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Abstract
Size Functions and Support Vector Machines are used to imple-

ment a new automatic classifier of melanocytic lesions. This is mainly
based on a qualitative assessment of asymmetry, performed by halv-
ing images by several lines through the center of mass, and comparing
the two halves in terms of color, mass distribution and boundary.
The program is used, at clinical level, with two thresholds, so that
comparison of the two outputs produces a report of low–middle–high
risk. Experimental results on 977 images, with cross–validation, are
reported.

1 Introduction

The incidence of malignant melanoma in fair-skinned patients has increased
dramatically in most parts of the world over the past few decades. Because
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the prognosis of melanoma depends almost entirely on tumor thickness, early
detection of thin melanoma is important for the survival of patients [11, 16].
The diagnostic accuracy of the clinical examination of pigmented skin lesions,
however, is still rather poor. Literature results arise the evidence that:

• the ability of general practitioners to early diagnose CMM with the
naked eye is very low;

• the ability of dermatologists to early diagnose CMM with the naked
eye ranges from 50% to 75%;

• there is a high rate of false positive (causing unneeded surgical exci-
sion).

In the last decade dermoscopy has changed the evaluation of the diagno-
sis of pigmented skin lesions. Dermoscopy is a noninvasive technique that
enables the clinician to perform direct microscopic examination of diagnostic
features, not seen by the naked eye, in pigmented skin lesions. This technique
is more accurate than naked eye examination for the diagnosis of cutaneous
melanoma, in suspicious skin lesions when performed in the clinical setting.

A complementary effort is in the automatization of the diagnostic process.
Several rather successful computer programs have been implemented to the
aim of an automatic analysis of melanocytic lesions and their discrimination
between naevi and melanomas (see, e.g., [10, 14, 13, 8, 12]; see also [4, 3] for
a comparison between automatic and human performance). Most of them
keep into account the traditional ABCDE parameters used by dermatologists:
Asymmetry (of boundary, texture and color), Boundary (irregularity and
dishomogeneity), Color (presence of several colors), Dimension, Evolution.
In particular, asymmetry is generally based on quantitative comparison of
the two parts into which a lesion image is split by its principal axes. Here we
focus on asymmetry, perhaps the most important cue. We have developed a
new method for comparing in a qualitative, yet precise way the two parts of
a lesion at the sides of a splitting line. The mathematical tool for comparison
is the theory of Size Functions, applied to three features: boundary shape,
mass and color distribution.

For each splitting line of a pencil we get an asymmetry measure, so form-
ing a map (two for each of the three features). Some characteristic numbers
of the six maps are finally fed to a Support Vector Machine. A classification
experiment has been led on data set of 977 lesions with very good results.



The whole research is a follow-up of the ADAM project of the European
Union.

We are well aware that “qualitative measure” reads like an oxymoron; of
course, we mean that we compute a precise, objective, repeatable measure of
the difference between the two half images; yet, this difference is of a qualita-
tive kind, in that it is not bound to geometric deformations, superimpositions
or the like. This is actually the great advantage of using topological and not
just geometrical tools.

2 Size Functions

Size Functions (SFs) are modular invariants of whatever signal the user is
interested in [6]; in the present case, the concerned features are: boundary
shape, mass and color distribution. Size functions are maps from the plane
to the (extended) natural numbers. They depend on two inputs: an object
(e.g. a lesion boundary) and a real map, called measuring function defined
on it (e.g. distance from the center of mass). Essentially, the SF registers the
behavior of the measuring function by using Morse theory (see [5]). SFs are
“qualitative” not only in that they are topological in nature, but also in that
a “similarity” based on them depends on the user’s choice of a measuring
function and of a distance between SFs adapted to the context.

Let us recall the definition of a SF, adapted from the more general set-
ting of [1], where measuring functions are allowed a multidimensional range.
Consider a continuous real-valued function φ : M → R, defined on a subset
M of a Euclidean space. The Size Function of the pair (M,φ) is a func-
tion ℓ(M,φ) : R2 → N ∪ {∞}. For each pair (x, y) ∈ R2, consider the set
Mx = {P ∈ M : φ(P ) ≤ x}. The value ℓ(M,φ)(x, y) is defined to be the
number of the connected components of My which contain at least one point
in Mx. The discrete version of the theory substitutes the subsets of the plane
with a graphG = (V,E), the function φ : M → R with a function φ′ : V → R
and the concept of topological connectedness with the usual connectedness
notion for graphs. Figure 1 shows the size function obtained from a curve
with the ordinate as measuring function.
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Figure 1: A curve and its Size Function.

3 Classification

SFs have a standard structure, the one of superimposed triangles already
apparent in Figure 1. This has an important outcome, in that the relevant
information can be condensed in the vertices of those triangles [7]. Compar-
ison of two images (as far as the criterion intrinsic to the measuring function
is concerned) can then be carried out by comparing the sets of these points.
Several distances can be defined on the set of SFs; one which is very successful
is the “matching” (or “bottleneck”) distance.

Distance from templates generally produces numbers of some significance
with respect to a classification. Unfortunately, there do not exist archetypal
naevi or melanomas, so the task is harder than for classical classification
problems. We use distances for measuring asymmetries, as we shall see fur-
ther on. These distances produce other characteristic numbers. At this point,
Statistical Learning comes into play: Vectors of characteristic numbers are
the input of a Support Vector Machine.

4 Segmentation

The first processing step is segmentation, i.e. the isolation of the skin lesion
from its background. (see Figure 2; the separating curve is drawn green).
This is carried out with well-tested methods depending on several param-
eters, most of which have been fixed by experiment. Tuning of one of the
remaining, permits the removal of most hairs. This is notoriously a serious
problem in the processing of dermatological images, and has been solved by
the operations of erosion and dilation coming from mathematical morphol-



ogy.

Figure 2: A segmentation example.

5 Asymmetries

The experience of dermatologists suggests that a major criterion for suspect-
ing malignancy is the asymmetry of various aspects of the lesion. We have
followed this suggestion by splitting each lesion in two halves by a straight line
passing through the center of mass. Comparison of the two halves is then
performed by computing the distance between their Size Functions. This
represents a definite progress with respect to classical methods for detecting
asymmetry: these detected only geometrical asymmetry, while distances of
Size Functions determine also qualitative asymmetry. We repeat the split-
ting for 45 equally spaced radial lines, so getting distance as a function of
angle (see Figure 3). From this curve the software extracts a set of charac-
teristic numbers: min, max, average, min plus the value at 90o from min,
integral, first moment, variation, min derivative, max derivative, integral of
absolute value of derivative, variation of absolute value of derivative. A Sup-
port Vector Machine with a third order kernel is fed with these numbers,
computed for each measuring function. Actually, the vectors also contain
three more parameters: area, perimeter, and a bumpiness measure coming
from the SF of the whole lesion, with distance from center of mass as the
measuring function. An initial set of experiments had been carried out with
90 lines instead of 45, but the hit ratio was just slightly higher, while almost
doubling computing time.

We have used six measuring functions to distil the structure of boundary,
mass distribution and color distribution respectively. The first is the distance
(of boundary points) from the splitting line. The second sums grey levels
along segments orthogonal to the splitting line. The third sums distances
of colors (in RGB space) of consecutive pixels along segments orthogonal to



the splitting line. Our initial experiments used just these three measuring
functions. Adding their three opposite functions improved the hit ratios of 2
to 5 percentage points.

Figure 3: One of the splittings of a lesion and the whole curve of distances.

6 Experimental results

The present method has been tested on well controlled lesion images. The
acquisition setup consists of a LEICA 650 M stereomicroscope and a Sony
3CCD-930 color video camera. The illumination of the stereomicroscope con-
sists of a 12V/50W halogen lamp that creates a bundle of light perpendicular
to the area of interest. The digital images have been archived by means of
the DBDERMO Mips software package (Dell’Eva–Burroni, Siena).

Over half of the data set used in the present research, had already been
the subject of a formal study of clinical diagnostic validation using also the
local population–based cancer registry (i.e. Registro Tumori Romagna) to
cross-check for possible false negatives, published on [17]. The data set comes
from the daily practice of one of us (Stanganelli); of course, only “interest-
ing” naevi had been acquired. All melanomas and several naevi have been



H R1 R2 S

Specificity 83.84 87.1 86.24 87.16
Sensitivity 84 90 86.67 96.41

Table 1: Evaluation of classification results.

subjected to histological test; all remaining naevi have been subjected to
follow-up. We have selected 977 images of melanocytic lesions (melanomas
and naevi) acquired in epiluminescence microscopy with a fixed 16fold mag-
nification. The only selection criterion was that the lesion be entirely visible.

The data set contains 50 melanomas (28 of them with thickness less than
0.75 mm) and 927 naevi. Cross–validation has been performed in three ways.
In test H, every second image was assigned to the training set (melanomas
were listed consecutively). In tests R1 and R2, a training set of 25 melanomas
and 500 naevi was randomized from the data set. The test set was formed by
the complement (the remaining 25 melanomas and 427 naevi). A fourth test
(S) was performed without cross–validation, with the whole data set both as
training and test set; we interpret the not much higher scores of test S as a
proof of stability. In Table 1 we report, for each of tests H, R1, R2 and S,
the specificity and sensitivity of what we judge to be the best performances.

As a further information, in test S a 100% specificity was attained only at
cost of 4% sensitivity, but the decrease of specificity to 93.64% yielt a jump
to 70% sensitivity. 100% sensitivity was reached at 63.65% specificity. We
also report the ROC curve of test S in Figure 4.

Figure 4: The ROC curve of the single-set S test.

Our system is not intended to be provided to the public as a yes/no
diagnostic tool; it yields a risk index in the following way. Two classifiers,



Naevus Uncertain Melanoma

Low risk 87.11 51.76 0
Middle risk 10.82 38.82 4.76
High risk 2.06 9.41 95.24

Table 2: Hit ratio of risk index computation.

one tuned at high sensitivity, the other at fairly good specificity, give their
response; if they agree to classify the lesion as a naevus (resp. a melanoma)
then a low (resp. high) risk is stated; if they disagree, the output is of middle
risk. A comparison has been done between the output of this compound
classifier and the judgement of an expert dermatologist, who had classified
the lesions as sure melanomas, sure naevi and uncertain. The percentages
reported in Table 2 refer to the fractions of the three classes (as classified by
the human expert) labeled by the machine with the three risk levels.

7 Comparison

A true comparison with other research group is problematic. As stressed
in [13], there are quite different selection criteria, melanomas/naevi ratios,
data set sizes, analysis methods. Instead of reporting selected results of
competitors, we refer to Table 1 of that thorough paper. We just would like
to comment on very high sensitivity scores (over 95%): With the noticeable
exception of Seidenari et al. [14], such scores seem to have been attained
either with very small data sets, or with high melanoma percentages, so in
situations which appear to be rather far from real–world ones.

Even counting them, the result of our cross–validated test R1 is placed in
the top third of the reported scores. Of course, the single–set test S places
us at an even higher rank.

It would be interesting to compare — as suggested by a referee — the
asymmetry assessment given by our method with the one given by an expert
dermatologist. This is unfortunately not possible, since our evaluation does
not consist of a single measure, but of 66 (see Section 5), what compelled us
to use Support Vector Machines for classification.

In [15] a comparison of the performance of our system and of human op-
erators (three Dermatologists and three General Practictioners) was carried



ELM Clin GP ADAM
Sensitivity 75 74 81 84
Specificity 80 83 73 72

Table 3: ELM: Epiluminescence diagnosis (Dermatologists); Clin: Clinical
diagnosis (Dermatologists); GP: Clinical diagnosis by General Practitioners;
ADAM: our system.

out on a smaller data set of 31 melanomas and 103 naevi. We report the
results in Table 3.

8 Conclusions

The true novelty of the presented method consists in the use of a qualitative
but objective mathematical tool, the Size Functions, to evaluate asymmetry
(of boundary, color, and mass distribution). Three experiments with 977
lesions, carried out under cross–validation, show very good performances.
Are the results sufficient to make our method definitely preferable to others?
No! But its good hit ratio, together with the complete independence from the
competitors’ tools, make our method a tempting candidate for integration.
In this line of thought, comparison aimed to integration should maybe prevail
over competition.
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