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In this paper the relevance of perspective geometry for 3D scene
analysis from a single view is asserted. Analytic procedures for
perspective inversion of special primitive configurations are pre-
sented. Four configurations are treated: (1) four coplanar segments;
(2) three orthogonal segments; (3) a circle arc; (4) a quadric of
revolution. A complete and thorough illustration of the developed
methodologies is given. The importance of the selected primitives
is illustrated in different application contexts. Experimental results
on real images are provided for configurations (3) and (4). © 1993

Academic Press, Inc.

1. INTRODUCTION

Monocular computer vision is one of the most challeng-
ing approaches for 3D scene analysis. The basic idea of
monocular vision is to understand in which situations and
under which conditions a single 2D 1image can provide
enough information for a 3D interpretation of the scene.
A set of paradigms, known as ‘‘shape from X,’’ has been
developed within this reference, such as shape from shad-
ing, shape from texture, and shape from contours.

As is extensively documented in the computer vision

literature, this approach is especially suitable for model-
based object recognition and spatial localization, where
a strong a-priori knowledge about objects is available. In
this context, single image based methodologies are often
competitive with “‘effective’’ 3D methodologies, like ster-
eovision or active vision, both for computational cost and
for performances.
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Within industrial robotics, applications like object rec-
ognition and manipulation are good examples of situations
in which a lot of information (often in the form of CAD
models) is available both on the objects and on the envi-
ronment structure. Anyway, at present other new applica-
tions are emerging that seem as well suited for the monoc-
ular approach, like the auto-positioning and the landmark-
based navigation of autonomous mobile robots.

Among the methodologies of monocular computer vi-
sion, perspective inversion as a tool to infer 3D informa-
tion from 2D data plays a very important role, especially
for its consolidated mathematical foundations and for its
large applicability. Independently of the kind of applica-
tions, the basic problem of perspective inversion is to
recover the 3D orientation of some scene elements, re-
ferred to as primitives, starting from their 2D projection
in the image plane, exploiting model knowledge to obtain
the necessary constraints. The choice of the involved
primitives 1s a crucial point: they must be as much general
as possible, in order to be useful in many different applica-
tions, robust to noise, and efficiently detectable with con-
ventional low-level vision modules.

This paper presents some mathematical procedures
which allow us to compute the perspective inversion of
particular configurations of primitives, obtaining com-
pletely analytic solutions. We shall consider four configu-
rations:

(a) four coplanar segments projecting to four image
segments, |

(b) three orthogonal segments projecting to three image
segments; |

(c) acircle arc projecting to an elliptic arc in the image;
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(d) a quadric of revolution projecting to a region
bounded by a conic 1n the image.

Two configurations, (a) and (c), lie on a plane in space,
the other two are strictly three-dimensional. Two, (a) and
(b), are linear, the other two are quadratic.

- About the primitives, some considerations can be

made. Primitives must be ‘“‘relevant’ to the application,
in the sense that a significant, although incomplete de-
scription of the analyzed scene must be obtained through
their use. Besides, they must be ‘‘detectable’ 1n an effi-
cient and robust way from 1mages.

In the man-made mechanical object recognition do-
main, primitives like circles and segments are often pres-
ent; furthermore the possibility to have only partial views
of model primitives (for instance, for occlusion) 1s taken
into account both at low-level (during the feature detec-
tion) and at high-level (inside the back-projection method-
ologies). Something more about image primitives detec-
tion will be said in the application section. Not only
straight segments and circles, but also special geometric
3D primitives like quadrics of revolution can be thought
of as important components of object models. Moreover,
there are also some interesting situations, especially in
the field of self-localization of mobile robots, in which
structures that can be almost completely described 1n

terms of such primitives are very important for the task |

exploitation.

Section 2 gives some general information about our
approach and solutions also, 1n comparison with other
works in the same context. Sections 3, 4, 5, and 6 are
devoted to the complete exposition of our solutions for
each considered configuration. Section 7 describes briefly
a range of applications in which the presented methodolo-
gies are or can be used. Experimental results on real data
are presented in Section 8§, together with some details on
the adopted low-level processing and with some consider-
ations about the accuracy of the methods. Conclusions
and planned developments are exposed 1n Section 9. In
the Appendix some basic definitions and properties of
projective geometry are reported.

We wish to thank the referees for the accurate and
valuable suggestions, concerning in particular the expan-
sion of the mathematical parts. We also wish to thank
Elisabetta Bruzzone and Stefano Masciangelo for their
great help 1n revision and implementation.

2. THE PERSPECTIVE INVERSION APPROACH

In general terms, perspective inversion, or backprojec-
tion, consists in determining the possible 3D configura-
tions of scene elements that can project a given 2D 1image.
While the direct perspective transformation 1s immediate,
the inverse problem is more complex and cannot be gener-
ally solved, due to its nonlinearity and intrinsic ambiguity

that result in a large (often infinite) number of possible
solutions.

According to the paradigm “‘shape from X,”’ this work
can be classified in the class ‘‘shape from contour,”” In
the sense that the used primitives correspond to occluding
or pictorial boundaries of the scene objects. The image
primitives we have selected are straight segments and
elliptic arcs. In the following (except for the last configu-
ration), it will tacitly be assumed that straight image seg-
ments are projections of straight scene segments, and
elliptic arcs of circle arcs. This roughly corresponds to
the ““viewpoint general position assumption,”’ that has
been largely adopted in the application of perspectwe
geometry to 1mage analysis. |

Due to the intrinsic ambiguity of the problem, also ana-
fytic procedures like those described in the paper can
yield more than one mathematically feasible solution. The
number and the type of these spurious solutions will be
discussed in some detail for each case. An important point
is also the relevance of the correspondence among scene
and 1mage primitives, that 1s essentially a preliminary
phase for the application of perspective backprojection.
Although most of the algorithms presented here, as many
others reported in hiterature, need such information, a
study of the robustness of them in the presence of errone-
ous correspondences will be tried.

The first configuration, four coplanar segments, gives
a unique solution, if the corresponce hypothesis is correct.
When this hypothesis 1s wrong, it may happen that no
solution 1s possible. As the adjacency between segments
is not requested, the case of four points in a plane with
relative known positions 1s included in the solution. Other
works 1n literature, like [1-3], deal with coplanar seg-
ments or special configurations of points. In [4], 1t 1s
proved that for three lines the solution comes from a
fourth-degree equation. Anyway, no examples are known
to the authors of approaches similar to the present one
in terms of adopted mathematical tools.

For the second configuration, three orthogonal seg-
ments, the orientation problem can be solved up to a finite
ambiguity: two sets of directions will be obtained (see also
|5]). Also 1n this case 1t may happen that the orthogonal
interpretation cannot be found if the hypothesis on seg-
ments’ orthogonality 1s not correct. The three segments
need not meet 1in a point (unlike for similar results in [6]).
In [4, 7] the problem of three arbitrary oriented lines has
been reduced to the solution of an algebraic equation of
degree 8. In the particular case ot three orthogonal seg-
ments 1t reduces to a degree 4 equation, while the method
of the present paper gives a degrée 2 equation. Moreover,
in this method the orthogonality constraint can be relaxed
by allowing one of the three angles involved not to be
right. In this case the degree of the equation that must
be solved raises to 4.

In the third case, the backprojection of an elliptic arc,
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the computation allows determining two possible orienta-
tions of the lying plane without specific model knowledge.
The only assumption is that the elliptic arc in the image
comes from a circle arc. When the radius of the circle 1s
known, it 1s possible to compute the absolute position.
This procedure can be applied also to a set of points (five
or more points) inscriptable in a circle, but 1n this case
the hypothesis of punctual correspondence between 1m-
age and scene primitives is required.

A previous analytic solution to the same problem has
been already exposed by two of us in [8], but here the
same results are obtained more directly using more power-
ful and general mathematical tools.

In literature, the problem of perspective inversion of
conics (together with polygons and parametric curves)
has been faced for the first time by Haralick and Chu in
[9]. In their paper, the authors decompose the problem
in a first optimization phase which determines the three
rotation parameters and in a successive algebraic compu-
tation of the position of the geometric figure with respect
to the camera. Recently Dhome ef al. in [10, 11] have
given another solution of the same problem, completely
different from the one presented here.

The last configuration, the quadrics of revolution, con-
sists of several cases, for three of which (spheres, circular
cones, and cilinders) explicit formulae will be given. The
basic idea is recognizing the position in space of a quadric
surface of revolution from the projection of its contour
in the image plane. A different approach to the problem
of positioning objects of revolution starting from their
occluding boundary can be found in [10].

As a general comment, it can be said that the various
proposed methodologies have as common denominator
the use of some mathematical tools belonging to perspec-
tive geometry not very conventional in the computer vi-
sion community. In the Appendix the basic terminology
of projective geometry is recalled and some concepts that
are useful for our proofs are reviewed.

As for notation, - will mean matrix product, { , ) scalar
(or inner) product of vectors, /\ vector (or exterior) prod-
uct, AT the transpose matrix of A, V' the column vector
transpose of the row vector V, I, the identity matrix of
order n; if P and Q are points on an oriented straight line,
d(P,Q) is their signed distance, 1.e., the length with sign
of the segment PQ.

3. FOUR COPLANAR LINES

" Let four segments be given in the image and assume
that they are the projection of four coplanar segments 1n
the scene (Fig. 1). A natural enough way to solve the pose
estimation problem for the scene segments could be to use
the coordinates of the end-points of the image segments,
together with a priori knowledge on mutual relations of
the end-points in the scene. But this method turns out to
be somewhat unrehiable.
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FIGURE 1

A more robust algorithm can be based on the extraction
of the lines to which the segments belong. The actual
computation will then be carried on with points as data:
not the eight end-points of the segments, but four intersec-
tion points of line pairs. |

In the half-space of positive y, let four coplanar points
P.(i=1,...,4) begiven, such that they are the vertices
of their quadrilateral convex hull, whose boundary seg-
ments are P,P,, P,P;, P,P,, P,P,; assume that they are
not coplanar with the origin O of the reference frame. Let
also F be the intersection point of the lines P,P; and P,P;.
et further O, be the projection of each P, on the image
plane y = f from O, and F be the projection of E. Neces-
sarily, the points Q. are vertices of a quadrilateral and F
1s the intersection of the lines Q,0Q; and 0,0,.

Assume the coordinates in the plane y = f of each {,
to be (X;, Z.); these are the image data. Assume also
d. = d(P;, E) to be known for each i, from model knowl-
edge, with respect to an arbitrary orientation of the lines
PP, and P,P,. Finally, set

(X3 o Xz) (X4 - Xz)
(Zy—2,) (Zy— 2y)

| (X4 o Xl) (X3 o X1)
(Z4 _ Z1) (Z3 - Zl)

(Xl - Xz) (X4 o Xz)
_(Zl o Zz) (Z4 o Zz) ’

(X, — X)) (X5 - X))
(Zz o Zl) (Z3 o Zl) |

PrOPOSITION 3.1. Let points P, and Q., and (X;, Z,),
d., b;, E, F be given as above (i € {1, 2, 3, 4}). Then the
plane containing the points P, is parallel to the one of
equation

X y Z
(de]bl T X3d3b3) f(dlbl d3b3) (‘Zidlbl il ZBd:)Jb})
(dezbz + Xydyby) f(dyby + dyby) (Z,d,b, + Z,4d,by)
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Proof. By intersecting the lines 0,0, and 0,0, one can compute the coordinates of F as

Xp, Zp)' = ——————
( f F) (Z3_Zl)(X1“X3)

(Z4 o Zz)(Xz o X4)

Now let V,, W, be the ideal points of the lines PP,
~and P,P,, respectively (i.e., their “‘points at infinity’’; see
the Appendix), and let V = (X, Y,), W = (X, Yy) be
the vanishing points of those lines, i.e., the projections
of V, and of W, respectively, on the image plane from
0. Then from the above computation and from the invari-
ance of the cross ratio (see Theorem A.1 and Remark A.1
of the Appendix) we obtain
RVFQIQg, — RVmEP1P3 ;
by developing the computations in the context of Remark

A.2 of the Appendix and gathering the quantities b; we
obtain |

(X1 — Xy) b, _ ff_g_
"(X3 _XV) bs dlj

the same equality of cross ratios yields also an analogous
relation between the Z coordinates of the same points;
analogous relations come from the equality Ryyg o, =

Ry, _gp,p,- From all this we obtain

(XW: ZW) —
(Xydsby + Xydyby, Zodoby + Z,d,b ) (doby + dby).

(XW: ZW) —
(Xydoby + Xodyby, Zodohy + Zudib)(dby + diby).

By the definition of V and W, the line VW is the vanishing
line of the plane containing the points P,, i.e., the projec-
tion of i1ts ideal line (or ‘‘line at infinity’’) from O. So the
plane II passing through O, V, and W has the same ideal
line; otherwise stated, it is parallel to the required plane.
The equation of II is the one given in the statement. M

Remark 3.1. The indeterminacy in position of the
plane can be solved by using the actual length of the
segments 1n the scene, or the mutual distances of their
end-points, known from the model.

Now an example of computation follows; although it
1s rather artificial, it hopefully can convey the idea of the
precision of the method.

Let the focal length be f = 1, and let the four corner

points at the intersections of the image lines be Q, = (-3,

13 0)5 P = (%n 15 0)3 Q3 = (%:- 15 %)5 Q4 = ( %: 1: %)a Furthler

| ((Zg, _ Z1)(X2 — X4)X1 o (Xl - X3)(Z4 o Zz)Xz + (X1 o X3)(X2 o X4)(Zl - Zz))
(Zy —Z)Zy— L)Xy, — X)) + (Zy = Z)(Xy, = X)Zy — (X, — X5 )2y, — Z)Z, ]

let the distances d, = 3V29/7,d,=6V30/7,d,=
4\V'29/7, d, = V'30/7 be known from the model. From the

coordinates we obtain b, = §, b, = —35, by = —4§, b, =

z7. From all this we obtain the equation

2V 870 -
5103 (x+2y+2)=0

of the plane through the origin O, parallel to the one on
which the scene points P, lie. The latter plane will then
have equation of the form x + 2y + z = k.

Now, intersecting the plane x + 2y + z = k with the
line OQ, and the line OQ; we obtain for each such plane,
two “‘candidate’ points of coordinates (—4/8, 9k/16, 0)
and (k/8, 3k/8, k/8), respectively. The square of their
Euclidean distance is 294%/256; it must equal (d, + d,)* =
29, so we obtain the equation k* = 256; of the solutions
+16, the only physically acceptable is the one for which
the points P, are ‘‘visible’’, 1.e., have positive y. Therefore
the resulting plane is x + 2y + z = 16; the same k£ = 16
gives at once P, = (-2, 9, 0) and P, = (2, 6, 2). The
remaining two points P, = (4, 6, 0) and P, = (—1, 8§, 1)
come from the intersection of the plane with the lines
00, and 0OQ,.

4. THREE ORTHOGONAL LINES

When three orthogonal straight lines are present in a
scene, they project to three straight lines on the image
(assuming general position of the viewpoint). Generally
these projected lines are not orthogonal (see Fig. 2). The
problem 1s to compute the spatial orientations of the three

scene lines, starting from their projections. In the real

case, of course, only segments will be in the scene and
in the image, but it is easy to extract from them the equa-
tions of the lines they lie on. -

The presented method does not require the three lines
to meet in a common point, allowing consideration of
model primitives from different faces of the object. In
fact, the problem can be solved in the ideal plane, so only
directions are considered. In addition, an extension is
proposed to allow one of the lines to be not orthogonal
to the other two (Remark 4.3).

PROPOSITION 4.1. Let three straight lines s, (i = 1, 2,
3) be given on the plane y = f, and let their equations be
respectively ax + c;z = —b,f. Let also W; = (a;, b;, c¢;)
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FIGURE 2

(i=1,2,3) and A, B be any two (but nonproportional
and nonnull) of the three triples (—bs, a3, 0), (—c3, 0, a3)
(0: — (3, bB)

Then a triple of orthogonal straight lines r; exists in
space, such that s; is the projection of r; for each i, iff the
quadratic equation

(A-M-ADON + 24 - M- BYO\u + (B- M- BHu? =0,
where

M= W, WL — (Wi - W, + W, - W)/2
admits real solutions. In that case, for such a solution

(A, ') the ideal point of ry has homogeneous coordinates
0, X5, Y5, Z;), where (X;, Y5, Z;) = NA + u'B.

Proof. Assuming that three orthogonal lines r; exist,
which project to the image lines s;, they must each lie on
the plane Il. passing through the origin and intersecting
the image plane y = fin s;. These planes respectively
have equations a;x + b;y + ¢;z = 0, and the ideal points
V. of the lines r; must belong to the ideal lines of such
planes, since the hines r;, themselves lie on the planes 11..

In the following argument all points and lines will lie
on the 1deal plane I1,,, so we shall always skip the equation
t = 0 and the first homogeneous coordinate (equal to
zero). So the ideal points of the lines ; will be represented
by V; = (X,, Y;, Z,), and the ideal lines of the planes will
be denoted by the homogeneous equations of the planes
themselves.

- V,and V, must be orthogonal to V;, so they must satisty
the equation

Xzx + Yy + Z;z2 = 0

they also represent ideal points lying on the first two
ideal lines, respectively. Therefore V), is determined, up

to proportionality, as a nonnull solution of the linear ho-
mogeneous system

ax+ by+cz=0
Xax+ Y,y +7Z,2=0

and V, as a nonnull solution of

a,x+ b,y +c,z =0
Xsx+ Yy + 232 = 0;

SO, up to proportionality, V, = W, AV, (i =1, 2).
Finally, there 1s the orthogonality condition for V, and
V,,1.e.,(V,, V,) = 0:

(W, ANVy), (W, A V) =0
whence, by standard formulae,
(Wl,- Wz><V3: V3> = (WU V3><Wz: V3> = 0;

this is a homogeneous quadratic equation in X,, Y;, Z-,
with coethicients given by the image data a;, b,, ¢; (i = 1,
2). Explicit computation of the quadratic form on the left-
hand side shows that the corresponding matrix is

M= W, - W)l — (Wi - W, + W, - W)/2;

1.€., the equality expressed above in terms of scalar prod-
ucts can be rephrased as the fact that V, must satisfy the
equation

xyz)-M-(xyz2)T=0.

This equation can be seen as representative of a quadric
In space or (together with the equation ¢+ = 0 of Il as
representative of the conic at infinity €, of the same quad-
ric. So V; (or, better said, the corresponding ideal point)
must belong to the conic at infinity 6,. On the other
hand, V,; must belong to the ideal line #; of I, , which has
equation (¢ = 0 always understood) |

C14 — 0.

ax + by

So the required 1deal point must belong to the intersection
of ‘6, and ¢;; now, by standard methods the intersection
points can be found as AMA+ w'B with A and B distinct
points of the line and (\’', u’) a nonnull solution of the
equation

(A-M-AHDN +2A- M- -BHYaxu + (B-M - BHu? = 0;

at least two of the triples (—b5, a5, 0), (—c;5, 0, a3), (0,
—c3, b;) are nonnull and not proportional solutions of
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a;x + byy + c¢;z = 0, so they represent such distinct
points A, B.

Conversely, if a solution of the equation exists, then
there is an intersection of the line #; and the conic 6, so
that there exists a triple of orthogonal directions of lines
in space which project to lines parallel to s, s,, $3. In
this case, by parallel displacement it is possible to find
three lines which project exactly to s,, s,, 55 (actually for
each s; there are infinitely many possible r; projecting to

it), W

Remark 4.1. A suitable change of basis in R’ (e.g.,
one for which W, assumes second and third components
equal to zero) shows that M has two equal eigenvalues,
and a third eigenvalue which either vanishes or has a sign
opposite to the one of the other eigenvalue. In the former
case the conic €, reduces to a point; in the latter it has
infinitely many points.

Therefore, however the first two image lines are given,
a third image line always exists such that an interpretation
of the triple as the projection of three orthogonal space
lines is possible. Actually, this interpretation is unique
(up to parallelism) in the case of a zero eigenvalue or In
the case of tangency between the conic and the line at
infinity. In all other cases, two possible triples of orthogo-
nal directions c¢an be found. On the other hand, thcre
always exist also ‘‘third lines’” s, which make this inter-
pretation impossible; this is the case of an ideal line £
external to the conic at infinity 6.

Note that the homogeneous equation in A and w, when
solvable, always admits infinitely many solutions. This
does not give a further ambiguity, because these solutions
form either one or two classes of proportionality; replac-
ing a solution (\', ') with a proportional one does not
change the resulting point, since we are working with
homogeneous coordinates.

- Remark 4.2. When solutions exist, two ‘‘degrees of
freedom’’ can be eliminated by using the mutual distances
of the lines in the model, but the finite ambiguity due to
the possible two solution classes and the remaining simple
infinity of interpretations can only be solved by using the
length of the actual segments.

" Remark 4.2. The orthogonality condition can be re-
Jaxed by allowing the directions V| and V, to form a given
angle «. Then the condition (V;, V,) = 0 1s replaced by
the equality

(V,, V) = (cos a)(Vy, ViXV,, V.

Again, by substituting V; with W; /A V5 (i = 1, 2) one
obtains the equation, in X,, Y;, Z,, of a curve at infinity;
this is no longer a conic, but a quartic. This brings with
it a greater difficulty of solution for the system yielding

—

the intersection with the third i1deal line, and a greater
ambiguity. Still, this 1s the same degree of the equation
obtained in [4] for the simpler case of three right angles.

Remark 4.4. Again 1n comparison with the results of
[4], it should be noted that Proposition 4.1 provides the
direction of the lines with no requirements of further com-
putations. Of course, [4] maintains the advantage of a
greater generality.

Again a mathematically minded example: Let f = 1,

and let the three image lines s, s,, s; have equations x
—z=0,2x+2—-1=0,3x+ 5z — 1 =0, respectively.
Consequently, one has W, = (1, 0, 1), W, = (2, —1, 1),
W, = (3, —1, 5). It 1s now necessary to decide whether
a triple of orthogonal lines 1n space exists with the given
projections, and if this i1s the case, one wants to determine
the direction of the line r; projecting to s;. Obviously,
also r, and r, can be analogously determined by permuting
indices.
- The three triples of Proposition 4.1 are (1, 3, 0), (—3,
0, 3), (0, —5, —1); as A and B choose, €.2., the second
and third triple, respectively. The outcoming maftrix 1s
then

The equation to discuss 1S
—220% + 33 A + 22u? = 0;

this actually is solvable, and its solutions are A = —u/2
and A = 2u. The first solution yields (setting w = 2) the
triple (=5, 0, 3) — 2(0, —5, —1) = (-5, 10, 5); the second
solution gives (setting uw = 1) the triple (—10, —35, 5).
These are two possible directional vectors of the line 7.
Another way of expressing it 1s to say that r; has an ideal
point of coordinates either (0, —5, 10, 5) or (0, —10, =5, 5).
Since directional vectors (and homogeneous coordinates)
are defined up to proportionality, we can use (0, —1, 2,
1) and (0, —2, —1, 1) as well.

The same procedure vyields (0, 0, 1, 1) and (0, —1, —1,
1) for »,, and (0, 1, 0, 1), (0, —1, 1, —1) for ;. By the
required orthogonality of the lines, we finally have either
0,1,0, 1,0, —-1,-1,1), 0, -1,2, Dor (0, —1, 1, —1),
(0,0, 1, 1), (0, —1, 2, 1) as triples of 1deal points.

5. CIRCLE IN SPACE

The problem of inverting the perspective projection for
an ellipse I', which is known as coming from a circle in
the scene, 1s reduced to finding out those planes whose
intersection with the cone over the ellipse and with the



72 FERRI, MANGILI, AND VIANO

Ly
-
L
-
- —_—

— = == = o=
1
— . = = aE e

'-":‘::-:‘E:E:::::::::I::;.:..::r.’:.:::"‘_":"::-.' X i o

FIGURE 3

vertex in the origin are circles (see Fig. 3). The radius
value will allow choosing, among an infinity of parallel
planes, the actual one. Except for particular settings, two
pencils of parallel planes are possible for a given ellipse.

In the following ¢, x, y, z will be used as homogeneous
coordinates, so that the usual Cartesian coordinates x, y,
z come from setting ¢+ = 1, and the 1deal plane 11, (1.e.,
the plane at infinity) has equation ¢ = 0.

Let I' be the conic section of the focal plane y = f
represented by the equations (1in Cartesian coordinates)

ax2+cxz+gzz+bx-l-€z-l-d=0

y = f.

Then the cone € over I with the origin as vertex has
equation (again 1n Cartesian, but actually also in homoge-
neous coordinates) @ = 0, where

® = ax? + 2yxz + nz2 + 2Bxy + 2eyz + 8y?

and where a« = a,y = ¢/2, n = g, B = b/2f,e = el2f,
& = d/f*. This is easily verified: ® is homogeneous
quadratic, so @ = 0 represents a cone with the origin as
vertex, and the intersection with the focal plane yields I.
Now consider the matrix

a B vy
M=|B o ¢
Y &€ 1

PROPOSITION 5.1.  The matrix M admits real eigenval-
ues k; = ky, = k. The quadratic equation ® — k,® = 0
represents the union of two (possibly coincident) planes
11,, 1L, passing through the origin. All and only the planes

parallel to 11, or to I, intersect the cone 6 in circles.

Proof. Every circle can be considered as the intersec-
tion of its plane IT with a suitable sphere 2 ; therefore the
intersection II N X N I, of the circle with the ideal plane
11, coincides with the intersection II N 7, of the plane I1
(or of 1ts 1deal line) with the absolute circle (Theorem A.2
of the Appendix). Thus, if a plane II meets the cone 6 in
a circle, then Il N € N 11, = II N #,,; this means that the
1deal line of II passes through two points common to the
absolute circle 7, and to €, = € N 11, the conic at infinity
of €. It 11 meets € 1n a circle, so does every parallel plane;
therefore one just has to look tor the ideal lines of the
interested planes. The argument will be entirely devel-
oped in the ideal plane II,, so the equation ¢t = 0 will
always be skipped. So now ® = 0 represents, in 11, the
conic at infinity €, of €.

- It 1s recommended to follow the next argument on Fig.

4a (respectively on Fig. 4b for the exceptional case of
bitangency). Although a drawing 1s impossible, since 7,
and most other elements are imaginary, the picture can
be a usetful scheme.

Consider the pencil % of conics (in I1;) generated by %€, '

and #,, 1.¢., the set of all conics represented by equations
which are linear combinations of the equations of %, and

FIGURE 4
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#,. All conics of P pass through the common points ot
%, and ¥,,. These points are necessarily nonreal, so they
come in conjugate pairs A, A, B, B (with the possible coin-
cidence A = B and A = B, in which case 6, and ¥, are
bitangent). Then ¢ contains three degenerate conics:
AB U AB, AA U BB, AB U AB (in the bitangency case
one has two: the union of the two common tangents and
the line AA ‘‘counted twice’’). Since a real line containing
a nonreal point must also contain its conjugate, only the
second degenerate conic splits into two real lines (bi-
tangency case: the line counted twice is real, the two
tangents are not.) The real lines of this degenerate conic
are the requested ideal lines (in the bitangency case one
has only one line, so only one pencil of planes).

Each conic of % (except #,) is represented by the equa-
tion ® — kO = 0 for a suitable k¥ € R. The discriminant
of €, 1is M, so the one of the generic conic of % 1s (M — kI5).
The degenerate conics correspond to null determinants
of the discriminants; therefore, the previous geometric
reasonment implies the existence either of three distinct

real roots of |M — kI, or of two real roots, of which one

has multiplicity two; these roots actually are the eigenval-
ues of M.

One is now left with the problem of determining which
of the three (or two) roots corresponds to the conic of
interest. The case of two roots (bitangency) is immediate,
since the line counted twice corresponds to the double
root.

There remains the case of three distinct roots: one ot
them yields the requested conic, formed by two distinct
real lines. Now, the discriminant of such a conic has three
eigenvalues: one null, one positive, and one negative. The
characteristic polynomial of (M — k) is

M — kI, — NL| = =N+ N (—3k+a+8+m) + N3k
+2k(e+ 86+ 1) — ad—an —dn + B+ y* + &]
—k+k(a+8+mn) —k(ad +an+8n—B%>—v>—¢&?)

+ (adn + 2Bye — ae? — &y* — nB°).

Call b, the term of degree zero (in \) and b, the coetficient
of A. Then b, obviously is |M — kI;|, and —b, is the sum
of the pairwise products of the eigenvalues of (M — k1)
Therefore, one is led to select those values of & which
make b, null and b, positive. On the other hand, b, is the
derivative of b, with respect to k; by, as a function of &,
is a cubic polynomial with three distinct real roots and
with negative leading coefficient, so the root at which the
derivative is positive is the intermediate one %, .

Once the quadratic form (® — k,®) has been decom-
posed into a product of two linear forms (or recognmzed
as a square), the arising linear equations represent ideal
lines in IT,, but in 3-space they can bé seen as equations
of planes passing through the origin and meeting II; in
those 1deal lines. W

Remark 5.1. The pencils of parallel planes which in-
tersect € 1n circles are obtained by adding constants to
the linear forms of the decomposition of (& — 4,0) and
equating to zero.

From a computational point of view, Proposition 4.1
provides a procedure which consists in computing the
eigenvalues of M by solving a third-degree polynomial
equation. The second step is to decompose the quadratic
form into a product of two linear forms; this can be accom-
plished by solving the following system:

vw, = a—k,
U,w, = & — k,
UsWz = M — kzl
VW, + Uaw = 2f3
U, Wi + U3w, = 2g

UiWs3 T 3wy = 2,

where (v,, v,, U3) and (w,, w,, w,) are free vectors normal
to the planes. Solving the system is rather simple, since
the variables appearing in the system are separable.

Let Q) be a circle, % be the circumscribed cone from O
to it, and M be the matrix associated with the conic at
infinity of ¢ with respect to the chosen reference frame
S of origin O. Then let (u,, u,, u;) be a free vector of norm
one, orthogonal to the plane on which (2 lies, oriented so
that, if applied in O, it points towards the plane. Further,
let E be an orthogonal matrix having (u,, u,, u;) as the
second row, so it is a matrix change of an orthogonal
reference frame from S to a frame S’ having the y' axis
orthogonal to the plane of (1.

PROPOSITION 5.2. Let M, Q, (4, u,, us), 6, E be as
above, and let R be the radius of ). Setting M' = E -
M - E' = (m]), then for the coordinates (X, Y., Z.) of
the centre of ), with respect to S, it holds:

(XC YC ZC') —
sign(m;;) R

(=mj; my —mp) - E.

12 ' ! !
\/mlz T My3 — MMy,

Proof. 1Inthe new reference frame ', let (X, Y., Z,)
be the coordinates of the centre of {); so, the plane where
Q lies has the equation y’ = Y.(>0); the equation of the
cone € with respect to S’ is then (with A # 0)

X! yA
)\(x’z — 2—I;§x’y’ 7't —=2=y'7
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and the associated matrix M' = FE - M - Et is

I —X/Y! 0
M = x| XY, X*+Z*—R3»/Y? -Z!Y! }
0 —Z'1Y [ '
therefore,
Yr- — R‘mill
Vm{% T mﬁ% — My My
X, = =Ymp/my, Z,=—Y.myu/my

and the final result comes from multiplication with the
matrix E of the change of frame. W

Remark 5.2. A matrix E as the one required is easily
found by building an orthonormal basis of the orthogonal
complement of (u,, u,, u,).

Remark 5.3. Unlike the earlier paper [8] by two of us,
the article [10] uses a starting point which is very similar
to the one presented here. However, it should be noted
that our Proposition 5.1 provides the pencils of planes
out of just one of the eigenvalues of M, thereby diminish-
ing the effect of approximation in the solution of the char-
acteristic equation. Moreover, here inversion of trigono-
metric functions 1s never required.

As an example, with focal length f = 1, assume that
the 1mage ellipse has equation

17x* + 22 = 2x+7=0

and that the circle projecting to it has radius two. The

+1/V2 +1/V2 0

-1/V2 +1/V2 0],
0 0 1

E =

and, by PrOp'osition 5.2, one can compute the coordinates
of the circle centre as (4, 6, 0).

6. QUADRICS OF REVOLUTION

The next problem to be faced 1s the one of recognizing
the position in space of a quadric surface of revolution QO
from the projection I of its contour on the image plane.
The same notation as above will be used tor the conic I,
the cone %€ projecting I' from the origin O, and the related
coefficients. |

Two orthogonal reference frames will be used (see,
e.g., Fig. 6): the standard ene § with the vantage point

matrix 1s
17 —=11 0
M=1|-—11 7 0
0 0 1

and has eigenvalues 1, £ V 146; the intermediate eigen-
value 1s then one. One can now substitute it into k& in the
equation

(17x*+ 22— 2x+7) — k(x> +y2+ 2) =0

and obtain

16x* — 22xy + 6y? = 0.

This can be decomposed into two plane equations by
solving the system

vw, = 16

Uy Wy = 6

U3W3 — 0
UIWZ _l_ Uzwl — _22

U, Wy + Usw, = 0

UiWy + Uy = 0;

this yields (=8, 3, 0) and (=2, 2, 0) as vectors normal
to planes which contain circles projecting to the image
ellipse.

Assume now that, possibly by the use of other primi-
tives, one can determine that (—2, 2, 0) is the correct
vector. Then one obtains

1 =5 0
whence M =1-5 23 0
- 0 0 1

O as origin and y = f as the equation of the image plane,
and a new trame S’ with the origin O’ in the center of O
(or anywhere on the rotation axis, if Q is a cylinder)
and with the z’' axis coinciding with the rotation axis.
Moreover, assume that the vantage point O lies in the

~x" = 0 plane and that its second coordinate with respect

to §' 1s negative.

The purpose 1s to detect the position of O’ and the
ortentation of the z' axis with respect to 5. In order to
accomplish that, one just has to compute eigenvalues and
ergenvectors of a form representing €, from the canonical
form of Q; these are invariant (up to multiplicative factors)
under trame change: the ratios between eigenvalues will
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yield information on the position of O’, while a normalized
set of eigenvectors will lead to the reciprocal orientation
of the coordinate axes of the two reference frames.

From now on the quadric Q will have, with respect to
S', equation

rz> + s =0

Irz + yrz

and (0, 7, v), with 7 < 0, will be the coordinates of the
vantage point O.

6.1.

If D is the matrix associated with a quadric, then the
circumscribed cone from a fixed point of homogeneous
coordinates P = (¢, x', y', z') (i.e., the locus of the tangent
lines to the quadric through the point) has equation

The General Case

P-D-XT—(®P-D-PYX' -D-XT)=0

with X' = (¢', x’, y', z') as the row of unknowns (see,
e.g., [17, p. 387])).
In our case, we have P= (1, 0, =, v) and

0
0
1
0

C}Qc:am
o O = O
- o O O

from which the cone € circumscribed from O has equation

(—r? — s — 7O+ (—rv? = )y + (—rs — 797"
+2(rrv)y’z" + 25Ty’ + 2rsvz’ + (—rsv* — 579 = 0

and its associated matrix is

—(rsv? + s7%) 0 ST rSv
( —(rv? + s + 77) 0 0
C= ST 0 —(rv? + ) FTV
FSv 0 rTy —(rs + r7%)

The directions normal to the planes of orthogonal sym-
metry of ¢ are given by the eigenvectors of the minor

A t+s+7) 0 0
N = 0 —(rv* + 5) FTV
0 FTV —(rs + r1?)

whose eigenvalues are

N = —(rv? + s+ 79

N, = ;( (s(r + 1) + r(v* + v%)

+ \/(S(r — D+ r(r? — v?))* + 4riry?)

Ay = ;( (s(r + 1) + r(r? + v9))
— \/(S(r — 1) + (7?2 = v + 4rir7?).
Setting @ = s(r — 1) + r(#* — v and ¢ =

Vw? + 4r?r%v2, one has mutually orthogonal eigenvectors

vi =(1,0,0)
v, = (0, —rmv,(w — ¥)/2)
vy = (0, — rrv, (w, + §)/2),

where components are taken with respect to §'. Note

for either v, or v, (but not for both at the same time)
may collapse to the null triple; in those cases a nonnull
eigenvector can be recovered from the orthogonal com-
plement of the other two. |

The same vectors v, are expressed, with respect to S,
by the triples which are eigenvectors of the matrix

M =

M O

< W R
3 o 2

where M represents the conic at infinity of ‘€ with respect
to §, and is obtained from the data as in Section 5.

LLEMMA 6.1.1. Let B (resp. B') be the orthogonal ma-
trix whose ith column is the triple of components of v;

“with respect to S (resp. S') divided by its norm. Then the

third row of E=B' - B"' = B’ - Bl is the triple of compo-
nents of a unit vector of the rotation axis with respect
to S.

Proof. B (resp. B') is the matrix of the change from
the ordered basis (v, v,, v;) to the basis belonging to §
(resp. S'). So, since the origin is the same in both reference
frames, E is the orthogonal matrix of the change from §
to S’. Therefore its third row is the triple of components
of a unit vector of the z’ axis with respectto S. W

Note that the entries of E are functions of the data and

that, for particular values of the parameters, the formula of », s, 7, and v.
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LEMMA 6.1.2. There is an ordering of the eigenvalues
(AN, A3) of N and an ordering of the eigenvalues (i, ,
w3) of M such that the two triples are proportional. In
particular, the eigenvalues of the two matrices have the
same multiplicities.

Proof. Up to multiplication by a nonzero factor, M
and N are similar matrices.

Since r and s are known factors, the computation of 7
and v is the last step to the solution of the problem. Now,
7 and v can theoretically be obtained by equating two
ratios of pairs of eigenvalues A; with the corresponding
ratios of eigenvalues (u; say) of M. In the general case
this involves some computational problems; however,
there are three classes of quadrics for which essential
simplifications occur.

Cones and cylinders of revolution and spheres are com-
monly used primitives, for which the values of r and s
allow the simplification of the square root in ¢. The geo-
metrical counterpart of this algebraic fact is the particu-
larly simple form of the circumscribed cone: a circular
cone for the case of spheres (Fig. 5), a pair of planes for
cones and cylinders (Fig. 6). Examples of computation
will be given, with focal length f= 1.

6.2. Spheres

PrROPOSITION 6.2.1. If Q is a sphere, then M has a
multiple eigenvalue , and a simple one w,. If v, is an
eigenvector relative to ., with positive second component
(with respect to §), then

OI o O — \/S(Ml/MZ o 1) V2/HV2H.

Proof. Spheres correspond to r = [ and s < 0. The
matrix N then has two eigenvalues, one of which has
multiplicity 2:

)\.1 )\3 — _(S + 72 + If'z)

Ay

i

—S-

The equality u,/m, = A/\, coming from Lemma 5.1.2
yields

2+ =]|0" - O|F = s(u,/p, — 1).

The eigenspace of A, = A; is the linear closure of {(1, 0,
0), (0, v, —7)}. The statement then comes from the fact
that the eigenvectors relative to A, are generated by (0,
T, v) (1.€., they are proportional to O’ — O). B

EXAMPLE., lLet s =

—1 and the 1mage conic I' have
equation ‘

103x% + 108z% — 12xz — 60x — 40z + 12 = 0;

FIGURE 5

the corresponding matrix is

/103 =30 -6
M=1-30 12 =20
—6 —-20 108

and 1ts characteristic equation is
w’ — 223u* + 12320 + 12544 = 0.

The double eigenvalue is 112 and the simple one is —1;
an eigenvector relative to the latter value is (3, 10, 2).

This implies, by Proposition 6.2.1, that the coordinates
of the sphere centre are

3, 10,2)
V113

V113 = (3,10, 2).

FIGURE 6
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6.3. Cones and Cylinders

Contours of cones and cylinders project to pairs of
straight lines in the image plane, so we shall extract intor-
mation in detail not from the equation of a conic but from
the most natural data, 1.e., the equations of the lines. Let

ux + vz +w, =0, Ux+v,z+w,=0
be the equations of the lines composing I'. Then the equa-
tion of I 1s

(ywy + uywy)x
vsaw)z + wiw, = 0;

uluzxz + U1U2Z2 + (Hlvz -+ UzUl)XZ
+ (vyw,

call M the corresponding matrix. The vectors (in . compo-
nents)

n, = (u, wi/f, v), My = (Uy, w,lf, vy)
are normal to the planes through O and the two lines,
respectively. One can assume that they are also of unitary
norm, by a suitable choice of coefficients in their propor-

tionality class. Set ¢ = (n,, n,). A lengthy, yet straightfor-
ward computation yields the following Lemma.

LEMMA 6.3.1.
ues of M are

For M, n,,n,, c as above, the eigenval-

w =0, w=(c+ D2, u=(c— D2

and eigenvectors corresponding to ., and s respectively
are - '

n, +n,, N, —nN. :

A third vector forming a triple of mutually orthogonal
vectors is thenn; /\ n,.

Remark 6.3.1. Note that the indices of the eigenvalues
u; of the preceding lemma do not refer to the analogous
indices of the eigenvalues A; of the matrix N.

One can consider the image plane as split into parts by
the pair of lines; there are two cases, which both can
occur for cones as well as for cylinders: (1) the lines are
parallel, then we call ‘‘internal part’ the strip bounded
by the lines; (2) the lines are incident, then the ““internal
part”’ is that union of two opposite angles, delimited by
the lines, which contains the projection of the quadric.

- Analogously, the two planes forming % split the space
into two parts (each the union of two opposite dihedra), of
which only one, the ‘‘internal part,”” contains the quadric
itself. It is always possible to initially choose the sign of
the coefficients, so that the vector pointing to the internal
part is exactly n, + n,; assume that choice.

77

Cones. For cones, one has r < 0 and s = 0. Note that
—r is the tangent of the angle % formed by the rotation
axis and any generatrix of the cone Q. Theretore, a neces-
sary and sufficient condition for the vantage point O to
be exterior to O (so that Q itself can be ‘‘seen’’) 1s that
* > —rv?. Moreover, the convex angle between n, and
—1, 1S greater than or equal to 24; theretore,

PN

N
C =CoS N, = COoS\m — Nnit—nN
3 = cos (m = m{—n,)

= —¢os ny(—n,) = —cos 20 = (r

)/(r — 1).

PROPOSITION 6.3.1. For a cone Q of vertex O', with
r, my, N, as above, O’ — O is proportional ton; /\' n,. A
free vector of the rotation axis of Q is

o Vicr—1)—r—=Dlc—1nAn, +V—r(n +n),

where p is either +1 or —1.

Proof. The vertex O' lies on the intersection line of
the two planes forming %6; on the other hand, n, /\ n, is
a free vector of this line, so O’ — O is proportional to it.

In order to determine the direction of the rotation axis,
one can find eigenvectors of N. The eigenvalues of N are

N, = —(rv* + 77),

)\.2 — “‘"F(Vz + 72), )\3 = 0

with eigenvectors, respectively (in S’ components),
Vi = (1, 0, 0)5 Vo = (05 V&,“T)a Vi3 = (0, T, If').

By comparing these with the orthogonal triple of Lemma
6.3.1, one obtains that A; matches u,; and A, matches w,.

In fact n; /\ n, is directed as O’ — O = —v;, so its §’
components are proportional to (0, 7, v). Thus, by .Lemma
6.1.2, |

o —r(v’ + 7%
py  —(rv*+ 73

(Note that the ratio 1s negative, as necessary for % to be
built of two real planes, because of the inequality 7% >
—rv? above). Consequently, from the values of w, and u,
computed as in Lemma 6.3.1,

T 2r

(3)2 (r=Dc—(@r+1

The ratio at the right-hand side is actually positive because
of the previously seen inequality ¢ = (r + 1)/(r — 1).

Direct computation then shows that the matrix B of
[Lemma 6.1.1 has columns formed respectively by the
triples of components of (n, — n)/\V2(1 — ¢), (n; + n,)/
V21 + ¢), my A my/V1 — ¢2, and
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1 0 , 0
0 (r — e —(r+1) B 2r
gl N O=DctD) T NCr-Dc+D

0 2r r—1c—((r+1) I
r-De+1) N Oo-De+D |

where p = sign(v). From Lemma 6.1.1 one then obtains
a unit vector of the rotation axis, in .S components, by
taking the third row of B’ - B'; this turns out to be

ot 1)1\/1 — (ﬁ\/c(r _Cl)__lr — 1111/\112 + V —=r(n,

nz))

and the result comes from neglecting the normalization
factor. W

Remark 6.3.1. It 1s not possible to determine the dis-
tance O O’ from these data only; this can be seen also
by considering that the ‘‘circumscribed cone’’ is the same
pair of planes no matter how the vantage point is displaced
along the line O O'. Moreover, there is a finite ambiguity
in that it is not possible to know the sign of v from data
only. This again is consistent with the physical situation.
However, concrete models consist of truncated cones,
so the indeterminacies can be solved by using segment
measures and by integrating with the methods of Sec-
tion 5.

ExXAMPLE. Given a cone with r = —2; image lines,
forming the contour of the cone projection, of equations

577x — (914 — 500 V3)z — (125 + 20 V3) = 0,
577x — (914 + 500 V3)z — (125 — 20 V3) = 0,

respectively, then

(577, —-125=20V3, — 914 + 500 \V/3)

n .
| 505 V6 — 450 V2
o (577,—125 + 20 V3, — 914 — 500 V'3)
: 505 V6 + 450 \V/2 ’
whence
n, +m= ;9/5(101,, —25,-82), n,/\n, = 41\9? (7,25, 1)

so that, by Proposition 6.3.1, the vertex O’ lies on the
line passing through O, with directional vector (7, 25, 1).
The formula of the same proposition yields

18V3 V3
- —50, —83
65 (4! 0! 3)! 195 (94! 50! )

as the two possible directional vectors of the rotation
axis.

Cylinders. Cylinders have r = 0 and s < 0. Because
of their particular symmetry, O’ can be chosen anywhere
on the rotation axis without any change in the canonical
equation, so one may assume v = 0, 1.e., O = (0, 7, 0)
with 7 < 0 (§' coordinates). O’ is then the orthogonal
projection of O on the rotation axis.

PROPOSITION 6.3.2.

For a cylinder Q with s, ny, n,,
O’ as above, one has |

V—s

O — 0 =
¢ + 1

(n; + m,).

A free vector of the rotation axis of Qisn;/\n,.

Proof. The second part of the statement comes from
the fact that the generatrices of O in which € is tangent
are parallel to each other: they must then be parallel to
the intersection line of the two planes forming 6, and this
has n; /\ n, as a free vector. In order to prove the first
part, observe that O’ — O is proportional (by a positive
factor) to n; + n, by the conventions on the latter vector

and on O'. It remains to compute the scalar factor. The
matrix /N has eigenvalues

and eigenvectors, respectively (in S’ components),

vi=(,0,0), v,=(0,1,0), v;=(0,0, 1).

With a s_'imilar argument as for the cones (O’ — O 1s
proportional both to n, + n, and to v,), one can match u,
with A, and w, with A,. By applying Lemma 5.1.2 one

obtains

finally,

O'— 0 = —7(n, + ny)/|n, + n,||

V —S§
C+1(n1+n2). |

As an example, if the previously written image lines
(used above as contours for the cone) are now interpreted
as coming from the projection of a cylinder with s =
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—3, then we have, by Proposition 6.3.2, the vector of
components (7, 25, 1) as a directional vector of the rotation
axis; the coordinates of the orthogonal projection of O
on the rotation axis are

V2

—= (101, —25, —82).
g0 (101, =25, =82)

7. APPLICATIONS

Perspective inversion methodologies find their histori-
cal place within the monocular approach to the 3D model-
based object recognition and spatial location problems.
As most of the systems devoted to these tasks adopt a
hypothesis verification paradigm, performances are
strictly conditioned by the posstbility to state robust and
reliable hypotheses with low computational etfort.

The analytical solutions of perspective backprojection
for geometric configurations corresponding to object con-
tours have proved particularly suitable to the hypothesis
formulation phase, both for their low-cost computation
and for their reliability. Furthermore, their intrinsic ambi-
gulity can be easily solved with some simple logical rules,
as pointed out by [12], or by applying several procedures
on the same image. '

Examples of the use of segment configurations in recog-
nition or spatial localization systems can be found in litera-
ture (see, for example, [4, 12]). Recently, also nonlinear
structures have been used for the same tasks [10]. The
perspective inversion of ellipses illustrated in Section 5
has been used inside a model-based 3D mechanical recog-
nition system, together with a structured light approach
[13]. For each scene, two images are taken from the same
point of view: a normal gray-level intensity image and a
similar image with a projected squared grid. The first
image is used to detect the elliptic arcs that can be perspec-
tive projections of ‘‘circle’” primitives. From the second
image, surface primitives like ‘‘planes’ and *‘cylinders™
are identified. A data base made of mechanical real parts
has been used for system testing.

The system follows a classical L.ozano—Perez matching
paradigm oriented to data fusion and uses as model- and
scene-primitives normal vectors to circles and planes and
axes of cylinders. The system 1s based on shape alone,
without size information, and 1s strongly speeded up by
the choice of very high-level, synthetic primitives. The
nonphysical solutions coming from the intrinsic ambiguity
of perspective backprojection are easily discarded during
the matching process. |

More recently, other very interesting and promising
application fields for the perspective inversion techniques
are emerging, like the support to the automatic guidance
and the self-localization of mobile autonomous robots
[14]. The problem of self-localization of a mobile robot
can be stated in this way: assume that an object i1s given,

for which the perspective inversion 1s computable, 1.¢.,
whose position can be computed in a camera-centered
reference system; assume also that the mobile robot is
equipped with a camera and able to detect the projection
of the object. From an image of the object acquired by
the camera 1t 1S possible to compute the position and
orientation of the robot 1n the object-centered reference
system. Objects with this specific task are called ‘‘land-

marks.”” The landmarks can be appropriately designed

geometric structures preinstalled in the workspace or ex-
1sting features learned by the vision system in-an off-line
phase.

Crucial parameters to be considered 1n this application
are the accuracy of pose estimates, which depends on the
low-level processing precision, setup calibration accu-
racy, and robustness of the positioning approach (stereo,
active triangulation, or perspective inversion). Other im-
portant points are the computational cost and the com-
plexity ot the hardware architecture devoted to the task.

In view of these considerations, the perspective inver-
sion techniques seem to be well tailored to the problem.
The main advantage with respect to the stereo methodol-
ogy 1s the use of a single camera with the consequent
reduction of the processing time. Besides, particularly in
indoor spaces, such as an office or a laboratory, geometric
landmarks based on the configuration treated in the paper
can be designed or selected among the real structures of
the scene. At present, at our labs, special landmarks made
of circles and straight line segments are under examination
for the navigation of a mobile robot in a factory envi-
ronment. |

8. EXPERIMENTAL RESULTS ON REAL DATA

The proposed methodologies have been tested on arti-
ficial data obtained by simulation (see also the examples
through the paper) and on real images. Here the attention
will be focused on configuration ¢ and on an integration
of ¢ and d. |

The case of the elliptic arc has been the first solved
and implemented in our labs (see also [8] for a previous
version) and a corresponding low-level processing has
been developed for its employment in real applications.
The ellipses are detected by performing a polygonal ap-
proximation of the chains of edge pixels and using an
algorithm that, starting from polygonal chains, looks for
those approximable with elliptical arcs. Interesting fea-
tures of this methodology, that 1s extensively described
in [15], are its robustness also in the presence of noisy
structures or outliers generated by highlights and 1ts capa-
bility to treat successfully also partial cllipses. As it is
based on standard low-level modules (edge detection,
polygonal approximation) already available in hardware
(developed within the ESPRIT-P940 project [16]), it can
be included 1nside an actual real time vision system.
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. 7. The model ““POLY-HOLE.”

In Fig. 7 an object model of the data base with the

corresponding list of primitives 1s shown (see also Data
| and Table 1).

In Fig. 8a one of the images used for the perspective
analysis 1s depicted (another similar image with a pro-
jected square grid is used for plane detection); Fig. 8b
shows the result of the ellipse detection process.

DATA 1
(mm)

31.54
20.09
49.71

)
e
||

O
D
|

-
x.il
|

Fo

Fo = 1067
il = 2.83
ry = 10.95

TABLE 1

odel POLY-HOLE

Identifier ormal vector
(0.00 .00 1.00)
(0.707107 0.00 0.707107)
(1.00 (.00 0.00)

Table 2 summarizes the list of the detected primitives
“‘circle.”” For each ellipse, two corresponding orienta-
tions are computed according to the results of Section
5. The coordmates of the centres are computed using
information about model radii and focal length.

Table 3 shows the angular relationships among the prim-
itives; the primitives 1, 4, and 6 are 1identified as the correct
ones. Finally, Table 4 shows some quantitative compari-
sons between scene and model primitives.

The algorithm for cylinder reconstruction has been

FIG. 8. (a) The image used for perspective analysis. (b) The detected ellipses.
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tested on some images of cylinders (one of them 1s shown
in Fig. 9a), while Fig. 9b shows the detected ellipses and
segments). Input to the algorithm are the two straight
segments that bound the lateral surface of each cylinder;
they have been detected using edge detection and polygo-
nal approximation. Table 5 summarizes the 1dentifie
primitives by the two algorithms for the previous image.
A comparison between the results obtained through the
ellipse backprojection (applied to the two bases of the
cylinders) and the lateral boundary displays a good accor-
dance between the normal vectors and the axes. Anyway,
the ellipse backprojection gives more robust results,
mainly for the difficult detection of occluding boundaries

with conventional edge detection processes. Besides, a
brief error analysis has shown that the cylinder recon-

(a) Image for cylinder testing. (b) Low-level processing results.

struction 1s more affected by calibration errors than the
circle reconstruction.

9. CONCLUSIONS

Monocular scene analysis based on perspective projec-
tion can be successtully used to solve the problem of the
determination of 3D object attitude if a priori knowledge
1s available. In the paper, analytic procedures for perspec-
tives inversion of special primitive configurations have
been presented. The selected configurations are: four co-
planar segments, three orthogonal segments, a circle arc,
and a quadric of revolution.

The various proposed methodologies have as a common
denominator the use of some mathematical tools belong-

TABLE 2
Results of the Perspective Inversion of the Three Ellipses Detected in the Image of Fig. 7

Detected Circles

. ormal vector

Centre (mm)

1 (—0.301343 0.575346 —(.760374)
2 ( 0.321094 0.450009 .833301)
3 (—0.473142 0.691996 .545232)
4 ( 0.431159 0.772815 —(.465681)
5 (—0.892409 0.413923 —0.179648)
6 ( 0.805164 0.572356 155308)

( 6.480 333.609 23.867) o
( 6.371 333.631 23.588)
(— 9.276 323.936 17.582)
(— 9.292 323.934 17.601) .
(—28.780 327.066 ~8.042)
(—29.086 327.066 ~8.102) .

Note. The bullet indicates the correct solution. The origin of the coordinate system is the optical centre of the camera

sensor and the y-axis is the optical axis.
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. TABLE 3
Angular Relationships (in Degrees) between the Computed
Normal Vectors

2 3 o4 5 o6
o] 118.1 32.7 92.3 49.9 91.%8
2 52.1 84.4 104.5 49.38
3 85.6 52.4 88.9
o4 88.9 44.2
3 120.6

Note. The correct angular relationships have bullets.

ing to perspective geometry that are not very conventional
in computer vision. Although the approach may require
a quite complex theoretical analysis, it leads to very easily
applicable results.

The relevance of the solved primitive configurations
has been illustrated in different application domains. A
- brief discussion about the efficient low-level processing
used for their detection from 1mages has been done, to-
gether with some considerations on their stability and
robustness.

Some experimental results on real data have been
shown in the 3D model-based object recognition context,
where these methodologies are particularly useful in the
hypothesis formulation phase. Presently the algorithms
are under examination also for the mobile robot self-local-
ization problem; the design of a gcometric nonambiguous
landmark based on the above primitives 1s 1n progress at
our laboratories.

Future work is planned both to analyze new configura-
tions and to go on in the integration of the backprojection
results with data coming from other information sources,
following a data fusion paradigm.

APPENDIX: A BRIEF RECALL OF
PROJECTIVE GEOMETRY

We recall here some fundamental concepts and the cor-
responding terminology, used in projective geometry [17,

TABLE 5
Comparison between Primitives
Primitives
Id. Type ‘Normal vector/axis
I Circle (0.070230 0.285262 —(.955873)
2 Cylinder (0.098763 0.318477 —0.942772)
3 Cylinder (0.092020 0.239155 —0.966611)

Note. The angle between 1 and 2 1s 2.7°, between 1 and 3 is 3°.

18]; we choose a rather classical presentation because of
its intuitiveness, compared with the modern (and equiva-
lent) vector-based setting. Projective geometry moves
from the basic concepts of point, straight line, and plane,
and deals with geometric figures made of a finite or infinite
set of these basic elements; the projective quantities and
properties are the ones invariant under the widest group
of transformations (called projectivities or projective
transformations) which map all straight lines into straight
lines. The basic projectivities are projection and section.
Parallelism of straight lines and planes in Euclidean
(actually also in affine) geometry determines a lot of un-
pleasant exceptions. To avoid these problems, the con-
cepts of point, straight line, and plane are generalized, 1n
projective geometry, so that special cases can be treated
together with general cases in a homogeneous way.
Therefore ideal elements are introduced:

—ideal point of a line. A fictitious point representing
the direction of a straight line; it is common to it and to
all lines parallel to it;

—ideal line of a plane. The locus of 1deal points of all
lines in the plane; it is common to it and to all planes
parallel to 1t; |

—ideal plane. The locus of all ideal points (and 1deal
lines).

The term ‘at infinity’’ is often used instead of ‘‘ideal’
to remind that an ideal element is like a conventional

TABLE 4

Geometrical Relations: Angles between Normals and Distances between Centres
Compared with the Expected Values

Quantitative |

~valuation

Angles (deg)

Centre distances . (mm)

Circles Measured Correct Error (%) Measured Correct Error (%)
1-4 92.3 90 6.6 19.53 20.09 2.8
1-6 91.8 90 2.2 48.25 49.71 2.9
4-6 44.2 45 2.2 32.59 31.54 3.3

Total - 3.7 3.0
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element which ‘““moves to infinity.”” When 1deal elements
are constdered, it 1s convenient to use homogeneous coor-
dinates. They allow labelling also the ideal elements with
n-tuples of (finite) numbers. In the projective extension
of Euclidean 3D space we use ¢, x, y, z as homogeneous
coordinates; with this choice, for every four-tuple of real
numbers (¢, x;, ¥, zy) not all equal to zero, there exists
a point (in the usual sense) with Cartesian coordinates
X, = x\/t;,y. = y,/t;, z. = z;/t,; if t; # 0, or the 1deal point
of the line with directional vector (x;, y;, z9) if {; = 0.
Also the converse is true, and only the four-tuple (0, O,
0, 0) does not correspond to any point: there 1s a biyjection
between the set of points of projective 3D space and the
set of proportionality classes of nonnull four-tuples of
reals.

Every equation for curves and surfaces can be reformu-
lated in homogeneous coordinates. For instance, the
equations for the ideal plane (denoted I1;) and the generic
line at infinity respectively are:

F= 0 ;ax+by+cz=0
Lt=0.

Another important technique consists of the use of com-
plex points, 1.e., points whose coordinates (Cartesian or
homogeneous) can be complex numbers. Although they
lack of a direct physical meaning, they allow a simpler and
unifying treatment of geometrical problems. For instance,
given a conic (a real one, with real coetfficients and real
points) in the plane, it will have intersection points with
any line: the lines which we see as external to the conic
are simply the ones which intersect it in nonreal points.
If the line itself is real (i.e., described by an eqguation
with real coefficients), then the two complex intersection
points will have conjugate coordinates. E.g., the conic
described in Cartesian coordinates by x> — y?/4 — 1 = 0
intersects the line x = 0 1in the points (0, = 2V —1). Finally,
this conceptual trick now gives ‘‘points’’ to the conics
we see as empty, like the “‘circle” x* + y* = —1; they
will just be complex, nonreal points as, for instance, (0,
V-1

Coming back to a terminology which 1s more conven-
tional in computer vision, we can observe that the van-
ishing points are the points on the image plane which
correspond to ideal points [4, 16]. If we have a direction
in space given by the unit vector N = (n,, n,, n;) and
choose a camera-centered reference frame with the y-axis
coincident with the focal axis and with focal plane of
equation y = f, the corresponding ideal point has homoge-
neous coordinates (0, n,, n,, n,), and the vanishing point
has Cartesian coordinates (fn,/n,, f, fn,/n,), since 1t 1s
the intersection of the image plane with the straight line
through the origin, with the given direction. So 1t i1s
straightforward to go from one to the other. Also, the

DII

FIGURE 10

important relations in which vanishing points are involved
are straight consequences of the meaning of ideal point.

Finally, among the entities which are invariant under
projective transformations we must recall the cross ratio.
Cross ratio is very important in monocular computer vi-
sion, because 1t allows establishing a sort of metric rela-
tion between scene and image [19]. Given four collinear
nonideal points A, B, C, D (see Fig. 10) their cross ratio
1S

_dA,C0)dB, D)
d(A,D)d(B, C)’

RABCD

this 1s the most usual expression, but not the most general
definition. Actually the true definition (for which we refer
to [17, 18]) involves some sophisticated concepts and can
be expressed 1n homogeneous coordinates so that it also
applies to 1deal points. If V 1s an ideal point, one obtains
the following expression for the cross ratio:

o _dD.B)
VaBCD = 1(C B)’
THEOREM A.l. The cross ratio is a projective in-
variant.
Remark A.1. The transformation of main interest for

computer vision 1s the central projection to the image
plane. Given again four collinear points A, B, C, D, and
given their corresponding points A', B, C’', D' on the
image plane, we have |

Y _d4'.Chd(B.D)_
A'B'C'D’ d(AF, D,r) d(B_I, Cf) ABCD

When a point V1s located at infinity and its correspond-
ing point in the image is the vanishing point V, for the
cross ratio it turns out that
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_dD,B) dV,C")dB',D’) _ R
d(C,B) d(V.D")dB',C") VB'C'D'

Remark A.2. Another important transformation is the
orthogonal projection. Therefore the cross ratio of four
points equals the cross ratio of their orthogonal projection
to, say, the x axis. This allows computing the cross ratio
by using differences of abscissa instead of distances.

Ry _scp

Any sphere has an equation of the type-
x24+yv:i+z22+ax+ by +cz+d=0,
which becomes, in homogeneous coordinates,
x> +y? + 2% + axt + byt + czt + dt* = 0;
if we intersect it with the ideal plane I, we obtain

x2+yi+22=0
t = 0;

1.e., the intersection with 11, 1s the same for all spheres!
This intersection is considered to be a circle and 1s called
the absolute circle #,. Of interest 1s also the isotropic
cone #, defined as the cone over the absolute circle 4€
with the origin as vertex; it has the equation (both in
Cartesian and in homogeneous coordinates) & = 0, where
® = x*+ y* + 7% |

The absolute circle #, is a convenient mathematical
abstraction. It is considered to be a “‘circle’ just as it is
the intersection between a sphere and a plane; but its
points are not only ideal (i.e., at infinity), but even imagi-
nary (1.e., with nonreal coordinates)! Its usetulness comes
from the following facts.

THEOREM A.2. A quadric is a sphere if and only if its
intersection with the ideal plane is #,. A conic in space
is a circle if and only if its intersection points with the
ideal plane belong to ¥,.
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