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ABSTRACT

Size Functions and Support Vector Machines are used to im-
plement a new automatic classifier of melanocytic lesions.
This is mainly based on a qualitative assessment of asym-
metry. The program is used, at clinical level, with two
thresholds, so that comparison of the two outputs produces
a report of low–middle–high risk. Experimental results with
cross–validation are reported.

1. INTRODUCTION

Since 1980, cutaneous malignant melanoma (CMM) was
one of the ten most frequent malignant diseases in many
areas covered by the cancer registries population [1]. At
present, CMM is one the fastest growing malignant diseases
in the Caucasian population. The diagnostic accuracy of the
clinical examination of pigmented skin lesions, however, is
still rather poor. Literature results arise the evidence that:

• the ability of general practitioners to early diagnose
CMM with the naked eye is very low;

• the ability of dermatologists to early diagnose CMM
with the naked eye ranges from 50% to 75%;

• there is a high rate of false positive (causing unneeded
surgical excision).

Several rather successful computer programs have been
implemented to the aim of an automatic analysis of mela-
nocytic lesions and their discrimination between naevi and
melanomas (see, e.g., [2, 3, 9, 7]). Most of them keep
into account the traditional ABCDE parameters used by der-
matologists: Asymmetry (of boundary, texture and color),
Boundary (irregularity and dishomogeneity), Color (pres-
ence of several colors), Dimension, Evolution. In particular,
asymmetry is generally based on quantitative comparison of
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the two parts into which a lesion image is split by its prin-
cipal axes. Here we focus on asymmetry, perhaps the most
important cue. We have developed a new method for com-
paring in a qualitative, yet precise way the two parts of a
lesion at the sides of a splitting line. The mathematical tool
for comparison is the theory of Size Functions, applied to
three features: boundary shape, mass and color distribution.

For each splitting line of a pencil we get an asymme-
try measure, so forming a map (two for each of the three
features). Some characteristic numbers of the six maps are
finally fed to a Support Vector Machine. A classification
experiment has been led on data set of 977 lesions with
very good results. The whole research is a follow-up of the
ADAM project (5th Framework Program of the European
Union).

We are well aware that “qualitative measure” reads like
an oxymoron; of course, we mean that we compute a pre-
cise, objective, repeatable measure of the difference between
the two half images; yet, this difference is of a qualitative
kind, in that it is not bound to geometric deformations, su-
perimpositions or the like. This is actually the great advan-
tage of using topological and not just geometrical tools.

2. SIZE FUNCTIONS

Size Functions (SFs) are modular invariants of whatever sig-
nal the user is interested in [5]; in the present case, the con-
cerned features are: boundary shape, mass and color distri-
bution. Size functions are maps from the plane to the (ex-
tended) natural numbers. They depend on two inputs: an
object (e.g. a lesion boundary) and a real map, called mea-
suring function defined on it (e.g. distance from the center
of mass). Essentially, the SF registers the behavior of the
measuring function by using Morse theory (see [4]). SFs
are “qualitative” not only in that they are topological in na-
ture, but also in that a “similarity” based on them depends
on the user’s choice of a measuring function and of a dis-
tance between SFs adapted to the context.

Let us recall the definition of a SF. Consider a contin-



uous real-valued functionϕ : M → R, defined on a sub-
setM of a Euclidean space. TheSize Functionof the pair
(M,ϕ) is a functionℓ(M,ϕ) : R2 → N∪{∞}. For each pair
(x, y) ∈ R

2, consider the setMx = {P ∈ M : ϕ(P ) ≤
x}. Two points inMy are then considered to be equivalent
if they either coincide or can be connected by a continu-
ous path inMy. The valueℓ(M,ϕ)(x, y) is defined to be
the number of the equivalence classes obtained by quotient-
ing Mx with respect to the previous equivalence relation in
My. The discrete version of the theory substitutes the sub-
sets of the plane with a graphG = (V,E), the function
ϕ : M → R with a functionϕ′ : V → R and the concept of
arc–connectedness with the usual connectedness notion for
graphs. Figure 1 shows the size function obtained from a
curve with the distance from point C as measuring function.

Fig. 1. A curve and its SF.

3. CLASSIFICATION

SFs have a standard structure, the one of superimposed tri-
angles already apparent in Figure 1. This has an important
outcome, in that the relevant information can be condensed
in the vertices of those triangles [6]. Comparison of two im-
ages (as far as the criterion intrinsic to the measuring func-
tion is concerned) can then be carried out by comparing the

sets of these points. Several distances can be defined on the
set of SFs; one which is very successful is the matching dis-
tance. Distance from templates generally produces numbers
of some significance with respect to a classification. Unfor-
tunately, there do not exist archetypal naevi or melanomas,
so the task is harder than for classical classification prob-
lems. We use distances for measuring asymmetries, as we
shall see further on. These distances produce other charac-
teristic numbers. At this point, Statistical Learning comes
into play: Vectors of characteristic numbers are the input of
a Support Vector Machine.

4. SEGMENTATION

The first processing step is segmentation, i.e. the isolation
of the skin lesion from its background. (see Figure 2; the
separating curve is drawn green). This is carried out with
well-tested methods depending on several parameters, most
of which have been fixed by experiment. Tuning of one of
the remaining, permits the removal of most hairs. This is
notoriously a serious problem in the processing of derma-
tological images, and has been solved by the operations of
erosion and dilation coming from mathematical morphol-
ogy.

Fig. 2. A segmentation example.

5. ASYMMETRIES

The experience of dermatologists suggests that a major cri-
terion for suspecting malignancy is the asymmetry of var-
ious aspects of the lesion. We have followed this sugges-
tion by splitting each lesion in two halves by a straight line
passing through the center of mass. Comparison of the two
halves is then performed by computing the distance between
their Size Functions. This represents a definite progress
with respect to classical methods for detecting asymmetry:
these detected only geometrical asymmetry, while distances
of Size Functions determine also qualitative asymmetry. We
repeat the splitting for 45 equally spaced radial lines, so get-
ting distance as a function of angle (see Figure 3). From this
curve the software extracts a set of characteristic numbers:
min, max, average, min plus the value at90o from min, inte-
gral, first moment, variation, min derivative, max derivative,



integral of absolute value of derivative, variation of absolute
value of derivative. A Support Vector Machine with a third
order kernel is fed with these numbers, computed for each
measuring function. Actually, the vectors also contain three
more parameters: area, perimeter, and a bumpiness measure
coming from the SF of the whole lesion, with distance from
center of mass as the measuring function. An initial set of
experiments had been carried out with 90 lines instead of
45, but the hit ratio was just slightly higher, while almost
doubling computing time.

We have used six measuring functions to distil the struc-
ture of boundary, mass distribution and color distribution
respectively. The first is the distance (of boundary points)
from the splitting line. The second sums grey levels along
segments orthogonal to the splitting line. The third sums
distances of colors (in RGB space) of consecutive pixels
along segments orthogonal to the splitting line. Our ini-
tial experiments used just these three measuring functions.
Adding their three opposite functions improved the hit ra-
tios of 2 to 5 percentage points.

Fig. 3. One of the splittings of a lesion
and the whole curve of distances.

6. EXPERIMENTAL RESULTS

The present method has been tested on well controlled le-
sion images. The acquisition setup consists of a LEICA
650 M stereomicroscope and a Sony 3CCD-930 color video
camera. The illumination of the stereomicroscope consists
of a 12V/50W halogen lamp that creates a bundle of light
perpendicular to the area of interest. The digital images
have been archived by means of the DBDERMO Mips soft-
ware package (Dell’Eva–Burroni, Siena).

Over half of the data set used in the present research, had
already been the subject of a formal study of clinical diag-

H R1 R2 S

Specificity 83.84 87.1 86.24 87.16
Sensitivity 84 90 86.67 96.41

Table 1. Evaluation of classification results.

nostic validation using also the local population–based can-
cer registry (i.e. Registro Tumori Romagna) to cross-check
for possible false negatives, published on [10]. The data set
comes from the daily practice of one of us (Stanganelli);
of course, only “interesting” naevi had been acquired. All
melanomas and several naevi have been subjected to his-
tological test; all remaining naevi have been subjected to
follow-up. We have selected 977 images of melanocytic le-
sions (melanomas and naevi) acquired in epiluminescence
microscopy with a fixed 16fold magnification. The only se-
lection criterion was that the lesion be entirely visible.

The data set contains 50 melanomas (28 of them with
thickness less than 0.75 mm) and 927 naevi. Cross–validation
has been performed in three ways. In test H, every second
image was assigned to the training set (melanomas were
listed consecutively). In tests R1 and R2, a training set of
25 melanomas and 500 naevi was randomized from the data
set. The test set was formed by the complement (the remain-
ing 25 melanomas and 427 naevi). A fourth test (S) was
performed without cross–validation, with the whole data
set both as training and test set; we interpret the not much
higher scores of test S as a proof of stability. In Table 1 we
report, for each of tests H, R1, R2 and S, the specificity and
sensitivity of what we judge to be the best performances.

As a further information, in test S a 100% specificity
was attained only at cost of 4% sensitivity, but the decrease
of specificity to 93.64% yielt a jump to 70% sensitivity.
100% sensitivity was reached at 63.65% specificity. We also
report the ROC curve of test S in Figure 4.

Fig. 4. The ROC curve of the single–set S test.

Our system is not intended to be provided to the pub-
lic as a yes/no diagnostic tool; it yields a risk index in the
following way. Two classifiers, one tuned at high sensitiv-
ity, the other at fairly good specificity, give their response;
if they agree to classify the lesion as a naevus (resp. a
melanoma) then a low (resp. high) risk is stated; if they dis-



Naevus Uncertain Melanoma

Low risk 87.11 51.76 0
Middle risk 10.82 38.82 4.76
High risk 2.06 9.41 95.24

Table 2. Hit ratio of risk index computation.

agree, the output is of middle risk. A comparison has been
done between the output of this compound classifier and the
judgement of an expert dermatologist, who had classified
the lesions as sure melanomas, sure naevi and uncertain.
The percentages reported in Table 2 refer to the fractions of
the three classes (as classified by the human expert) labeled
by the machine with the three risk levels. Computing time
for risk index of a lesion is between 10 and 15 seconds on a
900 MHz Pentium III CPU.

7. COMPARISON

A true comparison with other research group is problematic.
As stressed in [8], there are quite different selection crite-
ria, melanomas/naevi ratios, data set sizes, analysis meth-
ods. Instead of reporting selected results of competitors,we
refer to Table 1 of that thorough paper. We just would like to
comment on very high sensitivity scores (over 95%): With
the noticeable exception of Seidenariet al. [9], such scores
seem to have been attained either with very small data sets,
or with high melanoma percentages, so in situations which
appear to be rather far from real–world ones. Even counting
them, the result of our cross–validated test R1 is placed in
the top third of the reported scores. Of course, the single–
set test S places us at an even higher rank. We hope that a
super partesauthority soon provides a certified test set with
hidden diagnosis, so allowing competing groups to compare
their methods on an equal basis. This will also be the only
possibility for a subsequent smart integration.

8. CONCLUSIONS

The true novelty of the presented method consists in the
use of a qualitative but objective mathematical tool, the Size
Functions, to evaluate asymmetry (of boundary, color, and
mass distribution). Three experiments with 977 lesions,
carried out under cross–validation, show very good perfor-
mances. Are the results sufficient to make our method def-
initely preferable to others? No! But its good hit ratio, to-
gether with the complete independence from the competi-
tors’ tools, make our method a tempting candidate for inte-
gration. In the words of one of the Referees, “Melanoma is
a horrible disease and any method that makes progress on it
should be encouraged”. In this line of thought, comparison
aimed to integration should maybe prevail over competition.
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