La copia cartacea di questa pagina è disponibile presso il centro fotocopie di Ingegneria.

Programma di

Geometria e Algebra t

per il Corso di Laurea in Ing. Energetica (Prof. M. Ferri)

Programma

Link alle demo proiettate a lezione. Ecco anche alcune chiacchiere (1 e 2) con intenti applicativi proiettate durante il corso. Figure proiettate: prima parte, seconda parte e terza parte.

I link presenti nel programma seguente NON SONO dispense da me sbadatamente redatte in inglese (come congetturato da diversi studenti preoccupati)! Sono link verso siti universitari e non, in giro per il mondo (Scozia, Montana, Massachussetts, Illinois, Italia...) dove potete trovare conforto, supporto e complementi relativi alla materia svolta. (Quei grumi di lettere che compaiono nella barra degli indirizzi dopo "http://" vi dicono dove vi ho spediti... Se siete furbi, potete risalire a molto altro materiale di quei siti.)
Segnalo che che il mio corso NON ha dispense, visto che prevede un libro di testo.

Teoria

Alcune strutture algebriche.
Gruppi, anelli, campi.

Matrici.
Definizioni iniziali. Operazioni. Determinante. Matrice inversa.

Spazi vettoriali.
Definizioni iniziali. Sottospazi vettoriali. Combinazioni lineari. Dipendenza lineare. Basi e dimensione. Sistemi lineari.

Applicazioni lineari.
Linearità. Isomorfismi. Nucleo e immagine. Rango di una matrice. Rappresentazioni matriciali di applicazioni lineari. Cambiamenti di base.

Sistemi lineari.
Sistemi lineari e loro risolubilità. Metodi di risoluzione. Rappresentazioni di sottospazi vettoriali.

Equazioni algebriche.

Autovalori.
Autovalori e autospazi. Similitudine di matrici. Polinomio caratteristico. Diagonalizzabilità per similitudine.

Spazi vettoriali euclidei.
Prodotti scalari. Ortogonalità. Insiemi ortonormali. Operatori ortogonali. Complemento ortogonale.

Spazi euclidei.
Spazi (affini) ed euclidei. Sottospazi euclidei. Rappresentazioni di sottospazi. Parallelismo. Ortogonalità.

Forme bilineari e quadratiche.
Forme bilineari. Rappresentazione matriciale. Matrici simmetriche. Forme quadratiche. Forme canoniche.

Iperquadriche.
Cenni sulla classificazione di coniche e quadriche reali. In particolare:
Cap. 10: solo par. 4. Cap. 12: Def. 12.3, 12.4, 12.6, Prop. 12.8, 12.10, 12.18, Def. 12.16, 12.17, 12.19, Teor. 12.37, Prop. 12.35 (in quest'ordine).

Esercitazioni

Calcolo di determinanti e ranghi di matrici. Discussione e risoluzione di sistemi lineari. Reperimento e rappresentazione di applicazioni lineari. Determinazione delle equazioni di sottospazi vettoriali ed affini. Passaggio fra le rappresentazioni. Calcolo di autovalori e autovettori. Diagonalizzazione di matrici. Risoluzione di problemi di parallelismo ed ortogonalità. Rappresentazione e studio di forme bilineari e quadratiche. Classificazione di coniche.


Si possono scaricare le prove d'esame dell'Anno Accademico 2014-2015 e dell'Anno Accademico 2015-2016: esse fanno parte integrante del corso.
La copia cartacea delle prove d'esame è disponibile presso il centro fotocopie di Ingegneria.

E` consigliata la visita ai siti del Prof. Luciano Gualandri e del Progetto Matematic@.


Testi consigliati.

  • Casali M.R., Gagliardi C., Grasselli L., "Geometria", Progetto Leonardo, Bologna, 2010 (testo ufficiale del corso) ATTENZIONE: DALL'A.A. 2016-'17 SI UTILIZZERÀ L'EDIZIONE 2016!.
  • ATTENZIONE - Il teorema di Harriot-Cartesio, non presente nella edizione del 2000 e parzialmente scorretto in quella del 2002, può essere scaricato qui (o reperito presso il centro fotocopie).

    Per gli esercizi, ovviamente la prima cosa da fare è scaricare le prove d'esame e tentare di risolverle senza aiuto, poi confrontare con le soluzioni proposte. Ripeto che esse fanno parte integrante del corso: siete tenuti ad averle esaminate e risolte. Se si desidera il supporto di un testo, qualunque libro di esercizi di geometria e algebra lineare può andare bene. Naturalmente bisogna fare attenzione alle differenze di notazione. Riporto i titoli di alcuni libri di esercizi fra cui potete scegliere.

  • A. Cattabriga, M. Mulazzani, "Prove d’esame risolte di Geometria ed Algebra per i corsi di Laurea in Ingegneria", Progetto Leonardo, Bologna, 2014.
  • L. Gualandri, "Algebra lineare e Geometria – Esercizi e quiz risolti e d’esame", Progetto Leonardo, Bologna, 2007.
  • A. Barani, L. Grasselli, C. Landi, "Algebra lineare e Geometria - Quiz ed esercizi commentati e risolti", Progetto Leonardo, Bologna, 2005.


  • MODALITA' D'ESAME (GEOMETRIA E ALGEBRA t)

    L'esame consiste in una prova scritta obbligatoria ("prova finale") ed una prova orale. Entrambe abbacciano l'intero programma svolto a lezione.

    La prova scritta è composta da due parti: una scheda di teoria con nove domande a risposta multipla e un foglio di esercizi. La scheda di teoria dev'essere compilata durante la prima ora in totale assenza di ausilii, mentre durante la seconda ora, destinata agli esercizi, si consente ed anzi si raccomanda di avvalersi di libri, appunti, mezzi di calcolo ecc. Le schede di teoria vengono raccolte tutte insieme allo scadere della prima ora.
    ATTENZIONE: la prova viene considerata insufficiente se nella parte di teoria non si sono raggiunti almeno 5,5 punti. In tal caso (che verrà segnalato nella lista dei voti come N.C., cioè Non Classificato) non verrà corretta la parte relativa agli esercizi. (Gli esercizi verranno corretti su richiesta durante il ricevimento studenti.)
    Qualora la soglia di 5,5 punti di teoria sia raggiunta o superata, il voto della prova finale è semplicemente la somma dei punteggi conseguiti nelle due parti.

    Si è ammessi alla prova orale immediatamente successiva alla prova scritta se il voto nella parte di teoria è maggiore o uguale a 5,5 e il voto totale è di almeno 15 punti. Ogni prova scritta finale ha validità esclusivamente per l'orale dello stesso appello.

    Le iscrizioni agli appelli si effettuano su AlmaEsami.
    Presentarsi alle prove con il tesserino universitario.