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Abstract

We propose and study a model for the dynamics of two groups in competition, which includes

diffusive effects and strategic choices. This model is able to mimic some phenomena taking place

during marketing or political campaigns. Using a statistical mechanics approach on the simplest

random interaction environment (Erdös-Renyi graph), we find, by numerical simulations, that a

well defined stationary state is reached and we compare the final state to the one obtained with

standard dynamics by means of total magnetization and magnetic susceptibility. Our results show

that the diffusive strategic dynamics has a critical interaction parameter strictly lower than the

standard one.
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I. INTRODUCTION

In the past few years the application of statistical mechanics to social phenomena gave

rise to interesting models, which where able to capture some general mechanism in opinion

forming [1–5]. In these models, the relations between people in a group are represented by

a network with a given topology, where sites are people, links model interactions and the

opinion of a single agent is typically represented by a discrete variable on the corresponding

site.

One of the most important aspects in opinion forming within a community is the dynamics

through which information, able to influence opinion and to orient the community, propa-

gates throughout the network. In general, one can build a cost function for the configurations

with some parameters measuring the interaction between people in the community. When

one expects that the final state reached by the system will obey an equilibrium Boltzmann

distribution based on this cost function, the dynamics is usually implemented according to

a standard Monte Carlo algorithm, with sequential or random updating, characterized by a

detailed balance condition, which is quite unrealistic in real social communities.

As a matter of fact, the spreading of information influencing opinion in social networks

often exhibits a “strategic” character: agents propagating the information can decide to

chose the best “move” according to a local strategy, based on the observation of what

happens to their neighbours.

A common situation (typical of the so-called Majority Games [5]) is the following: People

try to convince their neighbours in order to share the same opinion or trait because of

ideological reasons or, also, because this translates in some economical advantage. To fix

ideas let us suppose that the opinion or the trait considered can be described by a dichotomic

variable. For example, during an electoral campaign or before a referendum, people try to

convince their acquaintances to support a given candidate or a given position. In a different

context we can think about a community of people where each agent has made a subscription

to a phone company. Let us suppose that only two different companies, A and B, exist so

that we can distinguish between A-users and B-users. Now, fares for phone-calls are different

according to whether the call occurs between customers of the same company or between

customers of different companies, being higher in the latter case. As a result, for an A-user

(B-user) the optimal situation is when all his acquaintances are also A-users (B-users) as he
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can then enjoy low fares. Hence, each agent would like to induce his neighbours to adopt

the same company.

In both situations cited above, strategies are possible if an agent knows the neighbourhood

of his acquaintances.

As an example, if I want to increase the number of, say, A-users, among my acquain-

tances, I can either pick up a friend of mine randomly among those who are B-users and

try to convince him to become an A-user, or select among my friends the B-user whose

acquaintances are mostly A-users. The latter strategy is of course expected to be more

effective.

Another important aspect in dynamics is that it must contain a stochastic character, re-

producing the randomness typical of social interactions. It is not reasonable that phone calls,

mail exchanges and other contacts among agents occur according to a deterministic rule.

More likely, they can exhibit a diffusive feature which must be captured by the dynamics.

In this paper, we will study the equilibrium reached by the system endowed with a

dynamics which takes into account these two aspects: strategy and diffusive character.

As we intend to focus on the dynamical process, we will model the social network by a

Erdös-Renyi random graph. This graph provides a stochastic network, able to capture

some aspects of a real community, and allowing for some exact calculations [6–8], although

it does not take into account some well known topological aspects of real social networks

[9–12]. Interestingly, the results we obtained appear to be robust, as they hold also on

more general finite dimensional structures [13, 14] and on scale free graphs [15]. Moreover,

we adopt as a cost function the ferromagnetic Ising Hamitonian which, being one of the

simplest model mimicking interactions amongst the agents of social systems, allows us to

focus on the dynamical process. In particular, the interaction parameter J here represents

the “imitation strength” and it measures how important it is for two nearest-neighbours to

agree. For instance, in the phone companies example, a large value of J corresponds to a

situation where a phone call between A-A or B-B users is much cheaper than a phone call

between A-B users.

We find that after a suitable time the values of the global observables of the system display

a well-defined value independently of the initial conditions, indicating that a stationary

situation is reached. We also recover the phase diagram expected for the Ising model on the

Erdös-Renyi random graph, and this implies that there exists an interaction parameter Jc
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such that if J < Jc the number of A-users equals, on the average, the number of B-users,

while if J > Jc a prevailing group is formed. However, we evidence a remarkable difference:

With respect to the case of a non-strategic dynamics, the critical region is shifted to a lower

value of the interaction parameter J . In the example of the competition between the two

phone companies, this means that, once the price policy has been set by the companies, if

the equilibrium is reached by a strategic dynamics, the extent of the prevailing community

is larger.

The paper is organized as follows: in Sec. II we present our model and we describe the

topology it is embedded in. Then, Sec. III is devoted to the description of the strategic

diffusive dynamics introduced and in Sec. IV we show our results. Finally, Sec. V is left for

conclusions and outlook.

II. MODEL AND NOTATIONS

A social network is meant as a (typically large) set of people or groups of people, also

called “agents”, with some pattern of interactions between them. This can be efficiently

envisaged by means of a graph whose nodes represent agents and links between two of them

represent the existence of a relationship (which could be acquaintanceship, friendship, etc.).

Therefore, each agent i is connected with a set of “nearest-neighbours”, whose number αi is

referred to as the “degree” of the node i.

Now, several kinds of graphs have been proposed in the past as model able to mimic

the features displayed by a real population. Among these the random graph introduced by

Erdös and Rényi (ER) [16] is one of the most studied since it combines a stochastic character

with an easy definition which allows to calculate exactly many interesting quantities [8].

The ER random graph can be defined as follows: given a number N of nodes, we introduce

connections between them in such a way that each pair of vertices i, j has a connecting link

with independent probability p. Moreover, we can calculate the probability pk that a node

in a random graph has degree exactly equal to k; this is given by the binomial distribution

pk =

(
N − 1

k

)
pk(1− p)N−1−k, (1)

which, if p is chosen to be p = α/(N − 1), can be rewritten as

pk =

(
N − 1

k

)[
α

N − 1− α

]k [
1− α

N − 1

]N−1

≈ αk

k!
e−α, (2)
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where the last approximate equality becomes exact in the limit of large N . Notice that the

distribution appearing in the r.h.s. is the Poisson distribution, i.e. a large random graph

has a Poisson degree distribution, with average α.

We now outline a general framework for modeling interactions among agents. First of

all, we associate to each agent i a binary variable si = ±1, representing the two possible

forms of the considered opinion or trait. For example, si = +1 might indicate that the i-th

agent does support the current government or is an A-user, while si = −1 that he does not

support the current government or that he is a B-user. The whole community, described by

the set {s}, will therefore be characterized by the mean value

m =
1

N

∑

k

sk (3)

which can be measured by, say, a referendum vote or a survey.

We assume that agents do not possess any a priori bias towards +1 or −1 state, but they

move towards a given trait as a result of the interaction with their nearest-neighbours. More

precisely, we introduce a cost function Hik which quantifies the cost for individual i to agree

with individual k as [17]

Hik(si, sk) = −Jiksisk, (4)

where Jik represents the strength of interaction between agents i and k. When i and k

agree (sisk = 1) we have a cost Hik = −Jik, while when they disagree (sisk = −1) we have

Hik = Jik. Thus, the interaction works in such a way that, when Jik > 0, then i and k tend

to imitate each others assuming the same trait and vice versa when Jik < 0. The magnitude

of Jik gives how important it is for i to agree or disagree with k.

For the whole population we have the total cost function

H(s,J) =
∑

k∼i

Hik = −
∑

k∼i

Jiksisk, (5)

where the sum is extended over all the couples of nearest-neighbour agents denoted as k ∼ i.

The cost function of Eq. 5 is just the well-known Ising Hamiltonian (see e.g. [18]) and it is

treated by statistical tools. It must be underlined that the cost function H(s,J) does not lead

to any natural dynamics and it is a very interesting matter of investigation to define a proper

dynamic able to make the system evolve towards an “equilibrium” configuration {s̃(J)}.
This can be achieved in several ways: Apart from exact analytical approaches, available
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only for special structure topologies (one dimensional and two dimensional lattices) and

mean-field solutions, a number of approximate techniques have been developed, including

series expansions, field theoretical methods and computational methods.

Here we adopt Monte Carlo (MC) numerical techniques in order to simulate the evolution

of the system from a given initial configuration {s0} to the stationary state {s̃D(J)}, which

in general does depend on the evolutionary dynamics D we choose. From {s̃D(J)} we then

calculate the average trait mD(J) which provides very interesting information about the

overall behaviour of the population as a function of the parameters Jik.

Notice that J can be chosen to be directed and group dependent and this may account, in

the examples discussed in the introduction, for different influences and fares inter and intra

different groups. For instance, if, say, the A company applies very high costs for phone calls

between different users, we expect the pertaining interaction strengths to be very large. On

the other hand, if for a B user costs for phone calls towards A users are only slightly more

expensive then the relevant interaction strengths are small.

III. DIFFUSIVE STRATEGIC DYNAMICS

In order to simulate the evolution of the population described by the cost function in

Eq. 4 several different algorithms have been introduced. Among them a well-established one

is the so-called single-flip algorithm which makes the system evolve by means of successive

opinion-flips, where we call “flip” on the node j the transformation sj → s′j = −sj.

More precisely, the algorithm is made up of two parts: first we need a rule according to

which select an agent to be updated, then we need a probability distribution which states

how likely the opinion-flip is.

As for the latter, we adopt the well-known Glauber probability: Given a configuration s,

then an opinion-flip on the j-th node is accepted with probability

p(s, s′j,J) =
1

1 + e∆H(s, s′j,J)
. (6)

where ∆H(s, s′j,J) = H(s′j,J)−H(s,J) is the variation in the cost function due to the flip

sj → s′j.

Notice that, for single-flip dynamics the cost variation ∆H consequent to an opinion-flip

only depends on the opinion of a few agents, viz. the j-th one undergoing the flipping
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process and its αj nearest-neighbours. This can be shown by spelling out the cost function

variation appearing in Eq. (6):

H(s′j,J)−H(s,J) = (sj − s′j)
∑
i∼j

Jijsi.

Interestingly, as can be derived from Eq. 6, each opinion-flip is the result of a stochastic

process featuring a competition between an energetic and an entropic term: the lower the

cost of the opinion-flip and the more likely its occurrence. The external parameter J tunes

the probability for an energetically unfavourable event to happen: For very low values of J

any event is equally likely to happen independently of the magnetic configuration, conversely,

for high values of J, when the agent j is surrounded by agents sharing the same opinion,

the flipping of sj gets a rare event.

As already recalled, the opinion-flip probabilities just described can determine a dynamics

only after a prescription for updating the system has been introduced. In other words, we

first need a selection rule according to which extract agents, then the opinion of the selected

agent will be possibly updated according to p(s, s′j,J). There exist several different choices

for the first procedure, ranging from purely random to deterministic. For example, we can

pick a single agent randomly or follow a particular, fixed sequence.

Now, the most popular algorithms select nodes to be updated according to a sequential

order which, though computationally efficient, appears rather artificial in a social network.

Indeed, unless no predetermined strategies are at work, the random updating (D = R)

seems to be the most plausible. In this case the probability that the current configuration

s changes into s′j due to the flip sj → s′j, reads

PR(s, s′j;J) =
1

N
p(s, s′j,J). (7)

The dynamics generated by PR has been intensively studied in the past (see e.g. [19])

and it has been shown to lead the system to the equilibrium (canonical) distribution.

Here we want to explore different relaxation dynamics (D = S) featuring a realistic

selection rule and a proper strategy. First of all, it is reasonable to assume that an opinion-

flip occurs as a result of a direct interaction (phone call, mail exchange, etc.) between two

neighbours and if the i-th agent has just undergone an opinion-flip he will, in turn, prompt

one out of his αi neighbours to change opinion. In this way, the selection rule exhibits a
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diffusive characters: the sequence of sites selected for the updating can be thought of as the

the path of a random walk moving on the graph.

Now, the αi neighbours are not equally likely to be chosen and it is just such a choice to

determine the strategy. In fact, the arbitrary agent i aims to be surrounded by neighbours

j sharing his own opinion (being this a cultural trait or a phone subscription), i.e. sisj = 1,

because this translates in some advantage for the agent i. Consequently, in our dynamics,

amongst the αi neighbours, the most likely to be chosen is also the most likely to undergo a

spin-flip, namely the one which maximizes ∆H(s, s′j,J). This corresponds to a local strategic

choice of agent i, as it obtain the maximum effect from his move though keeping a stochastic

character.

All this can be formalized as follows: Being i the newest updated agent, then the agent j

is updated realizing the magnetic configuration s′j according to the normalized probability:

PS(s, s′j; i, j;J) =
p(s, s′j,J)∑

j∈M
p(s, s′′j ,J)

. (8)

where p(s, s′j,J) (see Eq. 6), is the probability that the current configuration s changes due

to a flip on the j-th site and M represents the set of i’s nearest-neighbours who disagree

with i itself (sjsi = −1); notice that the last condition can be relaxed (and the index j run

through the αi nearest-neighbours of the starting site i) without any qualitative change in

the results.

Some remarks are in order now. First of all, according to Eq. 8 the configuration of the

system can remain unchanged during a unit step. Moreover, by comparing Eq. 7 and Eq. 8,

we notice that the latter depends on a larger set of variables. This point has some important

consequences: the analytical approach to the master equation is extremely difficult and

the detailed balance condition usually implemented in standard dynamics and leading to

a standard Boltzmann distribution, is explicitly violated (see [14] for more details). This

does not contradict our dynamic intent: it is not meant to recover a canonical Bolzmann

equilibrium, but rather to model some possible strategies making the system evolve.

IV. NUMERICS

As mentioned before, the analysis of the diffusive dynamics has been carried out mainly

from the numerical point of view by means of extensive Monte Carlo simulations [19]. Here
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we focus on the particular case of interaction parameters Jik independent of the particular

couple of agents considered, i.e. Jik ≡ J , for any i, k; this allows to highlight the role of the

dynamics leading the system to a stationary state and to understand how it possibly affects

{s̃D(J)} and the average trait mD(J).

Now, before describing our results it is worth explaining how the Erdös-Renyi random

graph is constructed. We consider a set of N sites and we introduce a bond between each

pair of sites with probability p = α/(N − 1), in such a way that the average coordination

number per node is just α. Clearly, when p = 1 the complete graph is recovered.

In the simulation, once the network has been defined, we place a dichotomic variable si on

each node i and allow it to interact with its nearest-neighbors. Once the external parameter

J is fixed, the system is driven by the single-flip dynamics and it eventually relaxes to a sta-

tionary state characterized by well-defined properties. More precisely, after a suitable time

lapse t0 and for sufficiently large systems, measurements of a (specific) physical observable

x(s, α, J) fluctuate around an average value only depending on the external parameters J

and α.

We also verified that, for a system (α, J) of a given finite size N , the extent of such

fluctuations scales as N− 1
2 (see also [13, 14]), as indicated by standard statistical mechanics

for a system in equilibrium. The estimate of the a given observable 〈x〉 is therefore obtained

as an average over a suitable number of (uncorrelated) measurements performed when the

system is reasonably close to the equilibrium regime. The estimate is further improved

by averaging over different realizations of the underlying random graph with fixed α. In

summary,

〈x(s, α, J)〉 = E

[
1

M

M∑
n=1

x(s(tn))

]
, tn = t0 + nT

where s(t) denotes the configuration of the system at time step t and T is the decorrela-

tion parameter (i.e. the time, in units of spin flips, needed to decorrelate a given magnetic

arrangement from the initial state); the symbol E denotes the average over different realiza-

tions of the graph.

In general, during a MC run in a given sample we find statistical errors which are significantly

smaller than those arising from the ensemble averaging (see also [20]).

We stress once again that the final state obtained with the diffusive dynamics is stable,

well-defined and, in particular, it does not depend on the initial conditions., i.e. it has all the
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FIG. 1: Termalization of a system made up of N = 6000 agents and α = 30. Two dramatically

different initial configurations are considered and compared: an ordered configuration with si = 1

for any i (black) and a random configuration with si = 1 (si = −1) with probability 1/2 (red).

properties of an equilibrium state. This is of course well-established for standard dynamics

and it was also verified for our diffusive dynamics. An example is shown in Fig. 1 where, for

a given (α, J), the specific value around which m(tn) eventually fluctuates does not depend

on the choice of the initial configuration selected for the simulation. To this aim we plotted

m(s(tn)) obtained starting with a completely ordered configuration (m0 = 1) and with a

completely random one.

In the following we focus on systems of sufficiently large size so to discard effects related

to small N . For a wide range of interaction constants J and average coordinations α, we

measure the average magnetization 〈m〉 and the cost function 〈e〉, as well as the susceptibility

χ, calculated as

χ(α, J) ≡ JN
[〈m2〉 − 〈m〉2] . (9)

This quantity measures, at equilibrium, the reactivity of the system to a small external

perturbation. Moreover, we compare results obtained for our dynamics with those obtained

through a well-established algorithm, i.e. the Glauber heath-bath with random updating,
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FIG. 2: Average opinion 〈m〉 for a population of N = 6000 (•) and N = 9000 (×) agents with

p = 0.0015 and p = 0.0010, respectively; the average number of nearest-neighbours is therefore the

same for both systems, α = 9. Results obtained with a heath-bath dynamics (R) and the strategic

dynamics (S) are compared: for the latter a smaller critical parameter Jc is found.

which is known to lead the system to a canonical steady state.

In Fig. 2 we show results pertaining to different system sizes (N = 6000, N = 9000),

but keeping the average coordination number fixed (α = 9 corresponding to p = 0.0015 and

p = 0.0010, respectively). Their profiles display the typical behaviour expected for the Ising

model on a random graph [8] and, consistently with the theory, highlight a phase transition

at a well defined value JSc (α). Otherwise stated, there exists a critical value of the parameter

J below which the system is spontaneously ordered.

Note however that JSc (α) is appreciably smaller than the critical value Jc(α) ≈ 1/α

expected for the canonical Ising model defined on the ER random graph [8]. Remarkably,

similar diffusive dynamics have been shown to lead an analogous increase of the critical

interaction parameter on regular structures [13] and also for the spin-1 Ising model [14, 21,

22]. In these cases it was proved that a simple rescaling of the interaction constant J can

not account for the differences between results produced by the diffusive dynamics and a

heath-bath dynamics. This feature constitutes a first signature of the fact that the equilibria
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FIG. 3: Average opinion 〈m〉 for a population of N = 9000 agents with α = 11 (•), α = 30 (×) and

α = 45 (open circles). Results obtained with a standard dynamics (R) and the strategic dynamics

(S) are compared: for the latter a smaller critical parameter Jc is found.

generated by the diffusive dynamics are not governed by the Boltzmann distribution.

As mentioned above, the critical value Jc depends on the system size and on the prob-

ability p, through their product α, i.e. Jc ≈ 1/α. In order to check if a similar behaviour

also holds for the dynamics S we now fix the size of the system and make α vary; results

for N = 9000 with α = 11, 30, 45 are reported in Fig. 3. Indeed also for JSc we evidence a

monotonic increase with α, however, in order to establish the actual relation between J and

the set of parameters p, α further extensive simulations are necessary.

Similar to what happens with the usual dynamics the relaxation time needed to drive the

system sufficiently close to the equilibrium situation is found to depend on the parameter J .

More precisely, we experience the so called critical slowing down: the closer J to its critical

value, the longer the relaxation time.

We now turn to the susceptibility defined in Eq. 9; results are shown in Fig. 4. In the

thermodynamic limit, at a critical point Jc, the susceptibility diverges, while for finite sizes

the susceptibility is expected to display a peak at Jc. This kind of behaviour is found also

when the diffusive dynamics is applied and χ just peaks at JSc . An important point is that

12



0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

J

χ

 

 
α = 45
α = 30

FIG. 4: Average susceptibility χ for a population of N = 9000 agents with α = 30 (×) and α = 45

(o) obtained with the strategic dynamics. Notice that the function peaks at a value smaller than

the critical Jc expected for standard dynamics (dotted lines).

the shape of the curve is not modified, indicating that the reaction of the system to an

external perturbation is conserved, with respect to the usual equilibrium, in the vicinity

of the critical point. The social system is therefore expected to behave in the same way.

Hence, we have further evidence of the fact that the diffusive strategic dynamics recovers the

phase transition typical of the Ising model, though providing a lower value for the critical

interaction parameter.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have introduced a dynamics for social systems displaying diffusive and

strategic character. This dynamics has been shown to relax the system to thermodynami-

cally well-behaved steady states. This means that, after a suitable time, the values of the

global observables of the system display a well-defined value independently of the initial

conditions (which can, at least, affect the orientation of the asymptotic arrangement). The

magnetization, representing the average trait reached by the system as a function of the
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interaction parameter J , features a transition at a value of J which is strictly lower than

the one obtained with a non-strategic random choice for the opinion flips. The shape of

the susceptibility near the transition point is conserved, indicating that the reaction of the

social system to a small external perturbation in the stationary state is not modified.

This picture indicates that with a strategic (local) choice in opinion flips a full-consensus

configuration is obtained for lower values of the interaction parameter J , namely it is “easier”

to obtain a community with an oriented opinion. Differently stated, in a society where a

given value of the interaction J is present, the number of people with an oriented opinion is

higher if the equilibrium is reached by a strategic opinion flip.

We expect this results to hold also in the case of different underlying topologies, more

suitable to describe real social networks, such as scale free random networks with hubs and

small world features [9]. Indeed, our dynamics allows a number of generalizations concerning,

for instance, the topology describing the social network, the number of possible cultural traits

or competitive companies admitted (namely the magnitude of the spin variable) [14], the

possible presence of an external magnetic field (representing the effect of external biases

such as advertisement) or a more complicated set of constant parameters Jij. In particular,

J could be a directed, block matrix and this would account for different fares inter and intra

distinct groups; in this case it would be very interesting to understand the conditions, in

terms of J elements, for the realization of an oriented (i.e. magnetized) system.

Acknowledgment

The authors are grateful to Adriano Barra for interesting suggestions and stimulating

discussion. EA thanks the Italian Foundation “Angelo della Riccia” for financial support.

[1] Galam S and Moscovici S, 1991 European Journal of Social Psychology 21 49

[2] Borghesi C and Bouchaud J P, 2007 Quality and Quantity 41 557

[3] Gallo I and Contucci P, 2008 Math-Ph. Electr. Journ. 14

[4] Castellano C Vilone D and Vespignani A, 2003 Europhysics Letters 63 153

[5] Coolen A C C, 2005 The Mathematical Theory of Minority Games Oxford Finance Series

[6] Newman M E J, Watts D J and Strogatz S H, 2002 PNAS 99 2566

14



[7] Bovier A and Gayrard V, 1993 J. Stat. Phys. 72 643

[8] Agliari E, Barra A and Camboni F, 2008 J. Stat. Mech. 10003

[9] Albert R and Barabasi A L, 2002 Rev. Mod. Phys. 74 47

[10] Watts D J and Strogatz S H, 1998 Nature 393 409

[11] Newman M E J, Watts D J, Barabasi A L, 2006 The Structure and Dynamics of Networks,

Princeton University Press

[12] Caldarelli G and Vespignani A, 2007 Large scale structure and dynamics of complex networks,

World Scientific Publishing

[13] Buonsante P, Burioni R, Cassi D and Vezzani A, 2002 Phys. Rev. E 66 036121

[14] Agliari E, Burioni R, Cassi D and Vezzani V, 2005 Eur. Phys. J. B 46 109

[15] Agliari E, Burioni R and Contucci P, in preparation.

[16] Erdös P and Renyi A, 1959 Publications Mathematicae 6 290

[17] Contucci P and Ghirlanda S, 2007 Quality and Quantity 41 569

[18] Brush S G, 1967 Rev. Mod. Phys. 39 883

[19] Newman M E J and Barkema G T, 2001 Monte Carlo methods in Statistical Physics, Oxford

University Press
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