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Abstract

Consider a correlated Gaussian random energy model built by suc-

cessively adding one particle (spin) into the system and imposing the

positivity of the associated covariance matrix. We show that the va-

lidity of a recently isolated condition ensuring the existence of the

thermodynamic limit forces the covariance matrix to exhibit the Parisi

replica symmetry breaking scheme with a convexity condition on the

matrix elements.
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The existence of the thermodynamic limit has been recently proved for

the Sherrington-Kirckpatrick (SK) model [1], and more generally for any

correlated Gaussian random energy (CGREM) model including the Derrida

REM and the Derrida-Gardner GREM [2]. In this letter we point out that

the proof of [2] may shed some light on the origin of Parisi’s algebraic ansatz

for the replica symmetry breaking (RSB) scheme which lies at the basis his

solution [3] of the SK model.

Algebraically, Parisi’s ansatz may be described as follows: start from the

one by one matrix q(0) > 0. Take q(1) as 0 < q(0) < q(1) < 1 first replicate

the system

R(q(0)) =





q(0) q(0)

q(0) q(0)



 , (1)

then break the symmetry

BR(q(0)) =





q(1) q(0)

q(0) q(1)



 . (2)

If we iterate n times the operation BR we end up with the Parisi RSB matrix

of order n, [BR]n(q(0)) = Q(n). Example: for p = 3 we get the 8 × 8 matrix

Q(3) =









































q(3) q(2) q(1) q(1) q(0) q(0) q(0) q(0)

q(2) q(3) q(1) q(1) q(0) q(0) q(0) q(0)

q(1) q(1) q(3) q(2) q(0) q(0) q(0) q(0)

q(1) q(1) q(2) q(3) q(0) q(0) q(0) q(0)

q(0) q(0) q(0) q(0) q(3) q(2) q(2) q(2)

q(0) q(0) q(0) q(0) q(2) q(3) q(2) q(2)

q(0) q(0) q(0) q(0) q(2) q(2) q(3) q(2)

q(0) q(0) q(0) q(0) q(2) q(2) q(2) q(3)









































, (3)
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As is well known, the RSB method consists in solving the saddle point equa-

tions for the SK free energy after n replicas assuming that the saddle point

matrix has the form Q(n); the maximum is to be found among the functions

on [0, 1] taking the values q(k) at the prescribed points mk at step k of RSB.

Performing first the limit k → ∞ and then the limit n → 0 one gets:

lim
n→0

lim
k→∞

1

n

n
∑

a,b=1

Qk
a,b = −

∫ 1

0

q(x) dx (4)

q(x) is continuous on [0, 1] and is the (Parisi) order parameter of the local

square magnetization because its inverse function x(q) is such that x(q) =
∫ q

0

P (s) ds where P (q) is the overlap probability distribution between pure

magnetization states. Hence q(x(q)) = q and the elements q(1), . . . , q(k) are

overlaps.

Even though it has been recently proved that the Parisi free energy is

at least a lower bound of the SK free energy[4], the RSB is still far from

a mathematical understanding. A major puzzle is still represented by the

origin of the algebraic structure of the Parisi ansatz, which lies at the basis

also of the Derrida-Gardner GREM[5].

In this letter we point out that the algebraic Parisi ansatz and, equiva-

lently, the Derrida-Gardner GREM are generated by a precise prescription

to reach monotonically the thermodynamic limit with a family of correlated

gaussian random energy models (CGREM).

More precisely, we will build by recurrence over N , increasing the size by

1 at each step (equivalently, adding a spin) a family Eσ(N) of CGREM for

which we require:

1. Eσ(N) (N -spins) has to be a subsystem of Eσ(N + 1) (N + 1-spins);
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2. The sequence Eσ(N) fulfills the conditions ensuring the existence of the

thermodynamic limit.

The two previous conditions imply that the matrix sequence CN fulfills the

RSB scheme, in the sense that for each N the correlation matrix CN fulfills

the Parisi ansatz at step N . In particular Eσ(N) can be identified with the

Derrida-Gardner GREM with a convex growth scheme.

For N = 0 the system is the vacuum (no particles) with random energy

E0 = ξ0(0) (5)

ξ0 is a centered Gaussian variable with variance c(0), which we can consider

as a one-by-one matrix. We include the system of 0 spins into a new one-

spin system (for short: we add a spin) assuming at first that the one-spin

Hamiltonian doesn’t depend on the added spin

Ẽ1(σ1) = ξ0(0) ; (6)

the covariance matrix of this process is

C̃(1) =





c(0) c(0)

c(0) c(0)



 ; (7)

This construction was called lifting in [2].

The one-spin system is a CGREM of size one only if its covariance ma-

trix is a (non-degenerate) positive definite matrix. The elimination of the

degenarcy requires the introduction in the Hamiltonian of a new Gaussian

variable ξ1 parametrizing the dependence on the added spin:

E1(σ1) = ξ0(1) + ξ1(1)σ1 ; (8)
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the covariance matrix element is

Av(E1(σ1)E1(τ1)) = Av(ξ0(1)2) + Av(ξ1(1)2)σ1τ1 ; (9)

Since

στ = 2δσ,τ − 1 (10)

we have

Av(E1(σ1)E1(τ1)) = Av(ξ0(1)2) − Av(ξ1(1)2) + 2Av(ξ1(1)2)δσ1,σ2
(11)

which we will write as

Av(E1(σ1)E1(τ1)) = a0(1) + a1(1)δσ1,σ2
. (12)

Defining c(l) =
∑l

k=0 ak we have

C(1) =





c(1) c(0)

c(0) c(1)



 , (13)

with c(1) > c(0)

To iterate the procedure, let us first describe the second step, i.e. the

addition of a second spin to build a 2-spin system. As before, we first assume

independence on the newly added spin variable. The covariance matrix turns

then out to be (with the lexicographic order of the spin configurations)

C̃(2) =

















c(1) c(1) c(0) c(0)

c(1) c(1) c(0) c(0)

c(0) c(0) c(1) c(1)

c(0) c(0) c(1) c(1)

















. (14)
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Again, this matrix is the covariance of a CGREM process only if it posi-

tive definite and non-degenerate. As above, this requires the dependence on

the second spin variable. Among the possible ways to parametrize this de-

pendence we choose the minimal one, namely the preceding one which only

modifies the subprincipal diagonals:

C̄(2) =

















c(1) q̄2 c(0) c(0)

q̄2 c(1) c(0) c(0)

c(0) c(0) c(1) q̄2

c(0) c(0) q̄2 c(1)

















, (15)

with c(0) < q̄2 < c(1). We relabel the elements c(1) → c(2) and q̄2 → c(1)

obtaining the final 2-spin covariance matrix

C(2) =

















c(2) c(1) c(0) c(0)

c(1) c(2) c(0) c(0)

c(0) c(0) c(2) c(0)

c(0) c(0) c(1) c(2)

















, (16)

with c(2) > c(1) > c(0) > 0. This last condition implies that the matrix is

positive definite because the 4 principal minors are

∆1 = c(2) > 0 , (17)

∆2 = c(2)2 − c(1)2 > 0 , (18)

∆3 = [(c(2) − c(1)][c(2)(c(1) + c(2)) − 2c(0)2] > 0 (19)

and

∆4 = [c(2) − c(1)]2[((c(1) + c(2))2 − 4c(0)2] > 0 (20)
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Corrispondigly with the spin representation we would have

E2(σ1, σ2) = ξ0(2) + ξ1(2)σ1 + ξ2(2)σ2 + ξ1,2σ1σ2 , (21)

and

Av(E2(σ1, σ2)E2(τ1, τ2)) = Av(ξ0(2)2) − Av(ξ1(2)2) − Av(ξ2(2)2) + Av(ξ1,2(2)2)

+ δσ1,τ1 [2Av(ξ1(2)2) − 2Av(ξ1,2(2)2)]

+ δσ2,τ2 [2Av(ξ2(2)2) − 2Av(ξ1,2(2)2)]

+ δσ1,τ1δσ2,τ24Av(ξ1,2(2)2) ;

and since we choose

Av(ξ2(2)2) = 2Av(ξ1,2(2)2) (22)

the covariance matrix exibit the RSB scheme:

Av(E1(σ1, σ2)E1(τ1τ2)) = a0(2) + a1(2)δσ1,σ2
+ a2(2)δσ1,τ1δσ2,τ2 . (23)

In general we will assume that our construction is done adding at each step

the N -th spin variable and the newly added interaction terms are indipendent

realization of the same Gaussian distribution or, in other terms, the distribu-

tion of the Gaussian random variables depends only on the last index. The

general scheme is the described by a correlated Gaussian process

EN(σ) = ξ0(N)+
∑

1≤i≤N

ξi(N)σi +
∑

1≤i<j≤N

ξi,j(N)σiσj + . . .+ ξ1,2,...,Nσ1 · · ·σN

(24)

in which the distribution of each Gaussian variable depends only on the last

index; its covariance matrix:

Av(EN(σ)EN(τ)) =
N

∑

k=0

ak(N)
k

∏

i=0

δσi,τi
, (25)
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turns out ot fulfill the RSB structure An important observation is that we

may, within the positivity conditions, chose a subset of c’s that fulfill the

conditions for the existence of the thermodynamical limit as shown in [2].

Here we observe that those conditions translate into a convexity property

for the matrix elements. In fact introducing the two complementary liftings

(labelled as left l and right r) of the one-spin system:

Cl(2) =

















c(2) q(2) c(0) c(0)

c(2) c(2) c(0) c(0)

c(0) c(0) c(2) c(2)

c(0) c(0) c(2) c(2)

















, (26)

and

Cr(2) =

















c(2) q(0) c(2) c(0)

c(0) c(2) c(0) c(2)

c(0) c(2) c(2) c(0)

c(2) c(0) c(0) c(2)

















, (27)

the conditions developed in [2] are, for the symmetric sub-division of the

system into 2 subsystems of the same size,

C(2) ≤
1

2
[Cl(2) + Cr(2)] (28)

(component-wise) which imposes

c(1) ≤
1

2
[c(0) + c(2)] . (29)

For general N the conditions in [2] turn out to be a set of 2N relations between

the matrix elements:

Q(N) ≤
1

2
[Cl(N) + Cr(N)] (30)
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With respect to the size N − 1 the only new relationships required only

involve the quantity c(N), c(N −1), c(N −2). Indeed at step N the only new

inequalities (with respect to those at step N − 1) are those coming from the

four by four principal minors of the three matrices. After the operation of

re-enumeration these inequalities become (element wise)

Q(4)(N) ≤
1

2
[C

(4)
l (N) + C(4)

r (N)] (31)

with

Q(4)(N) =

















c(N) c(N − 1) c(N − 2) c(N − 2)

c(N − 1) c(N) c(N − 2) c(N − 2)

c(N − 2) c(N − 2) c(N) c(N − 1)

c(N − 2) c(N − 2) c(N − 1) c(N)

















, (32)

C
(4)
l (N) =

















c(N) q(N) c(N − 2) c(N − 2)

c(N) c(N) c(N − 2) c(N − 2)

c(N − 2) c(N − 2) c(N) c(N)

c(N − 2) c(N − 2) c(N) c(N)

















, (33)

and

C(4)
r (N) =

















c(N) q(N − 2) c(N) c(N − 2)

c(N − 2) c(N) c(N − 2) c(N)

c(N) c(N − 2) c(N) c(N − 2)

c(N − 2) c(N) c(N − 2) c(N)

















, (34)

from which we have

c(N − 1) ≤
1

2
[c(N) + c(N − 2)] . (35)
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Equivalently in the case of general partition of the N -particle systems into

two subsystems of size N1 and N2 the existence of the thermodynamic limit

will be assured by

c(N − 1) ≤
N1

N
c(N) +

N2

N
c(N − 2) , (36)

so that any positive increasing sequence c(i), i = 1, ..., N with the convexity

property

c(i) ≤ αic(i + 1) + (1 − αi)c(i − 1) , (37)

for suitable chosen 0 < αi < 1 provides a CGREM with RSB structure whose

thermodynamic limit is reached monotonically.

Remark: introducing [5] the ultrametric overlap

dN(σ, τ) =
1

N
min(i|σi 6= τi) (38)

one can see that the covariance matrix (25) is a growing function of dN for

every choice of the a’s. Obviously at zero temperature the overlap (38) co-

incides with the standard GREM overlap among magnetization states.
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