
ar
X

iv
:c

on
d-

m
at

/0
40

12
11

 v
3 

  2
6 

Ja
n 

20
04

27-01-04

thermodynamic limit for finite dimensional

classical and quantum disordered systems

Pierluigi Contucci1, Cristian Giardinà2
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Abstract

We provide a very simple proof for the existence of the thermodynamic

limit for the quenched specific pressure for classical and quantum dis-

ordered systems on a d-dimensional lattice, including spin glasses. We

develop a method which relies simply on Jensen’s inequality and which

works for any disorder distribution with the only condition (stability)

that the quenched specific pressure is bounded.
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1 Introduction, definitions and results

In this paper we study the problem of the existence of the thermodynamic

limit for a wide class of disordered models defined on finite dimensional lat-

tices. We consider both the classical and quantum case with random two-

body or multi-body interaction. The classical case has been studied in various

places (see for example [4, 5, 6, 7] and [8]). In [4] and [7] the quantum case

with pair interactions has also been considered. Here we deal only with the

quenched pressure and using only thermodynamic convexity and a mild sta-

bility condition we give a very simple proof of the existence and monotonicity

of the quenched specific pressure. A result in the same spirit for classical spin

glasses has been obtained in [1] by using an interpolation technique intro-

duced in [2, 3].

We shall treat the classical and quantum cases in parallel. In the classical

case to each point of the lattice i ∈ Zd we associate a copy of the spin space

S, which is equipped with an a priori probability measure µ. We shall denote

this by Si. In the quantum analogue we associate to each i ∈ Zd a copy of

a finite dimensional Hilbert space H, denoted by Hi and a set of self-adjoint

operators, spin operators, on Hi.

Following [9], (see also [10]), we define the interaction in the following way.

In the classical case for each finite subset of Rd, X, we let SX := ×i∈XSi

and {Φ
(j)
X | j ∈ nX} is a finite set of bounded function from SX to R. In the

quantum case each Φ
(j)
X is a self-adjoint element of the algebra generated by

the set of operators, spin operators on HX := ⊗i∈XHi. Without loss of gen-

erality we set Φ∅ = 0. In both cases we take the interaction to be translation
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invariant in the sense that if τa is translation by a ∈ Zd, then

nτaX = nX and Φ
(j)
τaX = τaΦ

(j)
X for j ∈ nX . (1)

We now define the random coefficients. For each X let {J (j)
X | j ∈ nX} be a

set of random variables. We assume that the J
(j)
X ’ s are independent random

variables and that J
(j)
τaX and J

(j)
X have the same distribution for all a ∈ Z

d.

At the end of Section 2 We shall denote the average over the J ’s by Av[·].

Let Λ ⊂ Zd be a finite set of a regular lattice in d dimension and denote by

|Λ| = N its cardinality. We define the random potential as

UΛ(J, Φ) :=
∑

X⊂Λ

∑

j∈nX

J
(j)
X Φ

(j)
X . (2)

We stress here that the distributions of the J
(j)
X ’s are independent of the

volume Λ. This characterizes the short range case, such as the Edwards-

Anderson one. In mean field (long range) models, such as the Sherrington-

Kirckpatrick one, the variance of J
(j)
X has to decrease with N in order to have

finite energy density.

The complete definition of the model we are considering requires that we

specify also the interaction on the frontier ∂Λ, i.e. boundary conditions.

However standard surface over volume arguments imply that if the quenched

specific pressure for one boundary condition converges, then it also converges

for all other boundary conditions. Therefore to prove the convergence of the

quenched specific pressure it is sufficient to consider the free boundary con-

dition. Thus in the sequel we shall assume the free boundary condition and

prove that in this case the quenched pressure is monotonically increasing in

the volume.
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We would like to emphasize the fact that though we have used the ter-

minology spin space and spin operators our results are not restricted to spin

systems.

Examples:

1. Classical Edwards-Anderson model

S = {−1, 1}, µ(σi) = 1
2
δ(σi + 1) + 1

2
δ(σi − 1). The interaction is only

between nearest neighbours: Φi,j(σi, σj) = σiσj for |i − j| = 1, ΦX = 0

otherwise. To ensure that the specific pressure is bounded it is enough

that

Av [|Jij|] < ∞. (3)

More generally one may consider a long range interaction with Φi,j(σi, σj) =

σiσj/R(|i−j|) with a sufficient condition for boundedness, for example

Av [J0i] = 0 and
∑

i

Av [|J0i|
2]

(R(|i|))2
< ∞, (4)

or a many-body interaction with a suitable decay law. One can also

add a (random) external field.

We refer the reader to [1] for more classical examples.

2. Quantum Edward-Anderson model

H = C2. The spin operators are the set of the Pauli matrices: σi =

(σx
i , σ

y
i , σ

z
i )

σx =





0 1

1 0



 σy =





0 −i

i 0



 σz =





1 0

0 −1





(5)
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which commutation and anticommutation relations

[ σα
i , σβ

i ] = 2iǫαβγ σγ
i (6)

{σα
i , σβ

i } = 2δαβ (7)

The interaction is again only between nearest neighbours: Φi,j(σi, σj) =

σi · σj = σx
i σx

j + σy
i σy

j + σz
i σz

j for |i − j| = 1, ΦX = 0 otherwise.

A transverse field Φi(σi) = σz
i can also be added. One can have an

asymmetric version with local interaction

Jx
i,jΦ

x
i,j(σi, σj) + Jy

i,jΦ
y
i,j(σi, σj) + Jz

i,jΦ
z
i,j(σi, σj) (8)

where Φx
i,j(σi, σj) = σx

i σx
j , Φy

i,j(σi, σj) = σy
i σy

j and Φz
i,j(σi, σj) = σz

i σz
j .

As in Example 1 one may consider a short range interaction with a

suitable decay law.

Notation: We shall use the notation Tr to denote both the classical expec-

tation over SN with the measure µ(dσ) =
∏N

i=1 µ(dσi) and the usual trace in

quantum mechanics on the Hilbert space ⊗N
i=1H.

Definition 1 We define in the usual way:

1. The random partition function, ZΛ(J), by

ZΛ(J) := Tr eUΛ(J,Φ) , (9)

2. The quenched pressure, PΛ, by

PΛ := Av[ ln ZΛ(J) ] , (10)
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3. The quenched specific pressure, pΛ, by

pΛ :=
PΛ

N
. (11)

We are now ready to state our main theorem:

Theorem 1 If all the J
(j)
X ’s with |X| > 1 have zero mean then the quenched

pressure is superadditive:

PΛ ≥
n
∑

s=1

PΛs
. (12)

Let ‖Φ
(j)
X ‖ denote the supremum norm in the classical case and the operator

norm in quantum case. For the case when the J
(j)
X ’s do not have zero mean

we have the following corollary:

Corollary 1 Let

P̄Λ = PΛ +
∑

X⊂Λ, |X|>1

∑

j∈nX

|Av[J
(j)
X ]| ‖Φ

(j)
X ‖. (13)

Then P̄Λ is superadditive.

Theorem 1 combined with the boundedness of the specific pressure is suffi-

cient to ensure the convergence of the specific pressure in the thermodynamic

limit (see for example [9] Chapter IV) in the case when all the J
(j)
X ’s with

|X| > 1 have zero mean. In the case when the J
(j)
X ’s do not have zero mean

we have to add to Corollary 1 the condition

C :=
∑

X∋0, |X|>1

∑

j∈nX

|a
(j)
X |‖Φ

(j)
X ‖

|X|
< ∞. (14)

This implies that

lim
Λ→∞

1

N

∑

X⊂Λ, |X|>1

∑

j∈nX

|a
(j)
X |‖Φ

(j)
X ‖ = C (15)
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and therefore the convergence of the specific pressure

To prove the boundedness of the specific pressure we need the following

stability condition (cf [8]). Let

‖U‖1 :=
∑

X∋0

∑

j∈nX

Av
[

|J
(j)
X |
]

‖Φ
(j)
X ‖

|X|
(16)

and

‖U‖2 :=





∑

X∋0

∑

j∈nX

Av
[

|J
(j)
X |2

]

‖Φ
(j)
X ‖2

|X|





1

2

. (17)

Definition 2 We shall say that the random potential U(J, Φ) is stable if it

is of the form

UΛ(J, Φ) = ŨΛ(J̃ , Φ̃) + ÛΛ(Ĵ , Φ̂) (18)

where all the J̃
(j)
X ’s and Ĵ

(j)
X ’s are independent, the Ĵ

(j)
X ’s have zero mean

and ‖Ũ‖1 and ‖Û‖2 are finite.

With this definition we shall prove in the next theorem that the specific

pressure is bounded. Note that the stability condition in Definition 2 implies

that C as defined in (14) is finite since C ≤ ‖U‖1.

Theorem 2 For a stable random potential the quenched specific pressure is

bounded.

In the next section we prove the theorems.

2 Proof of the Theorems

We start with the following definition.
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Definition 3 Consider a partition of Λ into n non empty disjoint sets Λs:

Λ =
n
⋃

s=1

Λs , (19)

Λs ∩ Λs′ = ∅ . (20)

For each partition the potential generated by all interactions among different

subsets is defined as

ŨΛ := UΛ −
n
∑

s=1

UΛs
. (21)

From (2) it follows that

ŨΛ =
∑

X∈CΛ

∑

j∈nX

J
(j)
X Φ

(j)
X (22)

where CΛ is the set of all X ⊂ Λ which are not subsets of any Λs.

The idea here is to eliminate ŨΛ from the partition function. We shall use

the following three lemmas.

Lemma 1 Let X1, . . .Xn be independent random variables with zero mean.

Let F : Rn 7→ R be such that for each i = 1, . . . , n xi 7→ F (x1, . . . xn) is

convex, then

E [F (X1, . . .Xn)] ≥ F (0, . . . 0) (23)

where E denotes the expectation with respect to X1, . . .Xn.

Proof: This follows by applying Jensen’s Inequality to each Xi successively.

�

The following two lemmas are related to the thermodynamic convexity of the

pressure.
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Lemma 2 Let µ be a probability measure on a space Ω, and let A and

B1, . . . , Bn be measurable real valued functions on Ω. Then

E

[

log

∫

Ω

exp

{

A(σ) +
n
∑

i=1

XiBi(σ)

}

µ(dσ)

]

≥ log

∫

Ω

exp[A(σ)]µ(dσ).

(24)

Proof: We just have to check that if

F (x1, . . . xn) = log

∫

Ω

exp

{

A(σ) +

n
∑

i=1

xiBi(σ)

}

µ(dσ)

then xi 7→ F (x1, . . . xn) is convex. Let

〈C〉 :=

∫

Ω
C(σ) exp {A(σ) +

∑n
i=1 xiBi(σ)} µ(dσ)

∫

Ω
exp {A(σ) +

∑n
i=1 xiBi(σ)} µ(dσ)

. (25)

Then, computing the derivatives, we have

∂F

∂xi

= 〈Bi〉 (26)

and
∂2F

∂x2
i

=
〈

B2
i

〉

− 〈Bi〉
2 =

〈

(Bi − 〈Bi〉)
2〉 ≥ 0. (27)

�

The next lemma is the quantum analogue of the previous one.

Lemma 3 Let H be finite-dimensional Hilbert space, and let A and B1, . . . , Bn

be self-adjoint operators on H. Then

E

[

log Tr exp(A +

n
∑

i=1

XiBi)

]

≥ log Tr exp A. (28)
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Proof: Again we just have to check that if

F (x1, . . . xn) = log Tr exp(A +

n
∑

i=1

xiBi),

then xi 7→ F (x1, . . . xn) is convex. The first derivative gives

∂F

∂xi

= 〈Bi〉 (29)

where

〈C〉 :=
Tr Ce−H

Tr e−H
. (30)

with

−H = A +

n
∑

i=1

xiBi

while, for the second derivative, we have

∂2F

∂x2
i

= (Bi, Bi) − 〈Bi〉
2 (31)

where (·, ·) denotes the Du Hamel inner product (see for example [10]):

(C, D) :=
Tr
∫ 1

0
ds e−sHC∗e(1−s)HD

Tr e−H
. (32)

By using the fact that (C, 1) = 〈C〉 and (1, D) = 〈D〉 we see that

∂2F

∂x2
i

= (Bi − 〈Bi〉, Bi − 〈Bi〉) ≥ 0. (33)

�

Proof of Theorem 1

Let us assume first that all the J
(j)
X ’s with |X| > 1 have zero mean.

PΛ = Av [ ln Tr exp UΛ ]

= Av

[

ln Tr exp

(

n
∑

s=1

UΛs
+
∑

X∈CΛ

∑

j∈nX

J
(j)
X Φ

(j)
X

)]

(34)
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Note that CΛ does not contain any X with |X| = 1. Applying Lemma 2

(resp. Lemma 3) for the classical (resp. quantum) case with A =
∑n

s=1 UΛs

and Bi = Φ
(j)
X , n =

∑

X∈CΛ
nX we get

PΛ ≥ Av

[

ln Tr exp

(

n
∑

s=1

UΛs

)]

=
n
∑

s=1

Av [ ln Tr exp UΛs
] =

n
∑

s=1

PΛs
. (35)

�

Proof of Corollary 1

Here relax the condition that all the J ’s have zero mean. Let a
(j)
X := Av

[

J
(j)
X

]

and J̄
(j)
X := J

(j)
X − a

(j)
X for |X| > 1 so that J̄

(j)
X has zero mean and J̄

(j)
X := J

(j)
X

if |X| = 1. Let

U
(1)
Λ (J, Φ) :=

∑

X⊂Λ

∑

j∈nX

J̄
(j)
X Φ

(j)
X , (36)

U
(2)
Λ (J, Φ) :=

∑

X⊂Λ, |X|>1

∑

j∈nX

(

a
(j)
X Φ

(j)
X + |a

(j)
X |‖Φ

(j)
X ‖
)

(37)

and

ŪΛ(J, Φ) := U
(1)
Λ (J, Φ) + U

(2)
Λ (J, Φ). (38)

Then

ŪΛ(J, Φ) = UΛ(J, Φ) +
∑

X⊂Λ, |X|>1

∑

j∈nX

|a
(j)
X |‖Φ

(j)
X ‖. (39)

Thus P̄Λ is the pressure corresponding to ŪΛ(J, Φ). One can then see that

P̄Λ is super-additive by treating the terms in U
(1)
Λ (J, Φ) as before since each

J̄
(j)
X has zero mean, except possibly if |X| = 1, and by using the fact that all

the terms in U
(2)
Λ (J, Φ) are positive (cf [10]). In the quantum case we need

the inequality

Tr e(A+B) ≥ Tr eA (40)

if B is a positive operator.
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Proof of Theorem 2

We shall prove this only in the quantum case. For the classical case see [8].

From the Bogoliubov inequality

Tr (A − B) eB

Tr eB
≤ ln Tr eA − lnTr eB ≤

Tr (A − B) eA

Tr eA
(41)

with A = UΛ(J, Φ) and B = 0 we get

log ZΛ(J) − N log dimH ≤
Tr UΛ(J, Φ) eUΛ(J,Φ)

Tr eUΛ(J,Φ)

=
Tr ŨΛ(J̃ , Φ̃) eUΛ(J,Φ)

Tr eUΛ(J,Φ)
+

Tr ÛΛ(Ĵ , Φ̂) eUΛ(J,Φ)

Tr eUΛ(J,Φ)

≤ ‖ŨΛ(J̃ , Φ̃)‖ +
Tr ÛΛ(Ĵ , Φ̂) eUΛ(J,Φ)

Tr eUΛ(J,Φ)
. (42)

Now

Av
[

‖ŨΛ(J̃ , Φ̃)‖
]

≤ N‖Ũ(J̃ , Φ̃)‖1. (43)

For the other term we use the identity for A and B self-adjoint

Tr A eA+B

Tr eA+B
−

Tr A eB

Tr eB
=

∫ 1

0

dt (A − 〈A〉t, A − 〈A〉t)t (44)

where 〈·〉t and (·, ·)t denote the mean and the Du Hamel inner product re-

spectively with respect to H = −(tA + B). The Du Hamel inner product

satisfies

(C, C) ≤
1

2
〈C∗C + CC∗〉

1

2 ≤ ‖C‖2. (45)

Therefore
Tr A eA+B

Tr eA+B
−

Tr A eB

Tr eB
≤ 4‖A‖2. (46)

With A = Ĵ j
XΦ̂j

X and B = UΛ(J, Φ) − Ĵ j
XΦ̂j

X we get

Tr ÛΛ(Ĵ , Φ̂) eUΛ(J,Φ)

Tr eUΛ(J,Φ)
=

∑

X⊂Λ

∑

j∈n̂X

Tr Ĵ j
XΦ̂j

X eUΛ(J,Φ)

Tr eUΛ(J,Φ)
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≤
∑

X⊂Λ

∑

j∈n̂X

Tr Ĵ j
XΦ̂j

X

eUΛ(J,Φ)−Ĵ
j

X
Φ̂j

X

Tr eUΛ(J,Φ)−Ĵ
j

X
Φ̂j

X

+ 4
∑

X⊂Λ

∑

j∈n̂X

|Ĵ j
X |

2‖Φ̂j
X‖2.

(47)

Thus since UΛ(J, Φ) − Ĵ j
XΦ̂j

X is independent of Ĵ j
X and Av

[

Ĵ j
X

]

= 0,

Av

[

Tr ÛΛ(Ĵ , Φ̂) eUΛ(J,Φ)

Tr eUΛ(J,Φ)

]

≤ 4
∑

X⊂Λ

∑

j∈n̂X

Av
[

|Ĵ j
X |

2
]

‖Φ̂j
X‖2 ≤ 4N‖Û(Ĵ , Φ̂)‖2

2.

(48)

Therefore

PΛ ≤ N(log dimH + ‖Ũ(J̃ , Φ̃)‖1 + 4‖Û(Ĵ , Φ̂)‖2
2). (49)

�
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