Mathematical Methods - 21 Dec. 2021 - Graph Theory

UniBo matriculation number:

(no name, please)
Let G be the graph drawn here:

1) (l pt.) Adjacency matrix:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
\mathbf{A}	0	1	0	0	1	1	0	0
\mathbf{B}	1	0	1	0	0	0	0	0
\mathbf{C}	0	1	0	1	0	0	1	0
\mathbf{D}	0	0	1	0	1	0	0	0
\mathbf{E}	1	0	0	1	0	1	0	0
\mathbf{F}	1	0	0	0	1	0	0	1
\mathbf{G}	0	0	1	0	0	0	0	0
\mathbf{H}	0	0	0	0	0	1	0	0

2) (1 pt.) Incidence matrix:

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}
\mathbf{A}	1	0	0	0	0	1	0	0	1
\mathbf{B}	1	1	0	0	0	0	0	0	0
\mathbf{C}	0	1	1	0	0	0	1	0	0
D	0	0	1	1	0	0	0	0	0
E	0	0	0	1	1	0	0	0	1
F	0	0	0	0	1	1	0	1	0
G	0	0	0	0	0	0	1	0	0
\mathbf{H}	0	0	0	0	0	0	0	1	0

3) (1 pt.) Minimum degree $\delta=1 \quad$ Maximum degree $\Delta=3$
4) (1 pt.) Connectivity $\kappa=1$ Edge-connectivity κ ' $=1$
5) (1 pt.) Is G bipartite? Why? (If answer is "yes", list the two vertex sets of the bipartition) No. It contains odd cycles.
6) (1 pt.) Does G have an Euler tour? Why? (If answer is "yes", write the edge sequence of one) No. It contains vertices of odd degree.
7) (1 pt.) Does G have an Euler trail? Why? (If answer is "yes", write the edge sequence of one) No. It contains more than two vertices of odd degree.
8) (1 pt.) Does G have a Hamilton path? (If answer is "yes", write the vertex sequence of one) No.
9) (l pt.) List the edge set of a maximum matching. Is it a perfect matching? \{a,d,g,h\} Yes.

Now the vertices represent towns and the edge weights represent distances.
10) (2 pts.) Use Dijkstra's algorithm to find minimal routes from A to all other vertices.

11) (2 pts.) Use Kruskal's algorithm to find a spanning tree with minimum total weight (an optimal connector of the towns).

12) (3 pts.) Use the recursive formula to compute τ (\# of spanning trees) of this graph (passages not shown here, but in test you are supposed to show them): 14

13) (4 pts.) Use logic operations to find all minimal coverings and all maximal independent sets of this graph (please show all passages).
$(\mathrm{A}+\mathrm{EF})(\mathrm{B}+\mathrm{C})(\mathrm{C}+\mathrm{BD})(\mathrm{D}+\mathrm{CE})(\mathrm{E}+\mathrm{ADF})(\mathrm{F}+\mathrm{AE})=$
$=(\mathrm{AB}+\mathrm{AC}+\mathrm{EFB}+\mathrm{EFC})(\mathrm{C}+\mathrm{BD})()=$
$=(\mathrm{ABC}+\mathrm{ABBD}+\mathrm{ACC}+\mathrm{ACBD}+\mathrm{EFBC}+\mathrm{EFBBD}+\mathrm{EFCC}+\mathrm{EFCBD})()=$
$=(\mathrm{ABD}+\mathrm{AC}+\mathrm{EFBD}+\mathrm{EFC})(\mathrm{D}+\mathrm{CE})()=$

$=(\mathrm{ABDD}+\mathrm{ABDCE}+\mathrm{ACD}+\mathrm{ACCE}+\mathrm{EFBDD}+\mathrm{EFBDCE}+\mathrm{EFCD}+\mathrm{EFCCE})()=$
$=(\mathrm{ABD}+\mathrm{ACD}+\mathrm{ACE}+\mathrm{EFBD}+\mathrm{EFC})(\mathrm{E}+\mathrm{ADF})()=$
$=(\mathrm{ABDE}+\mathrm{ABDADF}+\mathrm{ACDE}+\mathrm{ACDADF}+\mathrm{ACEE}+\mathrm{ACEADF}+\mathrm{EFBDE}+\mathrm{EFBDADF}+\mathrm{EFCE}+\mathrm{EFCADF})()=$
$=(\mathrm{ABDE}+\mathrm{ABDF}+\mathrm{ACDF}+\mathrm{ACE}+\mathrm{EFBD}+\mathrm{EFC})(\mathrm{F}+\mathrm{AE})=$
$=\mathrm{ABDEF}+\mathrm{ABDEAE}+\mathrm{ABDFF}+\mathrm{ABDFAE}+\mathrm{ACDFF}+\mathrm{ACDFAE}+\mathrm{ACEF}+\mathrm{ACEAE}+\mathrm{EFBDF}+\mathrm{EFBDAE}+\mathrm{EFCF}+\mathrm{EFCAE}=$
$=\mathrm{ABDE}+\mathrm{ABDF}+\mathrm{ACDF}+\mathrm{ACE}+\mathrm{BDEF}+\mathrm{CEF}$
Minimal coverings: $\{\mathbf{A}, \mathbf{B}, \mathbf{D}, \mathrm{E}\},\{\mathbf{A}, \mathbf{B}, \mathrm{D}, \mathbf{F}\},\{\mathbf{A}, \mathrm{C}, \mathrm{D}, \mathrm{F}\},\{\mathbf{A}, \mathrm{C}, \mathrm{E}\},\{\mathbf{B}, \mathrm{D}, \mathrm{E}, \mathbf{F}\},\{\mathrm{C}, \mathrm{E}, \mathbf{F}\}$
Maximal independent sets: $\{\mathbf{C}, \mathbf{F}\},\{\mathrm{C}, \mathrm{E}\},\{\mathrm{B}, \mathrm{E}\},\{\mathrm{B}, \mathrm{D}, \mathrm{F}\},\{\mathrm{A}, \mathrm{C}\},\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$
14) (4 pts.) Compute the chromatic polynomial of this graph (passages not shown here, but in test you are supposed to show them).
$k^{6}-6 k^{5}+14 k^{4}-16 k^{3}+9 k^{2}-2 k$

