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Abstract. A new categorical approach to size functions is given. Using this point of view, it is shown
that size functions of a Morse map, f : M→ R can be computed through the 0-dimensional homol-
ogy. This result is extended to the homology of arbitrary degree in order to obtain new invariants of
the shape of the graph of the given map.
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1. Introduction: A Brief Recall of Size Functions

This paper is devoted to a theoretical extension of a mathematical transform, the
‘size function’, which we use extensively in pattern recognition. Since the theory is
still young and not so widespread, the general reader is not necessarily acquainted
with it, so we start by stating what size functions are, and why we are willing to
extend them.

Size functions are a simple, but effective tool for automatic recognition: they be-
come particularly useful when no standard, geometric templates are available. Ex-
amples of application are tree-leaves [16], hand-drawn sketches [3], monograms [5],
hand-written characters [6], white blood cells [7], and the sign alphabet [15]. We
are currently experimenting with size functions in the recognition of human pro-
files, melanomas, and sounds.

Let us recall very briefly the definition of a size function. See [12] for an ex-
tended survey, or also [10]. Consider a real function f : M → � defined on a
subset M of a Euclidean space. The size function of the pair (M, f ) is a function
�M: �2 → N ∪ {∞}. For each pair (u, v) ∈ �2, consider the set of points on
which f is worth � u. Two such points are then considered to be equivalent if they
either coincide or can be connected in M by a path on whose points f is worth
� v. Then �M(u, v) counts the equivalence classes so obtained. See Figure 1 for
an example with the distance from the center of mass as the measuring function.

� Work performed under the auspices of GNSAGA–INdAM, of MURST, and of the University
of Bologna, funds for selected research topics.
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Figure 1. A curve, and its size function, relative to distance from center of mass.

Since size functions inherit the same invariance as the measuring functions they
are defined on (e.g. invariance under rotations), it is of practical use to compare the
size functions of, say, two images instead of the images themselves after guessing
the correct transformation (e.g. rotation). The choice of the measuring function is a
crucial element in that it is the way for an expert to select the relevant features for
the recognition problem under study. This is already a categorical issue, since the
stress is on morphisms rather than on objects. For an example, see Figure 2, where
the contour of a leaf and its image under a similitude are shown, together with
the respective size functions, computed with respect to the measuring function:
normalized distance from center of mass.

Of course, a discrete version of the theory is needed (and exists [8]), since in
practice one has to work with discrete objects (mostly bitmap images). But we
stick to the principle that the theoretical background should be in a continuous
domain, as bitmaps – and the like – are just discretizations of continuous models of
reality.

A ‘natural’ discretization comes from Morse Theory: If M is a closed manifold
and the measuring function f is a Morse function, then the corresponding size
function is completely determined by some critical points of f (see [9]): The corre-
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Figure 2. A leaf contour, and its image under a similitude, with the respective size functions.

sponding critical values yield co-ordinates of the ‘cornerpoints’ and ‘cornerlines’,
sufficient to reconstruct the whole size function [11].

A natural question is: Why shouldM be a manifold and f be a Morse function?
How does this fit in with concrete settings? For example, a character ‘a’ can be
modelled as a one-dimensional subspace of the plane, but then is not a manifold.
It can be considered to be a two-dimensional ‘blob’ and, in this case, it can be
modelled as a manifold but with nonempty boundary.

True, but in the latter model we can adopt its boundary as a one-dimensional
(nonconnected) manifold M; this is exactly what we generally do (see Figure 3).
As for f being a Morse function, we just note that most measuring functions which
come from experience, are continuous, so they can be approximated by Morse
functions with substantial conservation of the size function [9, Prop. 1.1].

Since long we have guessed that size functions may conceal a deeper structure.
An immediate remark is that size functions only take into account the cardinalities
of the images of equivalence classes under inclusion, and not their ‘story’. This
is corrected here in categorical terms by considering morphisms and not just their
images. The ‘size functor’ we define in Section 2, turns out to be not only a more
adequate and elegant shape descriptor, but also a more informative one (as the
example of Figure 4 shows). This approach reveals that size functions actually
address only the 0-homology of a family of subspaces of the considered manifold.
The size functor extends the study to all homology, so recovering the meaning of
critical points, which were dismissed as ‘inessential’ in the previous setting.
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Figure 3. Two letters ‘r’ and two letters ‘u’ of different fonts, with the respective size
functions, relative to the distance from the center of mass.

The choice of natural representatives is formalized in the coreflection of Sec-
tion 3, and is – in a sense – an extension of the notion of cornerpoint [11]. Section 4
analyzes the advantage of the size functor with respect to size functions; Section 5
is concerned with the problems related to actual computation: A discrete version
of the size functor is beyond of the scope of the present paper, but will eventually
follow in order to make practical computations possible.

We want to point out that this article contains no new results in algebraic topol-
ogy nor in category theory, but just a new way to use these ‘pure’ subjects in the
concrete field of pattern recognition.

2. Size Functor

For the definitions and notions not explicitly given here, we refer to [14] for the
topological and differential notions, to [13] for homology theory, and to [2] for the
categorical setting.

Throughout this paper, M is a compact, smooth, n-dimensional submanifold of
the m-dimensional real space Em. A measuring function is an arbitrary continuous
map f : M → �. If f is a C∞-function whose critical points are nondegenerate
(i.e: with nonvanishing Hessian), f is called a Morse measuring function. We recall
that a Morse function has only a finite number of critical points.
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Figure 4. An example of measuring functions distinguished by the size functor but not by the
size function.

We denote by C(x) the set of all points of M, where the value of the measuring
function f does not exceed x, that is

C(x) = {p ∈ M | f (p) � x}.
Moreover, Ab denotes the category of Abelian groups and Rord the linear order
category associated to the linear ordered set of real numbers. More precisely, the
objects of Rord are the real numbers, and given two real numbers x and y, there is
a morphism from x to y (denoted by kxy) if and only if x � y.

Fun(Rord,Ab) denotes the category whose objects are the functors from Rord
to Ab, and the morphisms are the natural trasformations. This category, by [2]
(2.15.1, Vol. 1), has sums on any set of objects. This means that if we consider a
set of functors from Rord to Ab, it is possible to get their sum: This is the functor
which assigns to each x the sum of the Abelian groups associated to x by each
functor of the considered set.

We denote by Hi (resp. H ) the i-dimensional homology functor (resp. homol-
ogy functor) from the category of topological spaces and continuous maps to the
category of Abelian groups.
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In this section, for any continuous measuring function f : M → �, we define
n+ 1 functors whose sum in Fun(Rord,Ab) is the size functor.

DEFINITION 2.1. For any i = 0, . . . , n, we define a functor Fi from Rord to
Ab as follows: for each x ∈ �, Fi(x) = Hi(C(x)); if x � y, jxy is the inclusion
from C(x) into C(y); set Fi(kxy) = Hi(jxy). F =⊕m

i=0 Fi in Fun(Rord,Ab). Fi
and F are called the i-size functor and size functor, respectively.

THEOREM 2.2. Let f : M→ � be a Morse function and x and y be real values
(x � y), with no critical value in the interval (x, y]. Then C(x) is a deformation
retract of C(y), and the inclusion of C(x) into C(y) is a homotopy equivalence.

Proof. Propositions 3.1, 3.4 in [14]. ✷
COROLLARY 2.3. For each real value x, there is y > x such that Fi(kxy) is an
isomorphism of Abelian groups for each i.

Proof. The map f has only a finite number of critical points, so we can choose
y in such a way that there are no critical points in the interval (x, y], and apply
Theorem 3.2. ✷

From Corollary 3.3 we can see that if we study the homology of C(x) by let-
ting x increase, we face a change only when we meet a critical point, so there is
only a finite number of discontinuities in the homology groups. The crossing of
a critical point does not change the whole homology, but at most two homology
groups, whose degree depends on the index of the critical point. To see this we use
again a result of [14].

From now on, we assume that x and y are two real numbers such that the interval
[x, y] contains the image of only one critical point p of index λ.

THEOREM 2.4. The space obtained via the adjunction of a λ-cell to C(x) is a
deformation retract of C(y).

Proof. [14, Theorem 3.1]. ✷
So, when we attach a λ-cell to the space C(x) by a map g, we obtain a space with

the homotopy type of C(y). That is, the space M can be built, from a homotopic
viewpoint, as a CW-complex (finite when f is a Morse function).

We recall, with adapted notation:

THEOREM 2.5 [13, Cor. 19.16–19.18].

(1) If i 
= λ, i 
= λ− 1 then H̃i(C(x)) ∼= H̃i(C(y)).
(2) H̃λ−1(C(y)) ∼= H̃λ−1(C(x))/ Im(H̃λ−1(g)).
(3) The sequence 0 → H̃λ(C(x)) → H̃λ(C(y)) → Ker H̃λ−1(g) → 0 is exact

and split, i.e. H̃λ(C(y)) ∼= H̃λ(C(x))⊕ Ker H̃λ−1(g).
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Point (1) of Theorem 3.5 shows that the attachment of a λ-cell changes, at most,
the λ or the (λ − 1)-dimensional homology, so that if i 
= λ and i 
= λ − 1 ,
Fi(x) ∼= Fi(y). As a consequence, we are allowed to give the following defin-
ition:

DEFINITION 2.6. A critical value x for a Morse function f is i-essential if
Fi(kzx) is not an isomorphism, where z � x and there are no critical values in the
interval [z, x).

From Theorem 3.5, we can also deduce that any critical value is essential for at
least one i. Moreover, if we consider the attachment of a λ-cell, we can observe:

Remark 2.7. (1) Every critical point of index λmodifies the homology group at
degree either λ or λ− 1.

(2) If Im(H̃λ−1(g)) is infinite, then H̃λ(C(y)) is isomorphic to H̃λ(C(x)) while
the rank of H̃λ−1(C(y)) is one less than the one of H̃λ−1(C(x)).

(3) If Im(H̃λ−1(g)) is the zero-group, then H̃λ−1(C(y)) is isomorphic to
H̃λ−1(C(x)) while the rank of H̃λ(C(y)) is one more than the one of H̃λ(C(x)).

(4) If Im(H̃λ−1(g)) is finite, then the rank of H̃λ(C(y)) is one more than the one
of H̃λ(C(x)) while H̃λ−1(C(y)) is the quotient of H̃λ−1(C(x)) over the image of
H̃λ−1(g).

3. Coreflection Induced by the Size Functor

In this section we show that just a finite set of real numbers is necessary to describe
the functor Fi (resp. F ).

We will see that the behavior of Fi (resp. F ) is the same on any object in a
suitable half-closed real interval. So we will be able to reduce the study of the
functor just to the minima of these intervals.

The categorical tool to describe this fact is the coreflection Cf

i (resp. Cf ) de-
fined on the image of Fi (resp. F ). The composition CiFi (resp. CF ) describes the
behavior of the i-homology (resp. homology) pointing out when it changes.

Moreover, as in homology theory, the whole homology can be seen as the sum
of each i-homology, that is CF is the sum of the CiFi (this sum, of course, cannot
be performed in Ab but must be considered in the category of functors from Rord
to Ab).

First of all, we can observe that the image of Fi (resp. F ) is a subcategory of
Ab since Fi (resp. F ) is injective on the objects.

DEFINITION 3.1. For each i let Cf

i (resp. Cf ) be the full subcategory of ImFi
(resp. ImF ) whose objects are Fi(α) (resp. F(α)) where α is an i-essential critical
value (resp. a critical value) for f .
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PROPOSITION 3.2. Cf

i (resp. Cf ) is a coreflective subcategory of ImFi (resp.
ImF ).

Proof. Given Fi(x), the coreflection is given by

ci : Fi(x) ← Fi(α)

c: F(x) ← F(α)

where α is the first i-essential critical value (resp. the first critical value) less than
or equal to x and ci and c are the unique morphisms in ImFi (resp. ImF ) between
the considered objects. It can be observed that by Theorem 3.2 and by definition
both these arrows are always isomorphisms in Ab. ✷

Remark 3.3. If we denote by Ci (resp. C) the coreflection functor, we can con-
sider the composition CiFi (resp. CF ): Rord → Ab and it can be proved, by
lengthy but straightforward verification, that CF = ⊕CiFi in Fun(Rord,Ab) (i.e.
they are isomorphic via a natural transformation).

The previous proposition allows us to study only a finite number of slices of
the manifold, in fact Cf

i (resp. Cf ) are finite categories. Moreover, dealing with
categories and functors, we do not need to know the behavior of each morphism in
Cf

i (resp. Cf ) but just the morphism between two subsequent critical points, since
the others can be derived by composition; this may turn out to be a big advantage
for applications.

4. The Functors B, F0 and Size Functions

Given two real numbers x, y, with x � y we can consider the set of arc-connected
components of C(x) and C(y), and the map ixy induced on them by the inclusion.
This way we obtain a functor B from Rord to Set (the category of sets and func-
tions). We have that the functor F0 is the composition of B with the free functor
from Set to Ab. These two functors B and F0 are theoretically equivalent, so,
since B is easier to be described and studied, it is preferable to F0.

The classical definition of ‘size function’ as it is given in [12] and sketched in
the Introduction of this paper, can be seen as the cardinality of the image of ixy .
The functor B (hence F0) is a finer tool, in comparison with the size function. In
fact it is possible to distinguish two measuring functions with B (or F0) which are
not distinguishable by size functions: See Figure 4, where the end-points of the
domain segment are to be identified. In this example, the ‘natural size distance’
– as defined in [12] – of two functions φ and ψ defined on the same manifold (a
circle) is far from vanishing.

The functor B, in comparison to F0, has an advantage: it can be described by
trees. In fact, for any measuring function f , there is a coreflective subcategory Df

of ImB analogous to the one defined in Section 3 for the functor F0. Df can be
seen as an oriented tree:
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(a) (b)

Figure 5. (a) The HO tree of letter ‘r’ of Figure 3 (right); (b) the HO tree of letter ‘u’ of
Figure 3 (right).

• the vertices are the points of sets in Df , i.e. a vertex vx is a connected compo-
nent of C(x) where x is a 0-critical point for f ,

• there is an arc from vy to vx (x � y) if there is a map h in Df such that
hvx = vy .

We can simplify this tree, by inductively deleting vertices with outdegree and
indegree equal to one, and substituting the incident arcs with just one arc repre-
senting composition. The tree so obtained is the HO tree of f (Figure 5). From this
tree we can obtain the cornerpoints used to compute the size function associated
to f as described in [4].

An advantage of the functor F versus size functions is the following. If, for
instance, we consider two different manifolds M: a sphere and a torus (or even
a segment and circle, by a suitable extension of the theory) with some two mea-
suring functions, the functor F0 and hence the size function does not necessarily
distinguish between these two maps, while F1 does it for certain. This is obvious,
since F0 depends only on the arcwise connected components of the slices of the
manifold, while the Fi together are sensitive to the general topological structure of
the same slices.

5. Implementation Problems

Effective applications require, of course, effective implementation. This is avail-
able for computation of size functions: It is based on a steepest descent method.
Actually, the algorithm is discrete, and the input is a graph with vertices labelled
by real numbers; this graph is meant to represent the manifold, the vertices being
sampled points of it. Minima (i.e. critical points of index 0) are detected as vertices,
and critical points of index 1 are detected as pairs of adjacent vertices pointing to
different minima. 0-essential critical points of index 1 are selected by comparison
of labels (i.e. of values of the measuring function).
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The functor F0 can then be completely recovered by a suitable adaptation of the
quoted algorithm, but also F1 can, since the previously discarded critical points of
index 1 are just the 1-essential ones, and the critical points of index 2 can easily
be spotted too. Note that for the most important case in current applications, i.e. a
bitmap image, the domain manifold is just a rectangle, so that H2 is trivial for all
submanifolds and F2 is meaningless. Therefore, automatic computation of F for
grey tone images seems to be very near in the future.

Quite different problems are posed by higher-degree functors. Note that this is
far from being a purely academic task. In fact, we have worked so long with mea-
suring functions defined on single points of one- or two-dimensional manifolds, but
a sensible progress will be the use of measuring functions defined on k-tuples of
points, so on points of a repeated topological product of the manifold by itself. So
Fi with i > 1 will presumably be rich of precious information even in the case of
images. Computation of higher degree Fi’s will be a major goal for the algorithmic
component of our team.
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