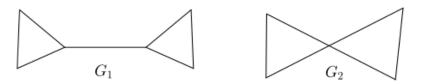
ESERCIZI SULL'OMOTOPIA

Siano X_1, X_2, \ldots, X_n spazi topologici, e sia $x_i \in X_i$ un punto fissato, per $i = 1, \ldots, n$. Il wedge $X_1 \vee X_2 \vee \cdots \vee X_n$ di X_1, X_2, \ldots, X_n è lo spazio topologico quoziente ottenuto dall'unione disgiunta di $X_1 \sqcup X_2 \sqcup \cdots \sqcup X_n$ identificando tutti gli x_i ad un solo punto. Se gli X_i , sono spazi con una certa "regolarità", ad esempio sono sfere d dimensionali, con d qualsiasi, è possibile dimostrare che il tipo di omotopia di $X_1 \vee X_2 \vee \cdots \vee X_n$ non dipende dalla scelta dei punti.

- 1) Sia X è uno spazio topologico. Si mostri che una mappa $f: \mathbf{S}^1 \to X$ è omotopa a una mappa costante se e solo se f è la restrizione di una opportuna mappa $g: \mathbf{D}^2 \to X$.
- 2) Dimostrare che uno spazio X è contraibile se e solo se l'identità di X è omotopa ad una mappa costante. Usare questo risultato per dimostrare che uno spazio X è contraibile se e solo se ogni mappa $f: X \to Y$, con Y qualsiasi, è nullomotopa e se e solo se ogni mappa $g: Y \to X$, con Y qualsiasi, è nullomotopa.
- 3) Sia $f: \mathbf{S}^n \to \mathbf{S}^n$ una mappa priva di punti fissi. Si mostri che f è omotopa alla mappa antipodale $\alpha: \mathbf{S}^n \to \mathbf{S}^n$ definita da $\alpha(x) = -x$.
- 4) Sia X uno spazio connesso ottenuto come unione di un numero finito di sfere, che a coppie si intersecano in al più un punto. Dimostrare che X ha lo stesso tipo di omotopia di un opportuno wedge di sfere e circonferenze.

5) Siano G_1 e G_2 i due grafi in figura. Trovare $f: G_1 \to G_2$ e $g: G_2 \to G_1$ tali che $fg \simeq \mathrm{id}_{G_2}$ e $gf \simeq \mathrm{id}_{G_1}$ e scrivere esplicitamente le omotopie.



- 6) Dimostrare che se γ è una circonferenza in \mathbb{R}^3 , allora $\mathbb{R}^3 \gamma \simeq \mathbf{S}^2 \cup \overline{NS}$.
- 7) Sia $M_n(\mathbb{R})$ l'insieme delle matrici quadrate di ordine n, dotato della topologia euclidea indotta dall'isomorfismo con \mathbb{R}^{n^2} . Siano $GL_n(\mathbb{R})$ il sottoinsieme delle matrici invertibili e O_n quello delle matrici ortogonali, dotati della topologia indotta. Dimostrare che O_n è un retratto per deformazione di $GL_n(\mathbb{R})$ (suggerimento: utilizzare il procedimento di Gram-Schmidt per ortonormalizzare le colonne di $A \in GL_n(\mathbb{R})$ e interpretare questo procedimento come moltiplicazione per una matrice triangolare alta con elementi positivi sulla diagonale principale che dipendono in modo continuo da A).
- 8) Dimostare che X è contraibile se e solo se la mappa $\Delta: X \to X \times X$ definita da $\Delta(x) = (x, x)$ è nullomotopa.