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Abstract

A very general recursive graph invariant, introduced by E.J. Far-
rell, is revisited and extended to graphs embedded into surfaces, by
use of the surface homology.

1 Introduction

Two very interesting areas in graph theory are the combinatorial study of re-
cursive invariants and the topological investigation of embedded graphs. The
former was initiated by H. Whitney in a wonderful, short paper [8] where he
introduced various recursive invariants (e.g. the famous chromatic polyno-
mial); it got a powerful push from the invention of the Tutte polynomial [7]
and other related invariants (see, e.g., [1]); a fruitful variation was found by
E.J. Farrell in [2] (see also [3]). The latter theory is intertwined with graph
theory since its birth, and the Four Colour Theorem is its most representa-
tive aspect. Exactly in the study of graph colorations did the two streams
flow together with the already quoted chromatic polynomial; they interacted
again within the theory of recursive knot invariants (see [5]).

E.J. Farrell tied the concept of recursive invariants to the one of covers of a
graph, by subgraphs taken into special graph classes. Farrell exploited his
idea in a very rich line of research papers but, as far as we know, never faced
an extension to graphs embedded into a surface. This is what we do in the



present article (Section 3). We mean that we deal with a suitable extension
of Farrell’s idea, to define not only new embedding related classes of graphs,
but also a new invariant built on the homology of the surface.

Reasonably enough, we first need to go through Farrell’s work in a slightly
new setting (Section 2).

2 Farrell’s recursion theorem revisited

By the term graph we shall mean a pseudograph, i.e. a triple G =
(V (G), E(G), f), where V (G) is the set of vertices, E(G) (disjoint from V (G))
is the set of edges, and the function f associates to each edge the set of (ei-
ther one or two) end–points. This means that multiple edges (having the
same end–point set) and loops (having just one end–point) are allowed. We
shall always deal with finite graphs, i.e. with finite V (G) and E(G). Often,
G will not simply be a graph, but a graph endowed with more structure (e.g.
colourings, embeddings).

Particular cases of graphs are the geometric graphs, i.e. 1–dimensional CW–
complexes [6, 7.6]. For every finite graph G, there are geometric graphs
isomorphic to it, called the geometric realizations of G.

For all undefined notions of graph theory, we refer to [4].

2.1 Restricted graphs, F -covers

A restricted graph will be a pair G = (G,U), where G is a graph and U ⊂
E(G) will be called the set of restricted edges. U can also be empty: In that
case we shall identify G with the unrestricted graph (G, ∅).
In what follows, F will denote either 1) a set of isomorphism classes of finite,
connected graphs, or 2) a set of geometric graphs. In the first case, when we
say that a graph belongs to F , we shall actually mean that it belongs to an
isomorphism class belonging to F . Let moreover a ring R be given. We shall
consider a fixed map, called weight, ϕ : F → R.

Let a restricted graph G = (G,U) be given. An F–cover H of G will be a
spanning subgraph of G whose connected components all belong to F and
such that U ⊂ E(H). Define ϕ(H) as the element of R

ϕ(H) =
∏

C is a connected
component of H

ϕ(C).
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Then the F–invariant of G will be the element of R defined as

F (G; ϕ) =
∑

H is an
F -cover of G

ϕ(H).

Remark - The concept of restricted graph is the central, absolutely innova-
tive idea of Farrell in [2]. Also F -covers and weights were defined and used in
that paper; however, only rings of polynomials were considered there, so lim-
iting the power of the construction. One might wonder what interest there
could be in invariants of restricted graphs. Actually, restriction is mostly a
technical contrivance by which invariants of “unrestricted” graphs (i.e. with
U = ∅) are defined and dealt with.

2.2 Recursion Theorem

We now recall the main theorem of the theory, with its straightforward proof,
as it is in the original paper [2], up to notation and to a more thorough proving
argument.

Let G = (G,U) be a restricted graph and e ∈ E(G). Then set G \ e =
(V (G), E(G) \ {e}) and G \ {e} = (G \ e, U \ {e}).
With this notation, we can now state the Recursion Theorem:

Proposition 2.1 [2, Thm. 1] Let e ∈ E(G) \ U and G ′ = (G,U ∪ {e}).
Then, for any F, ϕ,

F (G, ϕ) = F (G \ e, ϕ) + F (G ′, ϕ).

Proof - Any F–cover H of G such that e ∈ E(H) is an F–cover of G ′ but
not of G \ e; any F–cover H of G such that e 6∈ E(H) is an F–cover of G \ e
but not of G ′. So, the sum defining F (G, ϕ) splits into the sum of the two
terms of the right–hand side of the thesis. ¤

Figure 1 shows the use of the Recursion Theorem. Dashed lines represent
restricted edges.

2.3 Multiplicity, F–polynomials

We define the multiplicity of the vertices of a graph G as any map which
associates to each x ∈ V (G) a pair of integers (hx, kx). Unless otherwise
stated, every vertex of every graph will be endowed with multiplicity (1, 0).
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Figure 1: The recursion process for a restricted graph.

Let now R be the ring of polynomials with real coefficients, in the indeter-
minates wi,j with i, j nonnegative integers.

A first example of F–invariant is a polynomial, where for each C ∈ F we set
ϕ(C) = wi,j with

i =
∑

x∈V (C)

hx j =
∑

x∈V (C)

kx + #E(C).

A ring homomorphism (sending each wi,j to the one–index indeterminate wi)
takes this invariant to the general F–polynomial. A further ring homomor-
phism taking each wi (or wi,j) to the single indeterminate w gives rise to the
simple F–polynomial. All three polynomials were already in [2]. We shall not
report here the great number of invariants obtained from these polynomials
by choosing suitable sets F or by suitable evaluations: See [3].

2.4 Deletion and contraction

Perhaps the most interesting application of Farrell’s technique is the recursion
in terms of deleted and contracted edges. Deletion of an edge has already
been defined: It is the passage from G to G \ e. Contraction needs more
attention to the specific case. The framework of the passage from a graph G
to a graph G/e obtained by contraction of an edge e is always the following. In
G = (V (G), E(G), f) let e be an edge with f(e) = {a, b}, where a 6= b. Then
let c be an object (to be considered as a vertex) not belonging to V (G). In the
definition of G/e, we shall always consider V (G/e) = (V (G) \ {a, b}) ∪ {c}.
The definition of E(G/e) is more complicated and is context dependent. 1) It
coincides with E(G) on the subset of the edges whose end–points are different
from a and b. 2) There is a bijection between the set of edges connecting a
vertex in V (G) \ {a, b} with one in {a, b} and the set of edges connecting a
vertex in V (G/e)\{c} and c. 3) Edges of G, different from e, which connect a
with b, become loops with the only end–point c in G/e. 4) Finally, it depends
on the particular instance, whether e simply desappears in G/e, or becomes
a loop with the only end–point c as well; if not explicitly stated otherwise,
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we shall assume that e desappears. 5) Also additional structures, if present,
have to be defined for the single instances when passing from G to G/e.

In particular, the multiplicity of vertex c will be:

(hc, kc) = (ha, ka) + (hb, kb) + (0, 1).

2.5 Stable sets and weights, Contraction Theorem

A set F of graphs will be said to be contraction stable (or simply stable) if
∀C ∈ F ,

• ∀e ∈ E(C) (e not a loop), also C/e ∈ F , and

• ∀C ′ such that ∃e′ ∈ E(C ′) (e not a loop) for which C = C ′/e′, also
C ′ ∈ F .

Important examples of stable graph sets are the sets of

• all connected graphs;

• all graphs with exactly k independent cycles (k a nonnegative integer);

• all graphs with at most k independent cycles (k a positive integer).

Given a stable set F , a (contraction) stable weight ϕ on F is one such that

∀C ∈ F, ∀e ∈ E(C), ϕ(C/e) = ϕ(C).

Of course, the weights defined in Subsection 2.3 are so conceived as to be
stable.

If G = (G,U) is a restricted graph, we define G/e naturally as (G/e, U \{e}).
Contraction and restriction are related together by the following Contraction
Lemma:

Proposition 2.2 Let F be a stable set. Let G = (G,U) be a restricted
graph, and let e ∈ U . Then for any stable weight ϕ

F (G; ϕ) = F (G/e; ϕ).
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Proof - In any F–cover of G, there is exactly one component C such that
e ∈ E(C). The subgraph of G obtained by substituting C with C/e is an
F–cover of G/e, and has the same weight. Conversely, each F–cover of G/e
comes by contraction from an F–cover of G of equal weight. More precisely,
contraction induces a bijection from the set of F–covers of G to the set of
F–covers of G/e which preserves weight. ¤

This leads us to the following Contraction Theorem, which permits us to
obtain powerful invariants of unrestricted graphs, which respect the classical
recursion treated in [1].

Proposition 2.3 Let F be a contaction stable set. Let G = (G,U) be a
restricted graph, and let e 6∈ U . Then for any stable weight ϕ

F (G; ϕ) = F (G \ e; ϕ) + F (G/e; ϕ).

Proof - It is an immediate corollary of Propositions 2.1 and 2.2. ¤

Remark - The ideas of stable sets and weights were implicit in the work
of Farrell, who proved the Contraction Lemma and Theorem in important,
special cases. Here we have just given them a more accurate and general
setting.

3 Embedded graphs

The main goal of this paper is to define recursive invariants for graphs embed-
ded into surfaces (i.e. 2–dimensional manifolds). All graphs in this Section
will be geometric; the manifolds will be piecewise–linear. Given a (geomet-
ric) graph G = (V (G), E(G)) and its underlying topological space (called
the space of G) |G|, an embedding of G into a surface S is a map h : |G| → S
which is a homeomorphism onto its image. In particular, we shall assume
that |G| ⊂ S and that h is the inclusion. Moreover, it is always possible to
consider a CW–complex decomposition of S such that G is a subcomplex of
it.

Given an embedded graph G and one of its edges e, the embedded graph
G \ e is easily defined, by using the restriction of the embedding h to |G \ e|.
Contraction is not so immediate.

3.1 Contraction for embedded graphs

Let G be a graph embedded in a surface S, e be one of its edges, which is not
a loop, and a, b be its end–points (see Figure 2). Let N be a regular neigh-

6



bourhood of e in S, such that e is the only edge of G completely contained
in N , and the only edges of G with nonempty intersection with N are the
ones with either a or b as an end–point. Such a neighbourhood can always
be found. We now consider a fixed homeomorphism of pairs:

Φ : (N, e) → (D2, I)

where I = {0} × (−1/2, +1/2) ⊂ D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.

Figure 2: Contraction for an embedded graph.

There exists at least one map g′ : D2 → D2 such that g′(I) = {(0, 0)},
g′|∂D2 = 1|∂D2 , and such that g′|D2\I is a homeomorphism on D2 \ {(0, 0)}.
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Now, let g : S → S be the map which extends Φ−1 ◦ g′ ◦ Φ by the identity
outside N .

We define G/e: V (G/e) = (V (G) \ {a, b}) ∪ {g(e)}, E(G/e) =
{g(e′) | e′ ∈ E(G) \ {e}}; i.e., in this definition of contraction e desappears.
The assignment of the end–points is defined as in Subsection 2.4.

3.2 Topologically defined stable sets

In what follows, homology will always be simplicial, and its operation, how-
ever commutative, will be dealt with in multiplicative notation.

In a geometric graph, be it embedded or not, every cycle (in the sense of
the theory of undirected graphs) can give rise to a homological cycle [z] (of
the graph itself, or of the space into which it is embedded) and to its inverse
[z−1], according to the orientation given to its edges: In fact there are two
such coherent orientations.

Let now a surface S be given. We define a family of graph sets: For all
integers m,n, r, s with 0 ≤ m ≤ n and 0 ≤ r ≤ s, let F ns

mr be the set of
connected graphs embedded in S, containing i cycles, trivial in H1(S), and
j cycles, nontrivial in H1(S), m ≤ i ≤ n, r ≤ j ≤ s.

Proposition 3.1 For all admitted m,n, r, s, the set F ns
mr is contraction sta-

ble.

Proof - The contraction operation, as defined in the previous subsection,
does not transform a cycle into a noncycle (nor conversely), and does not
alter its homology class. ¤

It is possible to extend this definition, by considering a subset W of H1(S),
closed under inversion, and imposing to the cycles to belong (respectively
not to belong) to W . The above defined family is re–obtained by setting W
equal to the trivial subgroup.

Figure 3 shows a graph embedded in a torus, and the computation of its F 01
00 –

polynomial (yielding w2
10 + 3w21 + 2w22) both as a sum over all F 01

00 –covers
and by recursion. Note that this polynomial distinguishes the embedding of
the picture from one in which both cycles are null–homologous: In the latter
case the F 01

00 –polynomial would be w2
10 + 3w21.
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Figure 3: Covers and recursion for an embedded graph.
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3.3 Homological invariants

In the previous subsection we have used the homology of S only for select-
ing stable sets of embedded graphs, with a criterion strictly dependent on
the embedding itself, and not simply on the combinatorial structure of the
graphs. Here we want to go further, and make use of the freedom we have in
defining weights.

Let R1(S) be the group–ring of H1(S;Z2). (Passing to the group–ring is
the reason why we have chosen to use the multiplicative notation for the
operation in H1(S)). Then, given any set F of embedded graphs containing
at most one cycle, we can define a weight ϕ : F → R1(S) as follows. Given
a graph K ∈ F , its cycle z and its embedding h : |K| → S (possibly the
inclusion map), set

ϕ(K) = h∗ ({z}) ∈ H1(S;Z2).

Proposition 3.2 For each contraction stable set F , the above defined
weight ϕ is contraction stable. ¤

Figure 4: Two different embeddings of the same graph into a torus.
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This weight distinguishes the two embeddings (Figure 4) of the same graph
into a torus, since the homology classes of the loops differ. This would not
have been the case with the F–polynomial defined on any of the F ns

mr sets
of Section 3.2. Of course, a suitable choice of a subset W (see Section 3.2)
would have done; but this would mean knowing the embeddings in advance,
whereas the weight in R1(S) reveals the differences at once.
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