Mathematical Methods - 7 Jan. 2022 - Graph Theory

UniBo matriculation number:

(no name, please)
Let G be the graph drawn here:

1) (1 pt.) Adjacency matrix:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}
\mathbf{A}	0	1	0	0	0	0	1
\mathbf{B}	1	0	1	0	0	1	0
\mathbf{C}	0	1	0	1	0	0	0
\mathbf{D}	0	0	1	0	1	1	0
\mathbf{E}	0	0	0	1	0	1	1
F	0	1	0	1	1	0	0
\mathbf{G}	1	0	0	0	1	0	0

2) (1pt.) Incidence matrix:

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}	\mathbf{i}
\mathbf{A}	1	0	0	0	0	0	1	0	0
\mathbf{B}	1	1	0	0	0	1	0	0	0
C	0	1	1	0	0	0	0	0	0
D	0	0	1	1	0	0	0	0	1
E	0	0	0	1	1	0	0	1	0
F	0	0	0	0	0	1	0	1	1
G	0	0	0	0	1	0	1	0	0

3) (1 pt.) Minimum degree $\delta=2$ Maximum degree $\Delta=3$
4) (1 pt.) Connectivity $\kappa=2$ Edge-connectivity κ ' $=2$
5) (1 pt.) Is G bipartite? Why? (If answer is "yes", list the two vertex sets of the bipartition) No. It contains odd cycles.
6) (l pt.) Does G have an Euler tour? Why? (If answer is "yes", write the edge sequence of one) No. It contains vertices of odd degree.
7) (1 pt.) Does G have an Euler trail? Why? (If answer is "yes", write the edge sequence of one) No. It contains more than two vertices of odd degree.
8) (1 pt.) Does G have a Hamilton path? (If answer is "yes", write the vertex sequence of one) Yes. ABCDFEG
9) (1 pt.) List the edge set of a maximum matching. Is it a perfect matching? \{a,e,i\} No.

Now the vertices represent towns and the edge weights represent distances.
10) (2 pts.) Use Dijkstra's algorithm to find minimal routes from A to all other vertices.

11) (2 pts.) Use Kruskal's algorithm to find a spanning tree with minimum total weight (an optimal connector of the towns).

12) (3 pts.) Use the recursive formula to compute τ (\# of spanning trees) of this graph (passages not shown here, but in test you are supposed to show them): 11

13) (4 pts.) Use logic operations to find all minimal coverings and all maximal independent sets of this graph (please show all passages).
$(\mathrm{C}+\mathrm{D})(\mathrm{D}+\mathrm{CEF})(\mathrm{E}+\mathrm{DF})(\mathrm{F}+\mathrm{BDE})(\mathrm{B}+\mathrm{F})=(\mathrm{CD}+\mathrm{CCEF}+\mathrm{DD}+\mathrm{DCEF})()=$ $=(\mathrm{CEF}+\mathrm{D})(\mathrm{E}+\mathrm{DF})()=(\mathrm{CEFE}+\mathrm{CEFDF}+\mathrm{DE}+\mathrm{DDF})()=(\mathrm{CEF}+\mathrm{DE}+\mathrm{DF})(\mathrm{F}+\mathrm{BDE})()=$ $=(\mathrm{CEFF}+\mathrm{CEFBDE}+\mathrm{DEF}+\mathrm{DEBDE}+\mathrm{DFF}+\mathrm{DFBDE})()=$
$=(\mathrm{CEF}+\mathrm{BDE}+\mathrm{DF})(\mathrm{B}+\mathrm{F})=\mathrm{CEFB}+\mathrm{CEFF}+\mathrm{BDEB}+\mathrm{BDEF}+\mathrm{DFB}+\mathrm{DFF}=$
$=\mathrm{CEF}+\mathrm{BDE}+\mathrm{DF}$

Minimal coverings: $\{\mathrm{C}, \mathrm{E}, \mathrm{F}\},\{\mathrm{B}, \mathrm{D}, \mathrm{E}\},\{\mathrm{D}, \mathrm{F}\}$
Maximal independent sets: $\{B, D\},\{C, F\},\{B, C, E\}$
14) (4 pts.) Compute the chromatic polynomial of this graph (passages not shown here, but in test you are supposed to show them).
$k^{5}-5 k^{4}+9 k^{3}-7 k^{2}+2 k$

