COMPLEMENTI DI ANALISI MATEMATICA E ELEMENTI DI CALCOLO DELLE PROBABILITÀ (Terzo appello, parte di probabilità, commissione F. Ferrari, G. Grammatico) del 10/07/2014

COGNOME, NOME, n. mat, n. mat	o sottostante
(1) [1,5 punti] Scrivere la definizione di speranza matematica e di varianza per le aleatoria discreta. Rispondere poi al seguente quesito: siano X e Y due varirie a valori in $A = \{(4,2); (1,1); (2,1); (2,4)\}$ la cui densità di probabilità congiunt $p(x,y) = c(x^2 + y^2 + 1)$ per $(x,y) \in A$ e 0 se $(x,y) \in \mathbb{R}^2 \setminus A$, per un opportuno Calcolare c , le densità marginali e la retta di regressione per X , Y .	iabili aleato- ta è data da
(2) [1 punto] Scrivere la definizione di funzione di ripartizione per una variabile aleato Rispondere poi al seguente quesito: sia X una variabile aleatoria, a valori reali, di dens Calcolare la densità di $Z=(3^2X+2)^2$.	
(3) [1 punto] Scrivere la definizione di probabilità condizionale.	
(4) [1 punto] Scrivere la definizione di variabili aleatorie indipendenti.	

Prova 1 Pagina 1

$p(x) = \begin{cases} c(\alpha^2 - 5\alpha + 7)^x, & x \in \mathbb{N} \cup \{0\} \\ 0, & x \in \mathbb{R} \setminus (\mathbb{N} \cup \{0\}), \end{cases}$
è una densità di probabilità su $\mathbb{N} \cup \{0\}.$ Calcolare esplicitamente il valore di c al variare di α
(6) [1,5 punti] Una compagnia aerea accetta 154 prenotazioni per un volo che può trasportare 124 passeggeri. Supponendo che la percentuale di rinunce prima della partenza sia pari al 4%, calcolare la probabilità che almeno due passeggeri tra quelli che hanno prenotato non partano.
(7) [1 punto, non utile per il superamento della prova] Stabilire, motivando esaurientemente la risposta, quale dei due seguenti eventi è più probabile. In una cucciolata di 4 gatti due gatti sono di sesso maschile e due gatti di sesso femminile. In una cucciolata di 4 gatti il numero di gatti di uno stesso sesso è maggiore del numero dei gatti dell'altro sesso.
(8) [2 punti] Siano X e Y due variabili aleatorie continue con densità congiunta uniforme a valori in $A = \{(x,y) \in \mathbb{R}^2; \ x+y \leq 5, \ x \geq 0, \ y \geq 0\}$. Calcolare $P((X-5)^2 + Y^2 \geq 5^2)$. Determinare le densità marginali f_X e f_Y e stabilire se sono indipendenti.
(9) [1,5 punto] In una lotteria vengono estratti 5 numeri tra 55. Calcolare la probabilità che tra i numeri estratti vi siano esattamente 3 dei numeri giocati, calcolare poi la probabilità che i primi 3 numeri giocati vengano sorteggiati esattamente nell'ordine.

(5) [1,5 punti] Determinare per quali valori di $\alpha>0$ esiste c>0 tale che

Prova 1 Pagina 2