . . . , Yn will not be the enumeration of all the commutator of higher degree,
but could also contains linear combination of them.

Proof. We perform the proof by induction on the degree of the vectors Xi. Let
us first assume that deg(Xi) = 2. This means that there exist indices i1, i2 such
that Xi = [Xi1 , Xi2 ]. By Theorem 2.1 there exist vector fields Yi1 and Yi2 such that

Xi1 = Yi1 +Ri1 , Xi2 = Yi1 +Ri1

with deg(Ri1) ≤ 0. Then

Xi = [Xi1 , Xi2 ] = [Yi1 +Ri1 , Yi2 +Ri2 ] = [Yi1 , Yi2 ]+[Yi1 , Ri2 ]+[Ri1 , Yi2 ]+[Ri1 , Ri2 ].

By Theorem 2.1 there exist vectors

[Yi1 , Ri2 ] = E12 +R12, [Ri1 , Yi2 ] = E21 +R21,

with deg(R12) ≤ 0, deg(R21) ≤ 0. Then the vector [Yi1 , Yi2 ] + E12 + E21 provides
the required approximation of Xi. The induction step is similar and we omit it.

We can now consider the frozen operator

Lε,Y =
m∑

i=1

Y 2
i + ε

n∑

i=m+1

Y 2
i .

By the results in subsection 3.1 there exist a natural distance dε,Y associated to
Lε,Y and a fundamental solution Γε,Y which is a regular kernel in the sense of the
following definition:

Definition 3.1. We will say that kε is an regular kernel of type λ with respect to
the vectors X1, . . . , Xm, εXm+1, . . . , εXn, and the distance dε in an open set W and
we will denote kε ∈ Fλ(X, dε,W ) if for every x, y ∈W with x 6= y

(20) |kε(x, y)| ≤ C0
dλε (x, y)

|Bε(x, dε(x, y))| ,

(21) |εjXi1 · · ·Xipkε(x, y)| ≤ Cp dλ−pε (x, y)
|Bε(x, dε(x, y))| , i1, . . . , ip ∈ {1, . . . , n},

where j is the number of indices greater to m. If λ = 0 we also require that

(22)
∫

a≤dε(x,y)≤b
|kε(x, y)|detJΘx(y)|dy ≤ C∗(b− a).

We now follow the same construction as in [20], in order to define a parametrix
for the fundamental solution of Lε, in terms of the fundamental solution of Lε,Y .
The main difference from the proof in [20] are due to the fact that our model
operator Lε,Y is not homogeneous, and that we need to study the dependence on ε.

We first introduce a distance dε as follows:

dε(x, y) = dε,Y (0,Θ(x, y)),

and denote Bε(x, r) the associated spheres.
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With this definition it is clear that there is a natural relation between kernels of
type Fλ(Yε, dε,Y , U), and Fλ(Xε, dε,W ). Indeed

Proposition 3.1. If k(x, y) is a kernel of class Fλ(Yε, dε,Y , U), then k(0,Θ(x, y))
is a kernel of class Fλ(Xε, dε,W ), which satisfies inequalities (20), (21), (22), with
the same constants as k.

Note that these kernels have the following properties:

Proposition 3.2. If k0 is a kernel of class F2(Yε, dε,Y , U), which satisfies condi-
tions (20), (21) with constants C0, Cp, and k is a kernel of class Fλ(Yε, dε,Y , U),
λ ≥ 1, which satisfies conditions (20), (21) with constants C̃0, C̃p, then there exist
constants D0, Dp, only dependent on Ci and C̃i such that the kernel

k1(x, y) =
∫
k(x, y)k0(y, z)dy

is of class Fλ+2(Yε, dε,Y , U), and satisfies (20), (21) with constants D0, Dp.

Theorem 3.2. Let a ∈ C∞0 (W ), p ∈ N. There exist kernels Kε,p ∈ F2(Xε, dε,W )
and Hε,p ∈ Fp(Xε, dε,W ), satisfying (20), (21) with constants independent of ε
such that

(23) Lxε (Kε,p(x, y)) = a(x)δy(x) +Hε,p(x, y)

with δy the Dirac distribution at y, and where Lxε means that the differentiation is
in the x-variable.

Proof The proof is similar to Theorem 2 in [20]. We set

Kε,0(x, y) = a(x)Γε,Y (0,Θ(x, y))b(y)

then by Theorem 3.1

Lxε (Kε,0(x, y)) = a(x)δy(x) +Hε,1(x, y)

with Hε,1 ∈ F1(Xε, dε,W ). We obtain the function Hε,1 while differentiating twice
Kε,0(x, y), and applying the derivatives to the functions a, or while we apply one
derivative on a, and a derivative on Γε,Y (0,Θ(x, y)). In both cases the kernel
satisfies conditions (20), (21) uniformly in ε, by Proposition 3.1, and the proof of
Theorem 1.1 for homogeneous vector fields. Assume Kε,p ∈ F2(Xε, dε,W ), Hε,p ∈
Fp(Xε, dε,W ) satisfies conditions (20), (21) uniformly in ε. Then

Lxε (Kε,p(x, y)) = a(x)δy(x) +Hε,p(x, y)

and Hε,p(x, y) = c(x)kε,Y (0,Θ(x, y))b(y). Define

Kε,p+1 = Kε,p − c(x)kε,Y ∗ Γε,Y (0,Θ(x, y))b(y).

Then Kε,p ∈ Fp(Xε, dε,W ), and satisfies conditions (20), (21) uniformly in ε, by
Proposition 3.2. Besides, Lxε (Kε,p+1(x, y)) = a(x)δy(x)+Hε,p+1(x, y) with Hε,p+1 ∈
Fp+1(Xε, dε,W ).

Proof of Theorem 1.1 Let us fix x ∈ Ω and p ∈ N, and call the function

Fε(u, v) = Γε
(
exp
( n∑

i=1

uiXi

)
(x), exp

( n∑

i=1

viXi

)
(x)
)
−

−Kε,p

(
exp
( n∑

i=1

uiXi

)
(x), exp

( n∑

i=1

viXi

)
(x)
)
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where Kε,p is defined in Theorem 3.2. By Theorems 3.2 and 3.1 there exists a
function Hε,p ∈ Fp(Xε, dε,W ) with defining constants, bounded uniformly in ε,
such that

Lε,Y Fε(u, v) = Hε,p(u, v).

Since Corollary 1.1 holds for the operator Lε,Y , it follows that for every p1 < p,

|εjXi1 · · ·Xip1
Fε(u, v)| ≤ Cp1 , i1, . . . , ip1 ∈ {1, . . . , n},

where j denotes the number of indices i ∈ {m + 1 . . . , n}, and Cp1 is independent
of ε.

Since Kε,p is a kernel satisfying the thesis of Theorem 1.1 with constants inde-
pendent of ε, the thesis immediately follows.

Proof of Corollary 1.1 It immediately follows form Theorem 1.1 and standard
properties of singular integrals.

References

[1] L. Ambrosio, S. Rigot, Optimal Mass Transportation in the Heisenberg Group, to appear.
[2] F. Antonelli, E. Barucci, M. E. Mancino, A Comparison result for FBSDE with Applications

to Decisions Theory, Math. Methods Oper. Res. 54, 3, (2001) 407-423.
[3] G. Citti, E. Lanconelli, A. Montanari, Smoothness of Lipschitz-continuous graphs with non-

vanishing Levi curvature, Acta Math. 188, No.1, (2002), 87-128.
[4] G. Citti, A. Pascucci, S. Polidoro, Regularity properties of viscosity solutions of a non-
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