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Abstract. Keypics are graphical metadata intended for indexing of im-
ages on the Internet. They are conceived as hand-drawn sketches, not re-
stricted to a definite set. An obvious difficulty when dealing with keypics
is that they elude rigid geometric treatment.

A proposal of solution comes from Size Functions. This paper is
the report of a complete experiment on 494 keypics with Size Functions
based on three measuring functions (distances, projections and jumps)
and their combination.

1 Introduction

The recent, original idea (by P. Frosini and our Vision Mathematics Group
in Bologna) [7] of “Keypics” poses serious problems to an Image Retrieval (IR)
System. In fact, the main difficulty inherent to the “search–by–sketch” paradigm
is by–passed by Keypics: “search–by–sketch” doesn’t work well because it tries
to match sketches with real images; with Keypics, an IR System needs to match
sketches with sketches. This seems to be more promising; still, the problem of
comparing hand–drawn sketches for similarity is hard, as for any recognition
and retrieval system which has to deal with “natural” images (like signatures,
biological images, faces, the sign alphabet etc.).

Size Functions (SF’s) have proven to be particularly apt to this kind of set-
tings, because of their geometrical–topological nature and their modularity. The
mathematical core of SF’s was exactly conceived for formalizing qualitative as-
pects of signals (images, but also 3D data, sounds, etc.). Modularity allows the
user to fit a SF to the specific nature of the objects to be recognized or retrieved,
through the choice of a “measuring function” (see Section 3).

When proposing [7], our team had just performed a preliminary study on
a set of Keypics, with only one type of measuring functions: distances from a
set of fixed points. Here we enhance that experiment by using two more sets
of independent measuring functions: “projections” and “jumps”, and finally by
integrating the three subsystems (see Section 5).

Two necessary clarifications: 1) The adjective “complete” in the title refers to
the fact that the present experiment considers not only the retrieved sketches,
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but also the images that they are indexing. So it is really an experiment on
keypics, whereas our preliminary studies were only on retrieval of sketches by
sketches. 2) We want to show that image retrieval through keypics has at least
Size Functions as a possible solution. We do not claim that Size Functions are a
better tool than the competitors’; in fact, we invite other researchers to try their
methods on keypics. We shall be very glad, for instance, to make our dataset
available for comparison and integration of retrieval methods.

2 Keypics

In [7] it was proposed that the owner or the manager of a set of images on
a Web site, equips each image with a simplified drawing, called “Keypic” (as
alternative to “keyword”). This might be performed by use of simple drawing
and processing tools, or by hand, but preferably in SVG [1]. The Keypic should
be representative of what is felt as essential by the site manager. So it could be
an outline of the relevant shapes in the image, or a symbol semantically referring
to its content. Several images might be associated to the same keypic, and more
than one Keypic might be associated to the same image. Keypics could also be
used for indexing Web pages or sites.

Keypics should be plastic, in the sense that they should not be limited to any
pre–defined set. They should be, in terms of an image, as synthetic, meaningful
and free as keywords are in general use. Actually, they would be superior to
keywords, in that they would not suffer from the linguistic barrier, they would
allow much more freedom of expression, they would be less severely affected by
errors. We think that the drawing of keypics should definitely be performed by
human operators, focusing the aspects of shapes that they consider important for
recognition and retrieval. In this way semantic comparison of shapes is partially
reduced to geometrical comparison of icons. This could be a partial reply to the
warning, contained in [16], that “information is not only in the pixels”. A dataset
manager, e.g., might wish to index the image of a saxophone by its geometrical
outline, but also (or only) with a musical note (see Figure 1, which also hints
that a Keypic can give evidence to what is unclear or incomplete in the original
image).

Fig. 1. An image and two possible Keypics for it
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3 Size Functions

The key idea underlying SF’s is that of setting metric obstructions to the classical
notion of connectedness, thus conveying informations both on the geometry and
the topology of the viewed shape.

Let us recall the formal definition of a SF. Consider a continuous real-valued
function ϕ : M → IR, defined on a subset M of a Euclidean space. The Size
Function of the pair (M,ϕ) is a function �(M,ϕ) : {(x, y) ∈ IR2 |x < y} → IN. For
each pair (x, y) ∈ IR2, consider the set Mx = {P ∈ M |ϕ(P ) ≤ x}. Two points
in My are then considered to be equivalent if they belong to the same connected
component of My. The value �(M,ϕ)(x, y) is defined to be the number of the
equivalence classes obtained by quotienting Mx with respect to the previous
equivalence relation in My.

SF’s have a simple geometric interpretation: �(M,ϕ)(x, y) is equal to the num-
ber of connected components of My containing at least one point of Mx.

A discrete version of the theory exists, which substitutes the subset M of
the space with a graph G = (V,E), the function ϕ : M → R with a function
ϕ′ : V → R , and the concept of connectedness with the usual connectedness
notion for graphs.

It is important to remark that SF’s are easily and fast computable; see [4]
for details.

Figure 2 shows a simple example of SF. In this case the topological space M
is a curve, while the measuring function ϕ is the distance from point C.

As Figure 2 shows, SF’s have a typical structure: They are linear combina-
tions (with natural numbers as coefficients) of characteristic functions of trian-
gular regions. That implies that each SF can be described by a formal linear
combination of cornerpoints and cornerlines. Due to this kind of representa-
tion, the original complex issue of comparing shapes can be turned into a sim-
pler algebraic problem: Each distance between formal series naturally produces
a distance between SF’s. A detailed treatment of this subject can be found
in [8].

Of the many available distances between formal series(see, e.g., [5]), the one
we use in this paper is the Hausdorff distance.

Fig. 2. A curve and its SF with respect to the distance from point C



360 A. Cerri, M. Ferri, and D. Giorgi

4 The Dataset

Seven nonprofessional draftsmen were given templates chosen within very het-
erogeneous pictures of a commercially available clip–art collection; the stated
aim was to depict the essentials of the given template, not to reproduce it ac-
curately. A standard drawing program was used by all of them, endowed with
standard tools as free–hand, straight–line or ellipse drawers, thresholding and
edge detection. A set of 494 drawings resulted of it, all of a standard size, all
black on white.

The strategies adopted were very heterogeneous. Some drew a fairly accu-
rate imitation as in Figure 3a. Sometimes the imitation was very rough (Fig-
ure 3b); in other cases (e.g. in Figure 3c) the use of an edge detector was
evident. Some draftsmen thought it necessary to stress details (Figure 3d),
or to ignore them (Figure 3e), but sometimes even to add nonexisting ones
(Figure 3f).

Fig. 3. Different strategies in drawing Keypics

After a moment’s perplexity, we accepted this variety of approaches. In fact,
we think that a dataset manager will stress the aspects and cure the details
of what he/she considers essential in the images. So his/her Keypics will be
particularly high in score for the users “tuned on the same wavelength”, i.e.
interested in the same aspects and the same details.
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5 Measuring Functions

Three different and independent sets of measuring functions were used. Of these,
only the first set had already been used in [7]. The first set consists of sixteen
distances from points [6].

Let us fix a Cartesian reference frame (O,e1,e2) in the plane. From now on
points will be identified with their coordinate pairs. Let p = (px, py) ∈ IR2. We
define the measuring function ϕp: IR2 → IR as ϕp(x, y) = d(p, (x, y)) with d the
Euclidean distance.

Every input binary image is normalized (but without resolution loss) and
translated so that its center of mass is taken to the origin of the reference frame.
Therefore each measuring function ϕp is invariant by scale change and transla-
tion; as a consequence, the corresponding SF’s turn out to be invariant by the
same transformation group.

Here is the formal definition of the first set of measuring functions used in
this research:
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ᾱ + iπ

2

))
i = 1, . . . , 4

}∪{
ϕp | p = r̄

(
cos

(
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where the constants r̄ and ᾱ take value respectively 0.8 (all images are scaled
with respect to average radius) and 0.349 (approximately corresponding to a 20
degrees phase–displacement).

The next two sets of measuring functions are much less rigid. The second
set contains five measuring functions, having each a segment as domain. One
of the five is a “projection” of the image on the horizontal base segment: The
whole image is fibered into a set of vertical pixel segments; for each of these, the
number of black pixels contained in it is counted. The corresponding pixel of
the horizontal base segment receives this number. The final measuring function
is obtained by convolving these values with a narrow Gaussian. The other four
measuring functions are its variations built by projecting along the horizontal
direction and along the three at π/8, π/4, 3π/8.

The third set consists of four functions. One conts “jumps” along the vertical
direction. Again, the whole image is fibered into a set of vertical pixel segments;
for each of these, a counter is incremented each time two consecutive pixels of
the vertical segment are of opposite color. The corresponding pixel of the hori-
zontal base segment receives this number of black–to–white and white–to–black
jumps. Again, convolution with a narrow Gaussian yields the final measuring
function. In this case, the other three measuring functions are its variations
built by counting jumps along the horizontal direction and along the two at 45
degrees.

Retrieval was performed with each of the three sets of SF’s by computing the
average of the normalized distances coming out of the different SF’s of the set.
A final distance combines the contribution of the three.
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6 Evaluation

As stressed in several papers (e.g. [14], [15] and[11]) evaluation is a very critical
issue for IR Systems. Apart from the common problem of possessing a reliable
and objective ground truth, all most common parameters have some drawbacks.

A particular fault of several evaluation methods, is that they don’t take
sufficiently well into account the position of the retrieved relevant objects within
the scope (i.e. within the whole retrieved set). In what follows, we try to overcome
this problem in two ways. First, we adopt the normalized average rank R̃ank
introduced by [15]:

R̃ank =
1

NNrel

(
Nrel∑
i=1

Ri − Nrel(Nrel + 1)
2

)
where Ri is the rank at which the ith relevant image is retrieved, N is the
dataset size, and Nrel is the number of relevant images for a given query. It is 0
for perfect performance and approaches 1 as performance worsens.

Second, we have also computed P (k) and R(k), respectively precision and
recall on the first k retrieved images, with k = Nrel, 2Nrel, 3Nrel, so adapting
the scope to the (varying) number of relevant objects, rather in the line of the
normalizations supported by [11]. (Of course, R(Nrel) = P (Nrel)) Explicitly,

P (k) =
NR(k)

k
R(k) =

NR(k)
Nrel

,

where NR(k) is the number of relevant items among the first k retrieved.

7 Experimental Results

20 queries were submitted, in the form of sketches belonging to the dataset. The
following tables (1 to 4) gather the results for the three measuring functions
teams and for their combination. For each evaluation parameter, the average,
minimum and maximum value are given. These values are followed by the num-
ber of queries reaching the minimum and maximum score respectively (indicated
as “# at min” and “# at max”).

Table 1. Evaluation of results for the distances

avg min max # at min # at max

R̃ank 0.1970 0.0 0.6839 2 1

P (Nrel) 0.4831 0.07 1.0 3 6

P (2Nrel) 0.3558 0.04 1.0 3 4

P (3Nrel) 0.2682 0.02 1.0 1 1

R(2Nrel) 0.4314 0.10 1.0 1 2

R(3Nrel) 0.5046 0.10 1.0 1 3
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Table 2. Evaluation of results for the projections

avg min max # at min # at max

R̃ank 0.2360 0.0171 0.5655 1 1

P (Nrel) 0.4795 0,07 1.0 5 7

P (2Nrel) 0.2701 0.04 1.0 2 4

P (3Nrel) 0.2096 0.02 1.0 2 1

R(2Nrel) 0.3543 0.10 0.67 1 1

R(3Nrel) 0.3942 0.10 0.75 1 1

Table 3. Evaluation of results for the jumps

avg min max # at min # at max

R̃ank 0.1539 0.0010 0.4622 7 1

P (Nrel) 0.4962 0,07 1.0 4 7

P (2Nrel) 0.2886 0.04 1.0 2 1

P (3Nrel) 0.2376 0.02 1.0 2 1

R(2Nrel) 0.3887 0.07 0.75 1 1

R(3Nrel) 0.4274 0.14 1.0 1 1

Table 4. Evaluation of results for the combination

avg min max # at min # at max

R̃ank 0.1794 0.0 0.4852 1 1

P (Nrel) 0.5117 0,07 1.0 2 7

P (2Nrel) 0.3719 0.04 1.0 2 3

P (3Nrel) 0.2703 0.02 1.0 2 1

R(2Nrel) 0.4749 0.10 1.0 1 2

R(3Nrel) 0.4856 0.10 1.0 1 2

The number of relevant items Nrel for each queried class is greatly variable:
it goes from a minimum of 2 to a maximum of 14. The reader should keep in
mind that good ranks have low values, while good precision and recall have
high scores.

The precision–recall graph of Figure 4 (left) refers to the combined distance.
The system runs on an Athlon 900 MHz based PC, under Linux OS. Response
time for a query is, for the moment, between 7 and 10 seconds.

Figure 4 (right) depicts the GRiP graph, plotting the value of precision=recall
versus − log2(g), where the generality g is the ratio of the number of relevant
items for each query (2 to 14) by the total size of the data set (494) [11].

Browsing the actual outputs of the queries is rather interesting. For instance,
the query consisting of a stylized bird yields a sequence of as uninteresting bird
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Fig. 4. Precision–recall (left) and GRiP graph for the combined distance

Fig. 5. A successful query

Fig. 6. An unexpected output

sketches, as Keypics; things turn interesting if we look at the real images to
which the Keypics point (Figure 5): Without the intermediation of the Keypics
— rough and childish as they may appear — it is unlikely that a “normal” query
would have retrieved such heterogeneous images. More remarkable is a query
with the USA flag, where the map of Nevada pops up, because the operator had
decided to add the Stars and Stripes — absent in the original image — in order
to convey a meaning to the Keypic (Figure 6; by the way, that image has not
been considered as relevant in the statistics of this Section).
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8 Other Descriptors

Of course, there are several shape descriptors and shape matching methods (see,
e.g., [17]). A comparison of methods is really possible only when performed on
the same data. We have actually done it recently on a data set of trade marks [3].
For the moment, let us examine similarities and differences with competitors.

Take the classical Fourier descriptors, for instance [9]. A coincidence in the
first few coefficients would grant that two shapes are roughly superimposable, dif-
ferences being limited to the higher frequencies. SF’s (with distance from center
of mass as a measuring function) recognize the presence and size of comparable
bumps even if they are differently disposed in the two images to compare; this
is a simple case of similarity with no (even rough) superimposition. We remind
that, anyway, also SF’s enjoy completeness theorems like Fourier descriptors [6].

Other descriptors, like order structure [2], turning function [13], chain code
histogram [12], need a sort of local superimposition and are mainly limited to
silhouettes. A much closer relative to size functions is the Reeb Graph [10], which
has been used so long — as far as we know — only for 3D objects.

9 Conclusions

Keypics — plastic graphical metadata — cannot have a chance of diffusing and
succeeding as universal bridges of the semantic gap, unless powerful, qualitative
tools are developed for comparing and retrieving hand–drawn sketches.

The feasibility of Keypics is shown by the experiment reported here. Size
Functions propose themselves as a possible candidate for retrieving images through
Keypics. Our research shows that different measuring functions can integrate to-
gether effectively. Of course, integration with still different methods should give
Keypics an even better chance.
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